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We review the level set methods and the related techniques that are common in many
PDE based image models. Many of these techniques involve minimizing the total
variation of the solution and admit regularizations on the curvature of its level sets.
We examine the scope of these techniques in image science, in particular in image
segmentation, interpolation, and decomposition, and introduce some relevant level
set techniques that are useful for this class of applications. Many of the standard
problems are formulated as variational models. We observe increasing synergistic
progression of new tools and ideas between the inverse problem community and the
“imagers”. We show that image science demands multi-disciplinary knowledge and
flexible, but still robust methods. That is why the level set method and total variation
based methods have become thriving techniques in this field.
Our goal is to survey recently developed techniques in various fields of research that
are relevant to diverse objectives in image science. We begin by reviewing some typ-
ical PDE based applications in image processing. In typical PDE methods, images
are assumed to be continuous functions sampled on a grid. We will show that these
methods all share a common feature, which is the emphasis on processing the level
lines of the underlying image. The importance of level lines has been known for
some time. See e.g., (Alvarez, Guichard, Morel and Lions 1993). This feature places
our slightly general definition of the level set method for image science in context.
In section two, we describe the building blocks of a typical level set method in the
continuum setting. Each important task that we need to do is formulated as the solu-
tion to certain PDEs. Then, in section three, we briefly describe the finite difference
methods developed to construct approximate solutions to these PDEs. Some ap-
proaches to interpolation into small subdomains of an image are reviewed in Section
4. In Section 5, we describe the Chan-Vese segmentation algorithm and two new fast
implementation methods. Finally, in Section 6, we describe some new techniques
developed in the level set community.
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1. Level Set Methods and Image Science
The level set method for capturing moving fronts was introduced by Osher and
Sethian (Osher and Sethian 1988) in 1987. (Two earlier conference papers which
contained some of the key ideas, have recently come to light (Dervieux and Thomasset
1979),(Dervieux and Thomasset 1981)). Over the years, the method has proven to
be a robust numerical device for this purpose in a diverse collection of problems.
One set of problems lies in the field of image science. In this article, we will em-
phasize not only what has been done in image science using level set techniques,
but also in other areas of science in which level set methods are applied success-
fully — the idea is to point out the related formulations and solution methods to the
image science communities. These communities include image/video processing,
computer vision, and graphics, These are diverse, with specialties such as medical
imaging and Hollywood type special effects.

We begin with a quick examination of what constitutes a classical level set
method: an implicit data representation of a hypersurface (codimension 1 object),
a set of PDEs that govern how the surface moves, and the corresponding numeri-
cal methods for implementing this on computers. In fact, a typical application in
image science will need all these features. We will illustrate this point by some
classical applications.

The term “image science” is used here to denote a wide range of problems related
to digital images. It is generally referred to problems related to acquiring images
(imaging), image processing, computer graphics, and computer vision. The type
of mathematical techniques involved include discrete math, linear algebra, statis-
tics, approximation theory, partial differential equations, quasi-convexity analysis
related to solving inverse problems, and even algebraic geometry. The role of a
level set method often relates to PDE techniques involving one or more of the fol-
lowing features: 1) regarding an image as a function sampled on a given grid with
the grid values corresponding to the pixel intensity in suitable color space, 2) reg-
ularization of the solutions, 3) representing boundaries, and 4) numerical methods.
It is not hard to seek an application of the level set method for image segmentation
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or to model obstacles in inverse problems, since boundaries and level contours are
fundamental objects in image science.

In a later section, we will examine some essential fundamentals of the level set
methodology. We refer the reader to the original paper (Osher and Sethian 1988)
and a new book (Osher and Fedkiw 2002) for detailed exposition of the level set
method. A set of presentation slides is also available from the first author’s home
page1.

An image is considered as a function u : Ω 7→ X , where Ω is typically a rect-
angular domain in R

2 and X is some compact space that is determined by the
imaging device; e.g. X = [0, 1] if u is a gray value image, and X = S1 × [0, 1]
if the chromaticity and intensity is used for a color image. Unless otherwise noted,
we will discuss gray level images here

We write a typical PDE method as

λLu = Ru, (1.1)

or

ut + λLu = Ru, (1.2)

where L is some operator applied to the given image, λ ≥ 0 is a predetermined
parameter, and R denotes the regularization operator. For example, in the TV
deblurring of (Rudin and Osher 1994),

Lu = K ∗ (Ku− f),

where K is a compact integral operator , f is the given image, and the restored
image is the limit u(t) as t −→ ∞. When L is not invertible, as in the above
deblurring model, or when certain regularity in the image u is needed, a regular-
ization term will be added. In the usual version of Total Variation based methods,
regularization usually appears in a form similar to

Ru =

(

∇ · ∇u
|∇u|

)

. (1.3)

Typically, Equations (1.1) and (1.2) are derived either from directly writing
down some PDEs whose solutions possess the desired properties, or from devising
an energy functional E(u) and solving for a minimizer. For example the shock
filter of (Rudin and Osher 1990) and the inpainting algorithm of Bertalmio et.
al. (Bertalmio, Sapiro, Caselles and Ballester 2000) fall into the first category.
The variational approaches seem to be the mainstream for many important prob-
lems nowadays, partly due to the existing mathematical tools, involving calculus
of variations and Γ- convergence, available to study such kind of models. The
Mumford-Shah multiscale segmentation model (Mumford and Shah 1989) and the

1 http://www.math.princeton.edu/~ytsai
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Total Variation (TV) denoising model of Rudin-Osher-Fatemi (ROF) (Rudin, Os-
her and Fatemi 1992) are successful variational models. Both models have inspired
much research activity in this field and will be discussed frequently in this article.
The ROF model can be written as:

min
u

ETV (u) =
λ

2

∫

(f − u)2dx+

∫

|∇u|dx, (1.4)

where f is the given noisy image. In this set up, the Euler-Lagrange equation for
(1.4) defines Lu as (u − f), and R = ∇ · ∇u

|∇u| , which is the curvature of the level
curve at each point of the image u. We remark that in many other image applica-
tions, the unregularized energy functional is nonconvex, and its global minimizer
corresponds to the trivial solution. Only a local minimizer is needed. However, in
(1.4), we obtain a useful global minimizer.

In the development of this type of method, one often qualitatively studies the
solutions of the governing PDEs by investigating what action occurs on each of
the level sets of a given image. In the TV regularization of (Marquina and Osher
2000) for example, Ru(x) actually denotes the mean curvature of the level set of
u passing through x. The effects of (1.3) in noise removal can be explained as
follows: the level curves in the neighborhoods of noise on the image have high
curvatures. The level curves of the viscosity solution to

ut =

(

∇ · ∇u
|∇u|

)

|∇u|

shrink with the speed of the mean curvature and eventually disappear. Conse-
quently, the level curves with very high curvature (noise) disappear much faster
than those with relatively lower curvatures, (this helped motivate the approach
taken in (Marquina and Osher 2000)). If the |∇u| term is dropped (as it usu-
ally is) the velocity is inversely proportional to the gradient. This means rel-
atively flat edges do not disappear. The analysis of motion by curvature and
other geometric motions are all important consequences of viscosity solution the-
ory, originally devised for Hamilton-Jacobi Equations and a wide class of sec-
ond order nonlinear equations. The viscosity solution theory describes how evo-
lution extends beyond singularities, including the pinching-off of level curves.
(Chambolle and Lions 1997) provides some analysis of the Total Variation de-
noising model . See (Chen, Giga and Goto 1991)(Crandall, Ishii and Lions 1992),
(Evans and Spruck 1991, Evans and Spruck 1992a, Evans and Spruck 1992b, Evans
and Spruck 1995) for more general viscosity theory applied to a wide class of sec-
ond order equations.

Another interesting category of applications is data interpolation. In the problem
of inpainting, see e.g. (Bertalmio et al. 2000) and Figure 1.1, the challenge is to
repair images which have regions of missing information. The algorithms are mo-
tivated in parts by connecting the level curves over the “inpainting domain” in an
“appropriate way”. In a rather orthogonal way, the AMLE (Absolutely Minimizing
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Figure 1.1. Image obtained from
http://mountains.ece.umn.edu/~guille/inpainting.htm

Figure 1.2. Land mass of Europe found using active contours.

Lipschitz Extension) algorithm, see e.g. (Caselles, Morel and Sbert 1998), assumes
a given set of level curves of an image, and fills in the regions in between the given
level curves while trying to minimize the variation of the new data generated.

In many applications such as image segmentation or rendering, level set methods
are used to define the objects of interest. For example, a level set function is used to
single out desired objects such as the land mass of Europe (Chan and Vese 2001,a).
The land mass is defined to be the connected region where the level set function
is of one sign (see Figure 1.2). There are many successful algorithms of this type.
Examples also include (Chan and Vese 2001b)(Paragios and Deriche 1997). In
a different, but related, context, Zhao et al uses a level set function to interpret
unorganized data sets (Zhao, Osher, Merriman and Kang 2000),(Zhao, Osher and
Fedkiw 2001).

Many of the above methods rely on the variational level set calculus similar to
that of (Zhao, Chan, Merriman and Osher 1996) to formulate the energies whose
minimizers are interpreted as the solution to the problems, and the solutions are
level set functions. In general, the energies are variants of the surface integral

∫

Ω
F (φ, u)δ(φ)|∇φ|dx,
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Figure 1.3. Image obtained from http://www.cs.stanford.edu/~fedkiw

and the volume integral
∫

Ω
G(φ, u)H(−φ)dx,

see (Zhao et al. 1996) for details and definitions. We shall return to this in a later
section on image segmentation.

We notice that in some of the above applications, level set functions are used
to separate the domain into different regions. The interfaces separating those re-
gions are defined as the zeros of the level set function. The PDEs that govern the
motion of the interface can be derived from a variational principle. In many other
cases, the interface motion is governed by classical laws of physics. In fact, in the
original level set paper (Osher and Sethian 1988), a level set function was used to
distinguish burnt and unburnt regions in flame propagation problems. Fedkiw and
collaborators used level set methods to simulate diverse physical phenomena such
as splashing water, flame propagation, and detonation waves. When the results are
rendered on the screen, they become very effective and realistic rendering of nat-
ural phenomena suitable for special effects in movie productions. The reader can
find a detailed description and references in (Osher and Fedkiw 2001). Figure 1.3
provides two such simulations.

Finally, there is a collection of level set numerics, consisting mostly of approx-
imations to general Hamilton-Jacobi Equations and compressible and incompress-
ible Fluid Dynamics. These methods are not limited only to pure level set for-
mulations. They can also be used to solve other PDE based image models. The
basic numerics started in (Osher and Sethian 1988, Osher and Shu 1991), and gen-
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eralizations have been carefully documented in (Osher and Fedkiw 2002). Some
new ones can be found in (Enright, Fedkiw, Ferziger and Mitchell 2002)(Kao, Os-
her and Tsai 2002)(Sethian and Vladimirsky 2001)(Tsai 2002)(Tsai, Cheng, Osher
and Zhao 2003a)(Tsai, Giga and Osher 2003b)(Tsitsiklis 1995). Additionally, we
mentioned (Tornberg and Engquist 2002), which addresses the issue of regulariza-
tion.

Ideas originating in this type of numerics, e.g. ENO interpolation (Harten, En-
gquist, Osher and Chakravarthy 1987), have been used to develop wavelet based
methods which minimize ringing, or Gibbs’ phenomena at edges, (Chan and Zhou
2002).

2. Brief Review of the Level Set Method

A significant number of problems in science reduce to the study of the evolution
of curves, which are usually the boundaries between different media. These curves
(or interfaces) move according to their own geometries or according to the laws of
physics associated with the problem. They break up, merge, or disappear during
the course of time evolution. These topological changes are problematic for most
conventional methods. The level set method (Osher and Sethian 1988), however,
handles these topological changes “with no emotional involvement”. Since its in-
troduction, there has developed a powerful level set calculus used to solve a great
variety of problems in fluid dynamics, materials sciences, computer vision, com-
puter graphics, to name a few topics. We refer to (Osher and Fedkiw 2002) for an
extensive exposition of the level set calculus. See also (Giga 2002) for a related
theoretical exposition.

Typically, one can write a general level set algorithm in three steps enumerated
below:

1 Initialize/reinitialize φ at t = tn.
2 Construct/approximate H(t, x, φ,Dφ,D2φ). (Occasionally higher deriva-

tives also appear for which rigorous viscosity solution theory definitely does
not apply).

3 Evolve

φt +H(t, x, φ,Dφ,D2φ) = 0,

for t = tn + ∆t.

For image applications, φ above can either be the image itself (e.g. deblurring
applications) or an extra function that is used to process the given image (e.g. seg-
mentation applications).

We will discuss the key components of the three steps in the following sections.
More precisely, we will follow convention and start our exposition for Step 2. Step
1 and Step 3 are implemented by suitable numerical methods that will be reviewed
in the next section.
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2.1. Basic formulation

For simplicity, we discuss the conventional level set formulation in two dimen-
sions. The interfaces represented by a level set function are thus also referred to
as curves. However, the methodology presented in this section can be naturally
extended to any number of space dimensions. There, the interface that is repre-
sented is generally called a hypersurface (in three dimensions, it is simply called a
surface). We will use the words interface and curves interchangeably.

In the level set method, the curves are implicitly defined as the zeros of a Lips-
chitz continuous function φ. This is to say that {(x, y) ∈ R

2 : φ(x, y) = 0} define
the embedded curve Γ. In many situations, we will also regard Γ as the boundary of
the sublevel sets Σ = {φ ≤ 0}. See Figures 2.4, and 2.5 for some examples. If we
associate a continuous velocity field v whose restriction onto the curve represents
the velocity of the curve, then at least locally in time, the evolution can be describe
by solving the Cauchy problem

φt + v · ∇φ = 0, φ(x, 0) = φ0(x),

where φ0 embeds the initial position of the curve. To derive this, let us look at
a parameterized curve γ(s, t) and assume that ∂γ/∂t is the known dynamics of
this curve. If we require that γ(s, t) be the zero of the function φ for all time, i.e.
φ(γ(s, t), t) = 0 for all t ≥ 0, then at least formally, the following equation

φt +
∂γ

∂t
· ∇φ(γ, t) = 0

is satisfied along γ. Extending ∂γ/∂t continuously to the whole domain will create
the velocity field v.

In general, the velocity v can be a function of position x, t, and some other
geometrical properties of the curve, or of other physical quantities that come with
the problem. The equation can be written using the normal velocity:

vn = v · ∇φ
|∇φ| , φt + vn|∇φ| = 0. (2.1)

We note that these equations are usually fully nonlinear first order Hamilton-Jacobi
or second order degenerate parabolic equations, and in many cases, the theory of
viscosity solutions (Crandall and Lions 1984) can be applied to guarantee well-
posedness of the Cauchy problem.

It is instructional to derive the level set equation via a weak formulation using
the area and coarea formula (Evans and Gariepy 1992). Let w be a test function,
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Figure 2.4. A circle embedded by different continuous functions.

and vnbe the normal velocity of Γ = ∂Σ = {φ ≤ 0}:
∫

R2

∂φ

∂t
wdx =

d

dt

∫

R2

φwdx = − d

dt

∫

R

∫

{φ(·,t)<η}
wdxdη

= −
∫

R

∫

∂{φ(·,t)<η}
wvndsdη

= −
∫

R

∫

wvnδ(φ(x) − η)|∇φ(x)|dxdη

= −
∫

R2

vn|∇φ|wdx.

We typically solve the level set equation on a rectangular domain Ω with Neumann
boundary condition on ∂Ω. In general, the level set equations do not admit clas-
sical solutions. However, under appropriate regularity conditions on vn or H , it
is possible to uniquely define a special weak solution called the viscosity solution
(Crandall and Lions 1983, Crandall et al. 1992). For many equations, the viscos-
ity solution corresponds to the uniform limit of the vanishing viscosity solution.
It can be shown that the motion of the zero level set of the viscosity solution is
a generalization of a smooth motion in the normal direction, and the motion is
uniquely defined if no fattening occurs; i.e. if {φ = 0} remains a set of measure
zero for all time. We refer the interested readers to (Evans 1998, Giga 2002) for
more information on this aspect of the level set method. Corresponding to viscos-
ity solution theory, there are a set of simple finite difference methods to construct
approximation solutions (Barles and Souganidis 1991)(Crandall and Lions 1984).

Finally, in the level set formulation, the surface integral of function f along the
zero level set is defined via the surface integral

∫

Rd

f(x)δ(φ)|∇φ|dx.
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φ<0

φ>0
φ<0

Figure 2.5. Two closed curves that are implicitly embedded by a single level set function
defined on the grid.

If f ≡ 1, this integral yields the arc length for curves in two dimensions, and
surface area in three dimensions. Volume integrals are defined as

∫

Rd

f(x)H(φ)dx,

where H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0. In Sections 3.8 and 3.9, we
will review the related numerics proposed by (Engquist, Tornberg and Tsai 2004)
related to approximating the delta and Heaviside functions.

2.2. Reshaping the level set function

In many situations, the level set function will develop steep or flat gradients leading
to problems in numerical approximations. It is then needed to reshape the level
set function to a more useful form, while keeping the zero location unchanged.
One way to do this is to perform what is called distance reinitialization (Sussman,
Smereka and Osher 1994) by evolving the following PDE to steady state:

φτ + sgn(φ0)(|∇φ| − 1) = 0, φ(x, τ = 0) = φ0(x). (2.2)

Here φ0 denotes the level set function before reintialization. If we evolve the so-
lution to steady state over the computational domain, the solution φ becomes the
signed distance function to the interface {φ0 = 0}. One can understand the mech-
anism of this approach from the following scenario: in the region in which φ0 is
positive, φτ < 0 whenever |∇φ| > 1; therefore, the value of φ will decrease, and
consequently, |∇φ| will become closer to 1. Notice that φτ ≡ 0 wherever φ0 ≡ 0,
since sgn(0) = 0. See figure 2.6. We will come back to issues related to how
proper discretizations of the discontinuous signum function should be carried out
in order to achieve efficiency and accuracy.

Another equivalent approach is to solve the eikonal equation

|∇φ| = 1
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Figure 2.6. reinitialization

with the boundary condition φ = 0 on {φ0 = 0}. A common numerical approach,
e.g. (Peng, Merriman, Osher, Zhao and Kang 1999a) is to run distance reinitializa-
tion (2.6) with a high order accurate method for a short amount of time, so that in
a thin tube around {φ0 = 0}, φ is now the distance function. Then fix the values
of φ in this tube as boundary conditions, and use fast sweeping or fast marching
methods to solve the eikonal equations. We shall discuss the sweeping method in
Section 3.7.

We remark that for most applications, the reinitialization is only needed in a
neighborhood around the zero level set, and the diameter of this neighborhood de-
pends on the discretization of the partial derivatives in the PDE. This implies that
only a few time steps in τ are needed. We also note that it is important to solve (2.2)
using a high order discretization method. Otherwise, the location of the original
interface will be perturbed noticeably by numerical error. Finally, reinitialization
globally in the computational domain will prevent new zero contours from appear-
ing. Thus, one needs to be careful if emergence of new level contours is of interest.
In many image segmentation tasks, this is important, and we shall comment on this
in a later section.

2.3. Extending quantities off the normals of the interface

In many models, one can only derive the interface velocity vn in equation (2.1)
along Γ. It is necessary to create a continuous velocity field defined on the whole
domain Ω, or at least in a tubular neighborhood of Γ whose restriction on Γ agrees
with the known interface velocity. One common way to obtain such a velocity field
is to solve the following boundary value problem:

sgn(φ)∇w · ∇φ = 0, with w|Γ = vn, (2.3)

or equivalently, to solve for the steady state of the time dependent equation:

wt + sgn(φ)∇w · ∇φ = 0, (2.4)

with any initial data w0 whose restriction on Γ matches vn.



12 TSAI AND OSHER

Figure 2.7. Quantities are extended off the zero level set in the normal directions.

The interpretation of this approach is that vn will be propagated as a constant
along the characteristics of the PDE (2.3), emanating from Γ, parallel to the surface
normals. See figure 2.7. Fast sweeping (Kao et al. 2002, Kao, Osher and Qian
2003, Tsai 2002, Tsai et al. 2003a, Zhao 2003) or fast marching (Tsitsiklis 1995,
Sethian 1996) can be used to solve the first equation while a higher order accurate
Hamilton-Jacobi solver can be used for the second (Osher and Shu 1991). In the
next section, we will briefly describe some popular discretizations.

2.4. Tracking quantities defined on the fronts using level set method

So far we have described the basic level set method that enables us to move curves
and surfaces normal to themselves by the prescribed velocities. We have concen-
trated on describing how the physical location of the curves and surfaces change.
In many applications, including image processing and computer vision, we need to
track quantities that are defined on the surfaces. In this section, we review some
techniques for doing this.

Let f̃ : Γ 7→ X denote the quantity defined on Γ, the zero level set of φ, and f̃
satisfies

f̃t +QΓf̃ = 0, f̃(x, t = 0) = f̃0(x), (2.5)

where QΓ denotes the differential operator on Γ. This equation determines how f̃
is changing on Γ. Let f : U ⊂ R

d 7→ X be a function defined in a neighborhood
U of Γ, and f |Γ ≡ f̃ . Here R

d is the ambient space of Γ; i.e. φ : R
d 7→ R, and

Γ = {x : φ(x) = 0}. In a typical level set method, instead of solving (2.5) directly
on Γ, one solves the corresponding PDE in R

d :

ft +Qf = 0,

so that the restriction of f(t) to Γ matches with f̃(t) for t ≥ 0. At this point, it is
natural to ask what Q is, given the QΓ? In many applications, the form of Q is the
center of the study, and it might be more convenient to track an alternative quantity,
g in order to obtain an equation that is easier to solve. See the recent paper (Jin,
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Liu, Osher and Tsai 2003) for such an example. In the next paragraph, we discuss
another example of this situation.

Assume that we are interested in quantities defined and parameterized on the sur-
faces, and we need to know how these quantities redistribute during the evolution
of the surfaces. In (Harabetian and Osher 1998), Harabetian and Osher introduced
a method for doing this. Let φ denote the level set function that embeds the surface
of interest. The idea is to introduce an auxiliary function ψ such that (φ, ψ) forms
a coordinate system near the zero level set of φ.

Let the family of closed curves Γ(s, t) = (x(s, t), y(s, t)) be parameterized by s
and t. We want to evolve, for example, Γ(s, 0) to time t, by the level set functions:

φ(x(s, t), y(s, t), t) ≡ 0, ψ(x(s, t), y(s, t), t) ≡ s.

However, ψ is not a single valued function over a closed curve if it is defined this
way. The authors then proposed to evolve the Jacobian

J = det
[

ϕx ϕy

ψx ψy

]

instead of ψ to circumvent this problem. J has to be nonzero and finite so that we
can express (xs, ys) by (−φy, φx)/J. Thus, in order to track the tangential motion
we evolve

Jt + ∇ · (Jv) = 0

in addition to
φt + v · ∇φ = 0.

Finally, we briefly describe the systematic approach that began in (Cheng 2000),
and was developed in (Bertalmio, Cheng, Osher and Sapiro 2001b) for solving
PDE’s on surfaces for image processing and more general applications. A similar
approach was later adopted in (Xu and Zhao 2003) to study surfactants on inter-
faces that move in time. For simplicity, we assume the zero level set to be fixed in
time.

Consider the surface gradient QΓ = ∇Γ that maps scalar functions defined on Γ
to the tangent bundle of Γ. The key notion is to replace ∇Γ by a suitable projection
of the gradient operator ∇ in R

d. The corresponding projection operator is a linear
operator defined by:

Pv = I − v ⊗ v

|v|2 ,

or equivalently, as a matrix, Pv can be written as

(Pv)ij = δij −
vivj

|v|2 ,

where v is a vector in R
d, and δij is the Kronecker delta function. For x ∈ Γ, and

v the normal of Γ at x, Pv projects vectors onto the tangent plane of Γ at x.
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Recall that Γ = {φ = 0}, and ∇φ is parallel to the normal of Γ. It can be proved
that ∇Γ and P∇φ∇ are equivalent on Γ. Thus, for scalar functions f ,

∇Γf = P∇φ∇f,

and for surface divergence of vector fields F ,

∇Γ · F = P∇φ∇ · F.

Let us illustrate this approach with a few examples. Consider a continuous function
f̃ defined on Γ, a surface in R

3, and a given vector field v defined on the tangent
bundle of Γ. If the zeros of f̃ embed the curve of interest (call it C) on Γ, then by
solving

f̃t + v · ∇Γf̃ = 0,

one obtains the evolution of the curve constrained to the surface. Correspondingly,
the extension f of f̃ in R

3 is another level set function, whose zero level set inter-
sects with that of φ on C , and the corresponding PDE in R

3 is

ft + v · P∇φ∇f = 0,

or:

ft + P∇φv · ∇f = 0.

To perform distance reinitialization on f̃ , one can evolve

fτ + sgn(f0)(|P∇φ∇f | − 1) = 0.

As an example of solving PDE’s on surfaces, we consider total variation dimin-
ishing flow of an image u, defined on a surface Γ, takes the form:

E(u) =

∫

R3

|P∇φ∇u|δ(φ)|∇φ|dx,

and the corresponding gradient descent equation becomes:

ut = P∇φ∇ ·
( P∇φ∇u
|P∇φ∇u|

)

,

where the right hand side corresponds to the geodesic curvature, and can also be
written as:

∇ ·
( P∇φ∇u
|P∇φ∇u|

|∇φ|
)

1

|∇φ| .

The function u is extended off of Γ as described in Section 2.3. For time dependent
problems, this extension is redone every few time iterations. The PDE needs to be
solved only in a small neighborhood of Γ, as described in (Peng et al. 1999a).
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2.5. Level set methods involving variational approaches

Assume that the energy functional E is an integral operator on u over Σ ⊂ Ω ⊂ R
d:

E(u,Σ) =

∫

Σ
F (u(x))dx,

and the non-positive region of φ defines Σ; i.e. {φ ≤ 0} = Σ. The key idea of
the variational level set method formulated in (Zhao et al. 1996) is that the above
integral can be written as

∫

Σ
F (u(x))dx =

∫

R2

χΣ(x)F (u(x))dx =

∫

R2

H(−φ)F (u)dx,

where H is the Heaviside function: H(x) = 1 if x ≤ 0 and H(x) = 0 elsewhere.
One can then try to find the minimizer φ for this energy. Variational calculus reveals
that that the change in φ on this functional can be quantified through the boundary
integral over ∂Σ = {φ = 0}.

We follow the review of (Burger and Osher n.d.) and describe how sensitivity of
this type of energies can be studied in the context of level set methods.

Level set method and shape calculus
Shape sensitivity analysis is a classical topic in shape optimization, and defines a
natural calculus on shapes. For sufficiently regular shapes (i.e. with C 1 boundary),
there are two equivalent ways of introducing shape sensitivities, namely the defor-
mation method and the speed method (Sokołowski and Zolésio 1992). Due to its
relation to the level set method, we shall use the latter as the basis of the following
presentation.

Given a set Σ(t) evolving in a velocity field V . Consider an energy that depends
on the shape : E(Σ). The shape sensitivity of E in the direction of a perturbation
V is then given by

dE(Σ;V ) =
d

dt
E(Σ(t))|t=0.

dE(Σ; ·) is called the shape differential. In the level set framework, Σ(t) may be
embedded as {φ(·, t) ≤ 0}. Thus the shape sensitivity is:

dE(Σ;V ) =
d

dt
E({φ(·, t) ≤ 0})|t=0.

Typically, the energies that appear in the image processing applications are either
volume integrals

E(Σ) =

∫

Σ
gdx

or boundary integrals

E(Σ) =

∫

∂Σ
gdS.
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For example, in the former case, direct calculation shows that

d

dt
E(Σ(t))|t=0 =

∫

Rd

gV · ∇φδ(φ)dx =

∫

∂Σ(0)
gVndS.

The shape derivative is hence related back to the variational level set method (Zhao
et al. 1996). Hence, in a variational level set model, one can choose many different
Vn to decrease E . Different choices of Vn may result in minimizing E in different
normed spaces. If E is nonconvex, the choice of Vn and consequently the descent
path might lead to different local minimizers.

In many applications involving shape optimization, e.g. image segmentation, it
is desirable to test the sensitivity of the energy function with respect to topological
changes in a given shape. The topological derivative of a shape Σ with respect to a
spherical perturbation at x ∈ Ω (Ω is the computational domain) is given by

dτE(Σ;x) = lim
R→0

E(Σ \ BR(x)) − E(Σ)

|BR(x)
⋂

Ω| ,

if the limit on the right hand side exists. Here, BR(x) denotes the ball of radius R
centered at x. dτE(Σ;x) measures the variation with respect to the nucleation of
an infinitesimal hole at x. Thus, if dτE(Σ;x) < 0, then the nucleation of a hole
at x will decrease the objective energy functional. One can respectively define the
topological derivative of the complement of Σ:

dτE(Σ;x) = lim
R→0

E(Σ
⋃

BR(x)) − E(Σ)

|BR(x)
⋂

Σ| .

In this case, we are interested in the sensitivity of the energy function with respect
to the introduction of a new connected component to the given shape Σ. One
can see the link between the shape derivative and the topological derivative by
evaluating dτE(Σ;x) at ∂Σ.

In (Burger, Hackl and Ring 2004), the authors successfully incorporated this
idea above to solve a class of shape optimization problems. Their idea is to add
dτE(Σ;x) as a forcing term in the gradient descent.

Preserving topology
In some applications, one may be interested in preserving the topology of an given
initial zero level set of φ, e.g. in mapping of brain images, or the optimization of
microstructured optical fibers. In particular, one usually needs to prevent discon-
nected components of {φ < 0} from merging with each other when they get close
to each other. This is a common behavior for many common level set simulations
that compute the viscosity solution (Crandall et al. 1992).

An automatic way to incorporate this additional property was recently devised
by Alexandrov and Santosa (Alexandrov and Santosa n.d.). They proposed to add
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a penalty term to the original energy:

H(Σ) = −
∫

∂Σ
(log (dΣ(x+ σ∇dΣ(x)) + log (−dΣ(x− σ∇dΣ(x))) ds

for some small constant σ > 0. Here, dΣ denotes the signed distance function to
∂Σ with dΣ(x) ≤ 0 for x ∈ Σ. Note that for x ∈ Σ, x+ σ∇dΣ(x) is a point pro-
jected a distance σ outside of Σ, while x− σ∇dΣ(x) is a point that is projected a
distance σ inside of Σ. Hence this penalty terms imposes that the minimal distance
between two connected components of {dΣ < 0}, and respectively {dΣ > 0}, is
at least σ. Therefore, no topological change can arise. However, this penalty also
indirectly regulates the curvatures of ∂Σ. One can conjure up a scenario in which
the desired shape has many slender fingering components such that the thickness
of each “finger” is less than σ. This added penalty will unfortunately prevent struc-
tures of the type from being computed.

Another more general method developed to prevent merging can be found in
(Han, Xu and Prince 2003). This appears to be quite useful in brain mapping.

2.6. Limitations of the Level Set Methods

The original idea in the level set method is to use the sign of a given function to
separate the given domain into two disjoint regions, and use the continuity of the
level set function near its zero to define the boundary of these disjoint regions.
One realizes that it can be more complicated to extend this idea to handle non-
simple curves, and multiple phases. An equally important issue is to solve the
problem at hand in obtaining reasonable quality without excessive complexity. We
refer the readers to (Smith, Solis and Chopp 2002)(Vese and Chan 2002)(Zhao et
al. 1996) for level set methods for multiple phases, (Burchard, Cheng, Merriman
and Osher 2001), (Osher, Cheng, Kang, Shim and Tsai 2002a) for higher codi-
mensions, (Smereka 2000) for open curves, and (Peng et al. 1999a)(Strain 1999b,
Strain 1999a) for localization. We also refer to (Enright et al. 2002) for a hybrid
particle level set method that is designed to lessen the numerical diffusion effect
for some class of problems, particularly two phase incompressible flows.

3. Numerics
The numerical solution of conservation laws has been an active field of research
for quite some time. The finite difference methods commonly used in the level set
methods (in particular, those related to Hamilton-Jacobi equations) are developed
under the general philosophy of the Godunov procedure and the nonlinear ENO
reconstruction techniques for avoiding oscillations in calculations. As a result,
upwinding and ENO interpolation become the indispensable parts of the algorithms
documented here.

In what follows, we will first describe the Godunov procedure in the context of
solving conservation laws and Hamilton-Jacobi equations. We will also describe
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the ENO interpolation and compare the differences between its usage in conser-
vation laws schemes and in Hamilton-Jacobi solvers. We refer the details to the
book of Osher and Fedkiw (Osher and Fedkiw 2002) and the extensive references
therein. (For simplicity of exposition, we again restrict our discussion to two space
dimensions.)

Let us introduce some notations that we shall use in this section. Let φn
i,j denote

the value of xi,j = (x0 + i∆x, y0 + j∆y) ∈ Ω at time tn = t0 + ∆t. We shall
assume that ∆x = ∆y.

Definition 3.1. (Finite difference operators) Given the values of u on the grid we
first define the forward and backward difference operators:

D±
x ui,j := ±ui±1,j − ui,j

∆x
,

and

D±
y ui,j := ±ui,j±1 − ui,j

∆y
.

also the central difference operators:

D0
xui,j :=

ui+1,j − ui−1,j

2∆x
,

and

D0
yui,j :=

ui,j+1 − ui,j−1

2∆y
.

3.1. The Godunov procedure

The Godunov procedure (Godunov 1959) developed for conservation laws begins
by regarding grid values as cell averages of the solution at time tn.We then “build”
a piecewise constant function whose value in each cell is the cell average. We solve
the Riemann problem at cell boundaries “exactly” for an appropriate time step
∆t. This involves following the characteristics and making sure that the Rankine-
Hugoniot and entropy conditions are satisfied. Finally, we average the function at
t = tn + ∆t in each cell, and repeat the above steps.

In the context of certain conventional Hamilton-Jacobi equations, piecewise con-
stant cell averages are replaced by a piecewise linear function that is continuous at
the cell boundaries, and point values are updated. This is described in (Bardi and
Osher 1991), (Osher and Sethian 1988).

In high order schemes, cell averages are replaced by more accurate nonoscilla-
tory reconstruction on the functions or the fluxes. We perform this reconstruction
by ENO/WENO methods.

3.2. ENO/WENO interpolation

We want to approximate the value of the function f in the interval Ii := [xi− 1
2
, xi+ 1

2
],

using the given values (or averaged values) of f on the grid nodes xi and its neigh-
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bors. Two commonly used methods to get a k-th order approximation of f in Ii

are spectral interpolation, e.g. based on Fourier expansions, and fixed order poly-
nomial interpolation. Both approaches produce oscillations near the jumps in the
function values or their derivatives. We will not comment on the Fourier based
methods since the they are not particularly useful in this connection. Conventional
polynomial interpolations usually use the function values on all the grid points
within a certain fixed distance from xi, regardless of the smoothness of the inter-
polated function. ENO interpolation, on the other hand, is a nonlinear procedure
that is built on a “progression” of Newton’s divided differences. By “progression”,
we mean that the procedure starts by building a linear reconstruction of f in Ii

using either f(xi) and f(xi−1) or f(xi) and f(xi+1), depending on which pair of
values will give a smoother reconstruction. Suppose the reconstruction from f(xi)
and f(xi−1) is selected, we then carry out the reconstruction using the values of
f on either xi−2, xi−1, xi or xi−1, xi, xi+1. This procedure is iterated until the
desired order of approximation is achieved. Newton’s interpolation is natural in
this framework, since one can incrementally compute the divided differences for
interpolation. In addition, we can use the values of the divided differences as an
indicator of the smoothness of the functions in the intervals formed by the grid
points that are considered as possible points in the stencil.

For conservative schemes approximating conservation laws, this ENO recon-
struction is performed on the flux function f or the cell averages ū by first recon-
structing the integral of the solution u. For Hamilton-Jacobi equations, we perform
the ENO reconstruction on the solution u.

In the ENO reconstruction procedure, only one of the k candidate stencils (grid
points used for the construction of the scheme) covering 2k − 1 cells is actually
used. If the function is smooth in a neighborhood of these 2k − 1 cells, we can ac-
tually get a (2k− 1)-th order approximation if we use all these grid values. This is
the idea behind the WENO reconstruction. In short, WENO reconstruction uses a
convex linear combination of all the potential stencils. The weights in the combina-
tion are determined so that the WENO reconstruction procedure behaves like ENO
near discontinuities. As a result, WENO method use smaller stencils to achieve
the same order of accuracy as ENO in smooth regions. Currently, our choice of
scheme is 5th order WENO. For details, we refer to the original papers (Engquist,
Harten and Osher 1987, Harten et al. 1987, Jiang and Peng 2000, Liu, Osher and
Chan 1994), and the review article (Shu 1997). Recently, Shu and Balsara (Balsara
and Shu 2000) developed even higher order WENO reconstructions.

There are successful adaptations of this ENO idea/philosophy to other frame-
works. See (Chan and Zhou 1999, Chan and Zhou 2002) for ENO wavelet decom-
positions for image processing, and (Cockburn and Shu 1989) for an application of
the ENO philosophy in discontinuous Galerkin methods.
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3.3. Numerics for equations with Hamiltonians H(x, u, p) nondecreasing in u

We repeat here that any discussion of the numerical schemes cannot be detached
from the solution theory of the equations in questions. This is especially important
for nonlinear hyperbolic equations, since in general, discontinuities in the func-
tion values or in the derivatives develop in finite time. We are usually seeking a
particular type of weak solution.

In 1983, Crandall and Lions introduced viscosity solution theory for a class
of Hamilton-Jacobi equations requiring Lipschitz continuous initial data and for
which the Hamiltonians H(x, u, p) is Lipschitz continuous and non-decreasing in
u. Later in (Crandall and Lions 1984) in 1984, they proved the convergence to the
viscosity solution of monotone, consistent schemes for Hamilton-Jacobi equations
with H independent of x and u. Souganidis (Souganidis 1985) extended the results
to include variable coefficients. Osher and Sethian contributed to the numerics of
Hamilton-Jacobi Equation in their level set paper in 1988(Osher and Sethian 1988).
This was later generalized and completed in the paper by Osher and Shu (Osher
and Shu 1991) in 1993, in which the authors provided a family of numerical Hamil-
tonians related to the ENO schemes for conservation laws. WENO schemes using
the numerical Hamiltonians described in (Osher and Shu 1991) were introduced
in (Jiang and Peng 2000). The method of lines using TVD Runge-Kutta time dis-
cretization is used (Shu and Osher 1988). We first discretize the spatial derivatives
and compute the appropriate approximation to the Hamiltonians,

Ĥ(p−, p+; q−, q+),

with p±, q± representing the left/right approximations of the derivatives, obtained
from ENO/WENO reconstruction of the solution. They are higher order versions
of the forward and backward divided differences of the grid functions:

p± ∼ D±
x ui,j := ±ui±1,j − ui,j

∆x
,

and

q± ∼ D±
y ui,j := ±ui,j±1 − ui,j

∆y
.

3.4. The Lax-Friedrichs schemes for the level set equation

Following the methods originally conceived for HJ equations φt + H(Dφ) = 0
in (Osher and Shu 1991), see also (Osher and Sethian 1988), and suppressing the
dependence ofH on x and y,we recommend using the Local Lax-Friedrichs (LLF)
numerical Hamiltonian:

ĤLLF (p+, p−, q+, q−) = H(
p+ + p−

2
,
q+ + q−

2
)

−1

2
αx(p+, p−)(p+ − p−) − 1

2
αy(q+, q−)(q+ − q−),(3.1)
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for the approximation of H. In the above scheme,

αx(p+, p−) = max
p∈I((p+,p−),C≤q≤D

|Hφx
(p, q)|,

αy(q+, q−) = max
q∈I((q+,q−),A≤p≤B

|Hφy
(p, q)|,

I(a, b) = [min(a, b),max(a, b)],

and p±, q± are the forward and backward approximations of φx and φy respec-
tively, and the intervals [A,B] and [C,D] are a priori bounds of φx and φy . This
Hamiltonian is used together with ENO or WENO interpolation to obtain higher
order methods.

3.5. Curvature

In many applications, the mean curvature term

∇ · ∇φ
|∇φ| or ∇ · ∇u

|∇u|
for the level set function φ or the image function u appears as a regularization.
We will use u in our following discussion. This term is usually approximated
by finite differencing centered at each grid point. For convenience, let (nx

i,j, n
y
i,j)

denote the values of ∇u/|∇u|ε at the grid point xi,j , and ∇u/|∇u|ε is a smooth
approximation of ∇u/|∇u| (This avoids the issue of singularity at |∇u| and is
useful for numerical computations). A popular choice would be |∇u|ε = (|∇u|2 +
ε2)1/2, 0 < ε� 1. Under these settings, the curvature κi,j is approximated by

κε
i,j :=

nx
i+1/2,j − nx

i−1/2,j

∆x
+
ny

i,j+1/2 − ny
i,j−1/2

∆y
,

and

nx
i±1/2,j : =

D±
x ui,j

√

(D±
x ui,j)2 +D0

y(S
±
x ui,j)2 + ε2

,

nε
i,j±1/2 :=

D±
y ui,j

√

D0
x(S±

y ui,j)2 + (D±
y ui,j)2 + ε2

,

where

S±
x ui,j =

ui±1,j + ui,j

2
, and S±

y ui,j =
ui,j±1 + ui,j

2

are the averaging operators in the x and y direction. In practice, we choose ε to be
the same scale as the mesh size.

It is important to point out that, one can not prove convergence to the viscosity
solution from this discretization using ε = a∆x+ b∆y, for two fixed non-negative
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constants a and b. However, in practice, this approximation seems to work well.
To be safe, we recommend taking ε = O(∆xp,∆yp) for 0 < p < 1. A general
approximation theory for this type of degenerate elliptic or parabolic equations is
outlined by Barles and Souganidis in (Barles and Souganidis 1991). Following
this theory, a numerical discretization needs to be monotone, consistent and stable
in order to achieve convergence. Recently, Oberman proposed a convergent nu-
merical discretization for the mean curvature term on two dimensional Cartesian
grids(Oberman n.d.). In his work, an extra degree of freedom is introduced: the
curvature term is not only discretized with ∆x and ∆y, but also with ∆θ, which
is the angle between two adjacent vectors formed by the grid points in the stencil.
The last term discretizes the angle of the normal of the level sets of u. Hence, the
resulting scheme enlarges the stencil as one refines the grid, which makes it a bit
impractical.

3.6. Time discretization

From the previous subsections, we know how to discretize the terms involving
spatial derivatives. What remains is to discretize in time in order to evolve the
system; i.e. we need to solve the following ODE system:

∂

∂t
φi,j = −H̃(φi−1,j , φi+1,j , φi,j , φi,j−1, φi,j+1),

where H̃ is the numerical approximation of H(x, φ,Dφ,D2φ). For example, if
we use local Lax-Friedrichs for H(φx, φy), and forward Euler for time, we end up
having:

φn+1
i,j = φn

i,j − ∆tHLLF (xi, yj, D
x
+φ

n
i,j, D

x
−φ

n
i,j, D

y
+φ

n
i,j, D

y
−φ

n
i,j). (3.2)

Typically, we use the 3rd order TVD Runge-Kutta scheme of (Shu and Osher
1988), or the fourth order schemes of (Spiteri and Ruuth n.d.) to evolve the system,
since higher order accuracy can be achieved while using larger time steps. To keep
this description self-contained, we describe the 3rd order TVD RK scheme below:
we wish to advance ut = L(u) from tnto tn+1.

1 u1 = un + ∆t · L(un);
2 u2 = 3

4u
n + 1

4u1 + 1
4∆t · L(u1);

3 un+1 = 1
3u

n + 2
3u2 + 2

3∆t · L(u2).

3.7. Algorithms for constructing the distance function

In the following subsections, we review some of the solution methods for the
eikonal equation:

|∇u| = r(x, y), u|Γ = 0.

We present a fast Gauss-Seidel type iteration method which utilizes a monotone up-
wind Godunov flux for the Hamiltonian. We show numerically that this algorithm
can be applied directly to equations of the above type with variable coefficients.
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Solving eikonal equations
In geometrical optics (Keller 1962), the eikonal equation

√

φ2
x + φ2

y = r(x, y) (3.3)

is derived from the leading term in an asymptotic expansion

eiω(φ(x,y)−t)
∞
∑

j=0

Aj(x, y, t)(iω)−j

of the wave equation:

wtt − c2(x, y)(wxx + wyy) = 0,

where r(x, y) = 1/|c(x, y)|, is the function of slowness. The level sets of the
solution φ can be thus be interpreted as the first arrival time of the wave front that
is initially Γ. It can also be interpreted as the “distance” function to Γ.

We first restrict our attention to the case in which r = 1. Let Γ be a closed subset
of R

2. It can be shown easily that the distance function defined by

d(x) = dist (x,Γ) := min
p∈Γ

|x − p|, x = (x, y) ∈ R
2,

is the viscosity solution to equation (3.3) with the boundary condition

φ(x, y) = 0 for (x, y) ∈ Γ.

Rouy and Tourin (Rouy and Tourin 1992) proved the convergence to the vis-
cosity solution of an iterative method solving equation (3.3) with the Godunov
numerical Hamiltonian approximating |∇φ|. They also noticed that the Godunov
numerical Hamiltonian can be written in the following simple form for this eikonal
equation:

HG(p−, p+, q−, q+) =
√

max{p+
−, p

−
+}2 + max{q+

− , q
−
+}2, (3.4)

where p± = Dx
±φi,j, q± = Dy

±φi,j, and x+ = max(x, 0), x− = −min(x, 0). The
task is then to solve

HG = 1

on the grid.
Osher (Osher 1993) provided a link to time dependent eikonal equation by prov-

ing that the t-level set of φ(x, y) is the zero level set of the viscosity solution of the
evolution equation at time t

ψt + |∇ψ| = 0

with appropriate initial conditions. In fact, the same is true for a very general
class of Hamilton-Jacobi equations (see (Osher 1993)). As a consequence, one can
try to solve the time-dependent equation by the level set formulation (Osher and
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Sethian 1988) with high order approximations to the partial derivatives(Osher and
Shu 1991)(Jiang and Peng 2000). Crandall and Lions proved that the discrete so-
lution obtained with a consistent, monotone Hamiltonian converges to the desired
viscosity solution (Crandall and Lions 1984).

Tsitsiklis (Tsitsiklis 1995) combined heap sort with a variant of the classical
Dijkstra algorithm to solve the steady state equation of the more general problem

|∇φ| = r(x).

This was later rederived in (Sethian 1996) and (Helmsen, Puckett, Colella and
Dorr 1996). It has become known as the fast marching method whose complexity
is O(N log(N)), where N is the number of grid points. Osher and Helmsen(Osher
and Helmsen n.d.) have extended the fast marching type method to somewhat more
general Hamilton-Jacobi equations. Since the fast marching method is by now well
known, we will not give details here on its implementation in this paper.

The sweeping idea
Danielsson (Danielsson 1980) proposed an algorithm to compute Euclidean dis-
tance to a subset of grid points on a two dimensional grid by visiting each grid node
in some predefined order. In (Boué and Dupuis 1999), Boué and Dupuis suggested
a similar “sweeping” approach to solve the steady state equation which, experi-
mentally, results in a O(N) algorithm for the problem at hand. This “sweeping”
approach has recently been used in (Tsai 2002) and (Zhao et al. 2000) to compute
the distance function to an arbitrary data set in computer vision. In (Zhao 2003),
it was proven that the fast sweeping algorithm achieves reasonable accuracy in a
(small) finite number of iterations independent of grid size. Using this “sweep-
ing” approach, the complexity of the algorithms drops from O(N logN) in the
fast marching to O(N), and the implementation of the algorithms becomes a bit
easier than the fast marching method in that no heap sort is needed.

This sweeping idea is best illustrated by solving the eikonal equation in [0, 1] :

|ux| = 1, u(0) = u(1) = 0.

Let ui = u(xi) be the grid values and x0 = 0, xn = 1. We then solve the dis-
cretized nonlinear system

√

max(max(D−ui, 0)2,min(D+ui, 0)2) = 1, u0 = un = 0 (3.5)

by our sweeping approach. Let us begin by sweeping from −1 to 1, i.e. we update
ui from i = 0 increasing to i = n. This is “equivalent” to following the character-
istics emanating from x0. Let u(1)

i denote the grid values after this sweep. We then
have

u
(1)
i =

{

i/n, if i < n
0, if i = n

.

In the second sweep, we update ui from i = n decreasing to 0, using u(1)
i . During
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this sweep, we follow the characteristics emanating from xn. The use of (3.5) is
essential, since it determines what happens when two characteristics cross each
other. It is then not hard to see that after the second sweep,

ui =

{

i/n, if i ≤ n/2
(n− i)/n otherwise.

Thus, to update uo, one only uses the immediate neighboring grid values and does
not need the heap sort data structure. More importantly, the algorithm follows the
characteristics with certain directions simultaneously, in a parallel way, instead of a
sequential way as in the fast marching method. The Godunov numerical Hamilto-
nian is essential in the algorithm as described here, since it determines what neigh-
boring grid values should be used to update u on a given grid node o. At least in
the examples presented, we only need to solve a simple quadratic equation and run
some simple tests to determine the value to be updated. This simple procedure is
performed in each sweep, and solution is obtained after a few sweeps. For sweep-
ing applied to very general class of Hamilton-Jacobi equations, we recommend
the simple and versatile Lax-Friedrichs method, which we mention in Section 3.7
below. See (Kao et al. 2003) for details.

Generalized closest point algorithms
In this subsection, we describe an algorithm that can be applied for constructing a
level set implicit representation for a surface which is defined explicitly. It can also
be used to extend the interface velocity to the whole computational domain.

In the spirit of the Steinhoff et.al. Dynamic Surface Extension (Steinhoff, Fang
and Wang 2000), we can define functions that map each point in R

3 to the space
of (local) representations of surfaces (heretherto referred as surface elements). We
can further define the distance of a point P and a surface element S

dist(P,S) := min
y∈S

(P, y).

The ’surface element’ can be for example the tangent plane, the curvature, or a
NURB description of the surface.

Instead of propagating distance values away from the interface, we propagate the
surface element information along the characteristics and impose conditions that
enforce the first arrival property of the viscosity solution to the eikonal equation.
The challenge is to compute the exact distance from a given surface element and to
derive the “upwinding” criteria for propagating the surface information throughout
the grids.

Given a smooth parameterized surface Υ : Is×It 7→ R
3, our algorithm provides

good initial guess for Newton’s iterations on the orthogonality identity:

F (s∗, t∗;x) =

(

(x − Υ(s∗, t∗)) · Υs(s∗, t∗)
(x − Υ(s∗, t∗)) · Υt(s∗, t∗)

)

= 0,
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where Υ(s∗, t∗) is the closest point on the surface to x. The initial guess in this
case is simply the closest point of the neighbors of x.

Let W denote the function that maps each point in space to its closest surface
element on S. We can then write the algorithm as follows:

Algorithm: Let u be the distance function on the grids, and W be the corre-
sponding generalized closest point function.

1 Initialize: give the exact distance to u, and the exact surface elements to W
at grids near Γ. Mark them so they will not be updated. Mark all other grid
values as ∞.

2 Iterate through each grid point E with index (i,j,k) in each sweeping direction
or according to the fast marching heap sort.

3 For each neighbor Pl of E, compute utmp
l = dist(E,W (Pl))

4 If dist(E,W (Pl)) < mink u(Pk), set utmp
l = ∞. This is to enforce the

monotonicity of the solution.
5 Set u(E) = minl u

tmp
l = utmp

λ and W (E) = W (Pλ).

This procedure can be used e.g., to convert triangulated surfaces to implicit sur-
faces.

In general, if only the level set function is available, one can construct a suitable
interpolant of the level set function and try to compute the closest points. This was
proposed (Chopp 2001), where a bicubic interpolation of the level set function is
constructed and Newton’s method is used to find the closest points on the zero level
set of the interpolant.

Further generalizations
For further generalizations of the sweeping method to solve more complicated
Hamilton-Jacobi equations, such as those which arise in computing distance on
a manifold:

H(ux, uy) =
√

au2
x + bu2

y + 2cuxuy = r(x, y), for a, b > 0, ab > c2,

and the equations using Bellman’s formulae for convex Hamiltonians, we refer
the readers to the recent papers (Tsai et al. 2003a, Kao et al. 2002). Recently, a
simple sweeping algorithm, based on the Lax-Friedrichs scheme (3.1), has been
shown to work in great generality (Kao et al. 2003). Special conditions at the
grid boundaries must be enforced in order for this central scheme to compute the
correct solution. Accurate estimates of the bounds on the partial derivatives of
the Hamiltonian increase the resolution and the efficiency of this algorithm. The
main advantage of this algorithm is in the ease of implementation, especially for
equations involving complicated and nonconvex Hamiltonians.

Higher resolution sweeping methods have also been devised (Zhang, Zhao and
Qian 2004). Essentially, the idea is to reconstruct the derivatives of the solution us-
ing the grid values that have been updated as a correction in the new approximation.
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The higher order approximations of the derivatives require a larger stencil, leading
to a larger numerical domain of dependence; together with the non-monotonicity
in the reconstruction, more iterations are needed for convergence to the discretized
nonlinear system. The complexity of these algorithms is still an open question.
Nevertheless, it seem to be lower than that of a straightforward time marching to
steady state.

3.8. Discretization of delta functions supported along the zero level set

In the level set formulation, the evaluation of a surface integral along the zero
level set of φ requires singular integrals involving Dirac delta functions. Careless
quadratures for this type of integrals might lead to error that prevents convergence
(Tornberg and Engquist 2003). Here we review the approaches proposed by En-
gquist et. al. (Engquist et al. 2004).

Let s be a parametrization of Γ and ds be the corresponding surface area mea-
sure. Define δ(Γ,x), x ∈ R

d as a delta function supported on Γ such that
∫

Rd

δ(Γ, x) f(x) dx =

∫

Rd

f(x)δ(φ(x))|∇φ(x)|dx =

∫

Γ
f(X(s)) ds, (3.6)

where X(s) ∈ Γ. The following techniques are based on replacing the distribution
function δ by a class of continuous functions δε in the approximation of integral
defined in (3.6), and replacing the integral over the domain by a Riemann sum. δε

is chosen to be the linear hat function that has two discrete moments:

δL
ε (x) =

{

1
ε (1 − |xε |), 0 ≤ |x| ≤ ε,
0, |x| > ε.

(3.7)

Here, discrete moments of a function are defined in analogy to the usual notion of
moments at continuous level; δε is said to have q discrete moments if

h
∞
∑

j=−∞
δε(xj − x̄)(xj − x̄)r =

{

1, r = 0
0, 1 ≤ r < q

(3.8)

for any x̄ ∈ R, and grid points {xj}. It is shown in (Tornberg 2002, Tornberg and
Engquist 2003) that the overall approximation is of first order in h if ε =

√
h.

For a very narrow support, such as ε = C0h, the δε function is not sufficiently
resolved and the error must instead be analyzed directly by taking into account
discrete effects of the computational grid.

In (Engquist et al. 2004), the authors proposed two regularized delta functions
built from the linear hat function (3.7). One is the product formula, following
Peskin (Peskin 2002), that requires explicit parametrization of Γ:

δε(Γ,x) =

∫

Γ

d
∏

k=1

δεk
(x(k) −X(k)(s))ds. (3.9)

Here δεk
corresponds to the one dimensional regularized δ function, and X(s) =
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(X(1)(s), . . . , X(d)(s)) is a point on Γ. The other method is the level set formula-
tion

δε(Γ, x) = δε(φ(x))|∇φ(x)|.

Both approaches use a point-wise variable regularization parameter dependent on
the gradient of the level set function; i.e. ε = ε(x, φx, φx). The authors showed
that with these approaches and with δL

ε as the building block, it is possible to ap-
proximate the singular integrals (3.6) on a uniform Cartesian grid with at least first
order accuracy in h, while keeping minimum support ( with |ε(x,∇φ)| ≤ Ch. ).
The first approach seems to yield approximations that are second order accurate if
φ is the distance function to Γ. We refer the readers to (Engquist et al. 2004) for
the explicit formula derived from their first approach. We describe their second
approach here due to its simplicity. In short, δ(φ(x)) is approximated point-wise
by

δL
ε(x,∇φ)(φ(x)),

where

ε(x,∇φ) = h|∇φ(x)|`1 , (3.10)

and |∇φ(x)|`1 =
∑d

j=1 |φxj
|.

3.9. Regularization of characteristic functions

In the level set method, the average of a function g over the set {φ ≥ 0} translates
to an integral involving the Heaviside function:

∫

Ω
g(x)H(φ(x))dx.

Following the discussion in the previous subsection, one can regularize the Heavi-
side function by

Hε(x) =







1, x ≥ ε
1
2(1 + x

ε ), |x| < ε
0, x ≤ −ε

(3.11)

with the same type of point-wise scaling:

ε(x,∇φ) =
h

2
|∇φ(x)|`1 .

It can be shown that the resulting approximation to the volume integral is second
order accurate in the mesh size h.
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The signum function used in Equation (2.2) is discontinuous:

sgn(z) =







1, x > 0
0, x = 0
−1, x < 0

,

and may introduce grid effects when discretized improperly on the grid. Ideally,
a smooth monotone function that passes through zero should replace the signum
function, since we only care about the direction of the characteristics and the steady
state of the solution in a neighborhood of its zero level set. With a bounded smooth
function such as

tanh(γ0x), γ0 > 0

the accuracy of the solution to (2.2), for smooth zero level set, is then determined
by the order of the discretization. However, the characteristics emanate from the
zero level set at a speed that is 0 at the interface and smoothly increases as the
bicharacteristics are getting farther away. On a grid with N grid points, this usu-
ally implies that the number of time steps needed for steady state on this grid is
proportional to N. In many applications, one is only interested in a thin band of
width C/N around the zero level set. Therefore, if other operations involve O(N)
operations, this regularization might be an attractive option. (See Section 2.2.)

4. Image Interpolation

Consider an old photo with scratches. One can try to restore the original photo by
filling in the scratched regions with certain values so that the over all image looks
“right” to the eyes. This is a complicated interpolation problem. The difficulties
mainly include: 1) The interpolation domain may be non-simply connected and
have irregular boundaries; 2) The interpolation procedure must allow discontinu-
ities along some meaningful geometrical structures; 3) Ultimately, the interpolation
result is subject to human psycho-visual inspection. Classically, 2) and 3) relate to
the discussion of in what function space do images belong and what norm should
be used. A severe problem would be that the interpolation domain is too large so
that one essentially has to “generate” new information.

In this article, we will call the problem of interpolating over “narrow” domains
the inpainting problem, and the other the “disocclusion” problem. Essentially, in-
terpolation algorithms rely on the regularity of certain suitable quantities. Con-
sidering gray scale images, a natural quantity of consideration would be the level
lines of the given image functions. One would think of properly connecting the
level lines from a neighborhood of the inpainting domain into it. Pioneering works
of importance to this area are (Caselles et al. 1998)(Masnou and Morel 1998).

In (Bertalmio et al. 2000), Bertalmio et. al. proposed an algorithm designed to
project the gradient of the smoothness of the image intensity in the direction of the
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image level lines. The resulting model is a third order PDE:

ut = ∇⊥u · ∇(∆u),

where u is the image intensity, and ∇⊥ denotes the differential operator (−∂y, ∂x)
and ∆ is the standard Laplacian operator. At steady state,

∇⊥u · ∇(∆u) = 0

inside the inpainting domain, implying that the gradient of ∆u has to be perpendic-
ular to the level line of u. In other words, the image value u is convected along the
level curves of the quantity ∆u. Later in (Bertalmio, Bertozzi and Sapiro 2001a),
the authors established the connection of the image intensity u in this model to the
stream function in a 2D incompressible fluid, where ∆u can be interpreted as the
vorticity of the fluid.

Chan and Shen proposed a variational model for inpainting.

Jλ[u] =

∫

E
S

D
|∇u|dx+ λ

∫

E
|f − u|2dx. (4.1)

Here, E is the region which is not to be interpolated, and D is the region with
missing data. Imposing Neumann boundary condition at the boundary of E

⋃

D,
the gradient equation is:

ut = ∇ ·
( ∇u
|∇u|

)

− χE(x)λ(u− f), for x ∈ E
⋃

D,

where χE is the characteristics function of E. One immediately sees the clear
connection to the TV denoising model 1.4. This algorithm interpolates a given
image so that the total variation in the inpainting domain is minimized. An mental
application of the coarea formula reveals that the level lines stemming from E are
connected in D with minimal arclengths. This algorithm performs denoising and
inpainting simultaneously.

The models that we have just described use the regularity of some local geomet-
rical quantities for interpolation over the inpainting regions. In reality, the human
vision may use more global quantities of a given image for judging whether any
particular inpainting algorithm generates suitable solutions. One good test is to
see how an inpainting algorithm connects the missing boundaries of a given set
of shapes; whether a straight horizontal bar will be reconnected from the image
with its middle part removed; or where a curved boundary can be restored. There-
fore, many current efforts in devising new inpainting algorithms or in comparing
different algorithms concentrate on this aspect. Of course, it is also possible to
propose an inpainting model that is based on the regularity of statistical properties
of a given image or images, especially when inpainting textures.

There have been efforts to incorporate more global quantities for inpainting. For
example, in (Chan, Kang and Shen 2002)(Esedoglu and Shen 2002), the authors
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replaced the total variation term in (4.1) by Euler’s elastica:

e(Γ) =

∫

Γ
(α + βκ2)ds = αlength(Γ) + β

∫

Γ
κ2ds.

Figure 4.8 shows an inpainting result from (Esedoglu and Shen 2002).
In (Bertalmio, Vese, Sapiro and Osher 2003), texture is first separated from a

given image (described in Section 6.1), leaving a “cartoon” like component of the
original image. A statistical approach is adopted to “synthesize” texture for the
inpainting domain so that some statistical regularity across the whole image is
maintained. After the separation of texture, an inpainting procedure that is based on
local geometric regularity can be performed on the remaining cartoon like image.
Finally, the inpainting is done by putting the synthesized texture together with
the cartoon inpainting result. See also (Ballester, Bertalmio, Caselles, Sapiro and
Verdera 2001, Ballester, Caselles and Verdera 2003) for related work in inpainting
and disoccolusion. It is also possible to “inpaint” in the time-frequency domain
with a regularity constraint on the spatial domain. See e.g. (Chan, Shen and Zhou
2004).

Finally, the level set method has also been used for interpolation of unorga-
nized points, curves and/or surface patches in (Zhao et al. 2001, Zhao et al. 2000).
Briefly, one finds a level set function whose zero level set passes through a given
unorganized set S. The unsigned distance function dS to the data set is used for
fast visualization and analysis. This distance function can be efficiently constructed
using the generalized closest point algorithm described in section 3.7. Then a min-
imal surface/convection type model, resembling geodesic snakes, is used for shape
reconstruction from the data set. More precisely, a local minimizer of the following
energy is constructed in (Zhao et al. 2001, Zhao et al. 2000):

E(Γ) = (

∫

Γ
dp

S(x)ds)1/p,

using gradient descent with an initial guess constructed from {dS = ε0} by a fast
tagging algorithm (Zhao et al. 2001). The positive constant ε0 is determined from
the sampling density of S. No a priori knowledge about the topology of the shape
to be reconstructed i is assumed. See (Zhao and Osher 2003) for a recent review
article.

5. Segmentation Algorithms

The task of image segmentation is to find a collection of non-overlapping sub-
regions of a given image. In medical imaging, for example, one might want to
segment the tumor or the white matter of a brain from a given MRI image. In
airport screening, one might wish to segment certain “sensitive” shapes, such as
weapons. There are many other obvious applications. Mathematically, given an
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A noisy image to be inpainted. Inpainting via Mumford−Shah−Euler image model

Figure 4.8. This is an inpainting result from

image u : Ω ⊂ R
2(or R

3)7→ R
+, we want to find closed sets Ωi satisfying

Ω =

N
⋃

i=1

Ωi, and
N
⋂

i=1

Ω
(0)
i = ∅,

such that F(u,Ωi) = 0, where F is some functional that defines the segmentation
goals and Ω

(0)
i denotes the interior of Ωi. As in the example of finding tumors,

typically, N is taken to be 2 (sometimes N = 3 when volumetric data is given),
and Ω1 is taken to be the region corresponding to the tumor, while Ω2 contains
everything else. It is then natural to devise a level set method to perform this
task, by representing, for example, Ω1 as the region in which φ is non-negative.
A slightly more general statement would be to perform segmentation from a given
set of images uj that come from different sources. For example, one might be
interested to segment stealth fighter jets from both conventional radar signals and
also infrared images.

Very often, the definition of what belongs to the “desired” regions depends on
the gray scale intensity of the given image, and the problem of finding such regions
is formulated as a variational problem; i.e. the solution minimizes some “energy”.
In a standard level set method, φ is used to represent Ωi and ∂Ωi. This is the setting
of our discussion. In this section, we describe some level set segmentation methods
based on this type of definition.

5.1. The Chan-Vese algorithm

This is closely related to the classical Mumford-Shah algorithm (Mumford and
Shah 1989), but uses a simple level set framework for its implementation. We
present the original Chan-Vese segmentation algorithm (Chan and Vese 2001,a),
and discuss various aspects of this algorithm.
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Basic formulation
The minimization problem is:

min
φ∈BV (Ω),c1,c2∈R+

E(φ, c1, c2;u0),

where the energy is defined as

E(φ, c1, c2; f) = µ

∫

Ω
δ(φ)|∇φ|dx +

λ1

∫

Ω
|f − c1|2H(φ)dx+ λ2

∫

Ω
|f − c2|2(1 −H(φ))dx.(5.1)

Intuitively, one can interpret from this energy that each segment is defined as the
subregions of the images over which the average of the given image is “closest”
to the image value itself in the L2-norm. The first term in the energy measures
the arclength of the segment boundaries. Thus, minimizing this quantity provides
some stability to the algorithm as well as preventing fractal like boundaries from
appearing.

If one regularizes the δ function and the Heaviside function by two suitable
smooth functions δε and Hε, then formally, the Euler-Lagrange equations can be
written as

∂φE = −δε(φ)

[

µ∇ · ∇φ
|∇φ| − λ1(f − c1)

2 + λ2(f − c2)
2

]

= 0, (5.2)

with natural boundary condition

δε(φ)

|∇φ|
∂φ

∂~n
= 0 on ∂Ω.

c1(φ) =

∫

Ω f(x)Hε(φ(x))dx
∫

ΩHε(φ(x))dx
, (5.3)

and

c2(φ) =

∫

Ω f(x)(1 −Hε(φ(x)))dx
∫

Ω(1 −Hε(φ(x)))dx
. (5.4)

Discretization
A common approach to solve the minimization problem is to perform gradient
descent on the regularized Euler-Lagrange equation (5.2); i.e. solving the following
time dependent equation to steady state:

∂φ

∂t
= −∂φE

= δε(φ)

[

µ∇ · ∇φ
|∇φ| − λ1(f − c1)

2 + λ2(f − c2)
2

]

. (5.5)
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Figure 5.9. Brain segmentation in 2D.

Here, we remind the readers that c1(φ) and c2(φ) are defined in (5.3) and (5.4).
In the Chan-Vese algorithm, the authors regularized the Heaviside function used

in (5.3) and (5.4):

H2,ε(z) =
1

2

(

1 +
2

π
arctan(

z

ε
)

)

,

and defined the delta function as its derivative:

δ2,ε(z) = H ′
2,ε(z).

Equation (5.5) is then discretized by a semi-implicit scheme; i.e. to advance from
φn

i,j to φn+1
i,j , the curvature term right hand side of (5.5) is discretized as described

in the previous section using the value of φn
i±1,j±1

, except for the diagonal term φi,j ,
which uses the implicitly defined φn+1

i,j . The integrals defining c1(φ) and c2(φ) are
approximated by a simple Riemann sum with the regularized Heaviside function
defined above. φt is discretized by the forward Euler method: (φn+1

i,j − φn
i,j)/∆t.

Therefore, the final update formula can be written as

φn+1
i,j =

1

1 + ακ

(

φn
i,j +G(φn

i−1,j , φ
n
i+1,j , φ

n
i,j−1, φ

n
i,j+1)

)

,

where ακ ≥ 0 comes from the discretization of the curvature term. If the scheme
is fully explicit, ακ = 0 and G would depend on φn

i,j . In the original paper, the
authors used ∆x = ∆y = 1, ε = 1, and ∆t = 0.1. This implies that the delta
function is really a regular bump function that puts more weight on the evolution of
the zero level set of φ. See Figures 5.9 and 5.10 for some results of this algorithm
applied to brain segmentation.

Finally, it is also possible but usually not advisable in this (unusual) case because
new zero level sets are likely to develop spontaneously, see section 1.4.5, to replace
the δ function in front of the curvature term by |∇φ| (Marquina and Osher 2000).
The equation then becomes independent of the choice of the level set function used,
i.e. the problem becomes morphological (Alvarez et al. 1993).
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Figure 5.10. Brain segmentation in 3D.

5.2. Fast segmentation algorithms

Recently, Gibou and Fedkiw (Gibou and Fedkiw 2005), and later Song and Chan
(Song and Chan 2002), proposed some fast methods that are based on the Chan-
Vese level set segmentation formulation. These algorithms are built upon flipping
the values of φ at each grid point/pixel from positive to negative or vice versa
according to a rule R, and contain 4 main steps:

1 Initialize φ0 : Ω 7→ {−1, 1}.
2 Advance: for each grid point, set φn+1(x) = −φn(x) if R(φn+1, φn, x) = 1.

3 (Perform regularization if needed.)
4 Repeat until φn+1 ≡ φn.

For example, in Gibou and Fedkiw’s algorithm, R(φn+1, φn) = 1 if

V (φn) · sign(φn) < 0;

here V corresponds to the fitting term in the Euler-Lagrange equation:

V (φn, x) := −λ1(f − c1(φ
n))2 + λ2(f − c2(φ

n))2.

(Note that the case V = 0 is implicitly defined). In this algorithm, Step 3 is
essential to regularize the segment boundaries. Without it, fractal like boundaries
may develop.

In Song and Chan’s algorithm, the key observation is that only the signs of the
the level set function matter in the energy functional. This can easily been seen
from the model defined in equation (4.1), in which one sees that the energy is
a function of H(−φ). In this algorithm, R(φn+1, φn) can be interpreted as the
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logical evaluation of the following inequality:

E(φn+1, c1, c2; f) ≤ E(φn, c1, c2; f).

Hence, the sign of φn(x) is flipped only if the energy (5.1) is non-increasing. This
provides stability of the algorithm at the cost of some speed of implementation.

We remark that there is a close connection between these two “level set” based
methods to the “Γ-convergence” based methods of (Ambrosio and Tortorelli 1990).
The Chan-Vese segmentation method can be approximated by the following varia-
tional problem:

Eε(u, c1, c2; f) := µ

∫

ε|∇u|2+1

ε
W (u)dx+λ1

∫

u2(f−c1)2+λ2

∫

(1−u)2(f−c2)2dx,
(5.6)

where w(u) = u2(1 − u)2, and ε is a small positive number. Due to the strong
potential ε−1W (u), u will quickly be attracted to either 1 or 0, and consequently,
the term u2 and (1 − u)2 correspond respectively to H(φ) and 1 −H(φ) in (5.1),
and ε|∇u|2 corresponds to the regularization of of the length of ∂Ωi. Intuitively,
one can interpret the Gibou-Fedkiw or Song-Chan algorithm as performing a one
step projection to the steady state that results from the stiff potential W .

5.3. Segmentation of multiple “phases”

There are successful efforts to generalize the level set methods for multiphase com-
putation. For example, in (Zhao et al. 1996), each partition Ωi is represented by
a level set function φi. It is then important to enforce the constraints that 1) the
regions represented do not overlap (

⋂N
i=1{φi < 0} = ∅), and 2) there are no un-

claimed regions; i.e. every point in Ω belongs to certain Ωi (Ω =
⋃N

i=1{φi ≤ 0}).
Interesting formulae are derived in the variational setting to enforce these two con-
ditions. However, this approach is expensive when the number of phases is large.

In (Vese and Chan 2002), the authors use the sign of the level set functions
φj as a binary coding for the phases, each assigned a non-negative integer value.
Suppose there are four phases, Ωi, i =, · · · , 3, and two level set functions φ0 and
φ1 are used for their representation. One can then write, for instance,

Ω0 = {φ0 ≥ 0}
⋂

{φ1 ≥ 0},

Ω1 = {φ0 ≤ 0}
⋂

{φ1 ≥ 0},

Ω2 = {φ0 ≥ 0}
⋂

{φ1 ≤ 0},

Ω3 = {φ0 ≤ 0}
⋂

{φ1 ≤ 0}.

In full generality, write the phase number i in binary format i =
∑n−1

k=0 ck · 2k,
where ck takes on either 0 or 1. Then one way of using {φk}n−1

k=0 level set functions
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to represent Ωi is to identify

Ωi =
n−1
⋂

k=0

{x ∈ Ω : (1 − ck) · φk(x) ≥ 0}.

It appears that the gradient descent algorithm using this formulation is quite
sensitive to the initial configurations and tends to get stuck in some undesirable
local minima. There is also the potential misidentification of what is supposed to
be categorized as one single phase to two or more “different” phases, since the
formulation really comes with 2n phases with n level set functions. In the Chan-
Vese algorithm, for example, it is possible that the image u has the same average
in two different segments. Another drawback is the possible miscalculation of the
arc length/surface area of each phase, when two phase boundaries are forced to
collapse into one and may be given more weight than others. An important but so
far untouched (to the best of our knowledge) problem in the level set world is to
determine the optimal number of phases in certain segmentation problems.

5.4. Discussion

One of the successful features reported in (Chan and Vese 2001,a) is the emer-
gence of new interior contours. As we mentioned earlier, if one enforces the level
set function to be the distance function to the existing interfaces or replace the
delta function by |∇φ| and computes locally, then the existing interfaces are only
allowed to merge or disappear. The authors attributed the possibility of new interior
contour emergence to their particular choice of delta function that has non-compact
support. One common approach in getting around this problem is to initially seed
many small circles that are densely distributed throughout the given image and let
them gradually merge and evolve to a number of larger contours. See figures 1.4.3

This approach seems to capture the interior contour pretty well. While the state-
ments about the nonlocal effect of the particular delta function used in Chan-Vese
are valid, more careful study is called for to compare the degree of regularization,
and diameter of the interior of any segmentation, to the possibility of the emer-
gence of new interior contour. We would also like to comment that the iterative
approach adopted by Chan and Vese can be regarded as a version of Gauss-Jacobi
iterations for the nonlinear Euler-Lagrange equation (5.2). This statement can be
supplemented by looking at the same approach applied to the linear equation:

ut = ∆u.

The complexity of both approaches is proportional to N 2, the total number of pix-
els. We remark that it is possible to speed up the gradient flow in the Chan-Vese
algorithm by a splitting method described in (Eyre 1998).

There are many new (and old) “level set based” segmentation algorithms that
discard the continuity of the level set function and propose, instead, to model the
segmentation problem as a completely discrete, pixel-by-pixel, algorithm. As in
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Figure 5.11. Initialization.

(Gibou and Fedkiw 2005) and (Song and Chan 2002), these type of methods typ-
ically appear to be faster, and in some cases, more flexible in handling multiple
phases. This trends seem to be going against the original spirit and the raison
d’etre of PDE based level set methods for image processing — the geometry of the
interface is approximated at higher order accuracy through the assumed continuity
of the level set function over the grid. This fact resonates with the criticism of phase
field models for segmentation that there is no accurate representation of the inter-
face, unless one refines the grid and resolves the stiff parameter ε−1 (something
that is typically impossible to do for many image applications). See (Merriman,
Bence and Osher 1994) for a precise analysis of this.

One should ask the question whether accurate representation of the phase bound-
aries is really needed for the problem at hand. Of course, there are applications in
which geometrical quantities of the phase boundaries play important roles in the
model; e.g. in the disocclusion application of Nitzberg-Mumford-Shiota (Nitzberg,
Mumford and Shiota 1993) and also in the applications related to Euler’s Elastica.
In these type of applications, the “conventional” level set approach certainly has an
advantage. In the cases where the geometrical quantities are not of importance, the
piecewise constant model may be quite useful.

Our last comment is on the regularization term of the level set based segmenta-
tion methods. So far, popular choices have been the variants coming from mini-
mizing the length of the interface. In denoising, as we have seen, this corresponds
to L1 regularization of the image gradient. It is possible that the features to be
segmented, due to their origin, retain special orientations and are anisotropic. This
application appears, for example, in material sciences. In this case, one should look
into the possible alternatives. We point out that Wulff energy is one such possible
candidate. There, the regularization operator R is a function of the normal of the
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interface, i.e. R(~n) = div(γ(~n)). (In the common TV regularization, γ(~n) = ~n.
We refer to (Soravia 1994, Osher and Merriman 1997, Peng, Osher, Merriman and
Zhao 1999b) and (Esedoglu and Osher n.d.) for more details.

6. Pushing the Limit

In this section, we describe recent work corresponding to the classical applications
that we listed above.

6.1. Image decomposition

Many important tasks in image science involve the decomposition of given images
into different components. Again, we start with total variation denoising model
(1.4)

min
u

E(u) = λ

∫

(u− f)2dx+

∫

|∇u|dx.

One can reinterpret this model as finding a decomposition of the given image f
into a sum of two functions: f = u + v, with u corresponding to the “clean”
image that one wishes to reconstruct from f , and v contains the unwanted noise
that is separated from f. The segmentation model of Mumford and Shah essen-
tially proposes a similar decomposition, with the additional constraint on a lower
dimensional set that is interpreted as the edge of the resulting segmentation. If
one considers the special setting in which images take on only two values c1 and
c2, and the boundaries between the two constant regions are rectifiable, then the
total variation of u corresponds to the length of the boundaries weighted by the
jump |c1 − c2|. In this context, the link between the two models is especially clear.
This connection was pointed by Vese and Osher (Vese and Osher 2002) and was
described in (Osher 2003).

In his inspiring book (Meyer 2001), Meyer examined the total variation model
of (Rudin et al. 1992) more closely and proposed a decomposition in which the
noise and texture part, v, is written as the divergence of a vector field; i.e. v =
div g with the norm ||v||∗ defined as the infimum of L∞ norms of such vectors g.
The proposed decomposition finds u as the solution to the following minimization
problem:

min
u
λ‖f − u‖∗ +

∫

|∇u|dx.

The motivation of Meyer is that the L2 norm used in the first integral in (1.4) to
measure the noise and texture part of f can be improved by using the dual norm of
|| · ||BV (with proper completion of the space BV). This book triggered a sequence
of interesting studies and useful algorithms.

In (Vese and Osher 2003), the authors approximated Meyer’s || · ||∗ norm by an
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Lp norm, and proposed a modified variational model:

min
u,g1,g2

E(u, g1, g2) = λ

∫
(

f − (u+
∂g1
∂x

+
∂g2
∂y

)

)2

dx+ µ

(
∫

(g2
1 + g2

2)
p

2

)
1
p

+

∫

|∇u|dx.

In (Osher, Sole and Vese 2002b), the authors assumed the Hodge decomposition of
the vector field g: g = ∇P +Q, where Q is divergence free. With this assumption,
and the H−1 norm square in place of || · ||∗, the authors proposed the model

min
u,g1,g2

E(u, g1, g2) = λ

∫

|∇∆−1(u0 − u)|2dx+

∫

|∇u|dx.

Later, the first decomposition was combined with other texture synthesis technique
to inpaint textured images (Bertalmio et al. 2003).

See Haddad and Meyer (Haddad and Meyer 2004) for a recent review of the
related variational models.

6.2. Inverse Scale space and PDE based multi-resolution image analysis

It is possible to construct a hierarchical decomposition of a given image using the
“length scale” parameter λ in the TV denoising model. In (Tadmor, Nezzar and
Vese 2004), the authors study the convergence properties of this type of decompo-
sition using λ = λ02

j . More precisely, the decomposition starts with f = u0 + v0,
where u0 is the minimizer of the standard TV denoising model

min
u∈L2(Ω)

ETV (f, u, λ0) =

∫

Ω
|∇u|dx+ λ0

∫

Ω
|f − u|2dx

and then iteratively performs the same decomposition for the residual vj:

uj+1 = arginfu∈L2(Ω)ETV (vj , u, λ02
j), and vj+1 = vj − uj+1.

This procedure thus leads to a nonlinear hierarchical decomposition

f =
k

∑

j=0

uj + vk.

The same strategy was first proposed in (Scherzer and Groetsch 2001) by Scherzer
and Groetsch.

Instead of using the L2 norm in the fitting term, Esedoglu and Chan (Esedoglu
and Chan 2004) reported interesting results for the model

EEC = min
u∈L1(Ω)

∫

Ω
|∇u|dx+ λ||f − u||L1 ,

which was studied in (Alliney 1996) and (Nikolova 2002).
Figure 6.12 shows the graph of the fidelity term in EEC and ETV as functions
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Figure 6.12. Inverse scale space using L1-BV decomposition

of λ, computed from a given image containing features of different sizes (length
scales). The fidelity term in EEC appears to be a piecewise smooth function of
λ, and, strikingly, the discontinuities seem to correspond to some visually drastic
change in scale space, e.g. to the disappearances of objects of certain fixed length
scales. The intensity of the remaining parts seems to remain constant within each
connected smooth part of the graph of EEC . Figure 6.12 shows an example of such
decomposition. It is worth noting that in the case of the L2 decomposition, the in-
tensity of every part of u fades gradually with the increment in λ. See Figure 6.13.
It is especially intriguing to realized the inferred connection of this decomposition
with human perception of the size of objects in images. As it is pointed out in
(Esedoglu and Chan 2004), the L1 scale space suggests a way to select the scale
parameter λj using the discontinuities in the fidelity term.



42 TSAI AND OSHER

Figure 6.13. Inverse scale space using L2-BV decomposition

Bregman distance and inverse scale space
Recently, Osher et al. (Osher, Burger, Goldfarb, Xu and Yin 2004) proposed a dif-
ferent approach to multi-resolution image analysis in scale space. Their proposed
method, surprisingly, can be interpreted as a rather unique application of a power-
ful method, known as Bregman iteration, for constructing the minimizer of convex
problems.

Rather than varying λ in the Total Variation Denoising model (1.4), the authors
proposed to iteratively “fortify” selected parts of a given image and subsequently
perform the standard TV decomposition using the modified image. Their algorithm
can be described as follows:

• Let u1 = arg min E(u) + λ
2‖f − u‖2

L2 .

• Define f = u1 + v1.
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Figure 6.14. Bregman iterative refinement on ROF denoising, 2D finger example.
Multi-step. The first k for ||f − uk||L2 < δ is the optimal result.

• Then inductively, let

uk = arg min E(u) +
λ

2
‖f + vk−1 − u‖2

L2

and f + vk−1 = uk + vk.

In other words, the “noise" vk−1 is added back to f and ROF minimization is
performed with f replaced by f + vk−1 to decompose this function into “signal"
(uk)+ “noise" (vk). Intuitively, if vk contains both some structural information
(e.g. edges) of the optimized cleaned image u as well as the noise, then in the
subsequent ROF decomposition, the fitting term will have effectively an inhomo-
geneous weighting on the locations of the support of vk−1. Noise should be cleaned
out from u “faster” than the structural parts. The authors proved that as k → ∞,
uk → f monotonically in L2. In other words, k can be regarded as a parameter for
scale; the larger k is, the finer scale information would be incorporated in uk. For
denoising purpose, the authors observed that one can find a k0 such that uk0 resem-
bles the ideal cleaned image much better than the standard ROF solution. Figure
6.14 shows a decomposition of this sort.

As mentioned above, the procedure outlined above is identical to an iterative
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procedure using the so-called Bregman distance. Briefly, define a sequence {uk}
defined by: Let u0 = 0, p0 = 0, for k = 1, 2, . . .

Compute uk = arg minQk(u)

Qk : u → E(u) − E(uk−1) − 〈pk−1, u− uk−1〉

+
λ

2
‖f − u‖2

L2

where 〈·, ·〉 denotes the usual duality product and pk is the subgradient of E(uk).
Then compute using the update equation

pk = pk−1 + λ(f − uk). (6.1)

Actually this procedure works effectively in great generality, e.g. deblurring/denoising
of images, recovering unknown coefficients for elliptic equations. Of course ‖f −
u‖2

L2 is replaced by another appropriate fitting term in those examples.
Here we recognize that we are using the Bregman distance between u, uk−1,

defined as follows,

D(u, v) = E(u) − E(v) − 〈u− v, p〉, p ε ∂E(v)

∂J(v) the subgradient of the (perhaps) nonstrictly convex function J(u). We have

Qk(u) = D(u, uk−1) +
λ

2
‖f − u‖2

L2 .

It was shown in (Osher et al. 2004) that we obtain a unique sequence of minimiz-
ers uk and subgradients pk satisfying (6.1) above. The Bregman distance and the
associated iteration was not typically used in this fashion in the past. Rather it was
used to minimize functions H(u, f) where H is a (usually complicated) convex
function of u having a unique minimum – see e.g. (Cetin 1989).

In (Osher et al. 2004) it was shown that {uk} defined in the sequence satisfies

‖uk − f‖2
L2 ≤ ‖uk−1 − f‖2

L2

and if f ε BV (Ω), then

‖uk − f‖2
L2 ≤ E(f)

k

i.e. uk converges monotonically to f in L2 with L2 rate O
(

1√
k

)

.
Of course this convergence is not particularly useful to us as a denoising algo-

rithm. The function f is typically noisy. The key denoising result obtained in
(Osher et al. 2004) is as follows:

Let g ε BV (Ω). Then

D(g, uk) < D(g, uk−1)

as long as
‖f − uk‖2

L2 ≥ τ‖g − f‖2
L2
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for any τ > 1.
This gives a stopping rule for our iterative procedure. If we have an estimate of

the variance of the noise, i.e.

f = g + n,

where g ε BV (Ω) is the denoised image and n is the noise, with

‖n‖L2 = σ,

then we stop at the first k for which

‖f − uk+1‖L2 ≤ σ.

(Burger, Osher and Xu n.d.) elegantly reformulated their new algorithm into
a continuous flow in scale space, involving the solution of an integro-differential
equation. For λ = ∆t, k∆t = t, consider the Bregman iterations written in the
form

p(t) − p(t− ∆t)

∆t
= f − u(t),

where

p = −∇ · ∇u
|∇u| = ∂E ,

and E(u) =
∫

|∇u|dx; i.e. p is the subgradient of E . Letting ∆t ↓ 0, we arrive at
the differential equation

dp

dt
= f − u(t)

u(t) = u(p(t)), u(0) = p(0) = 0.

So if the flow exists and is well behaved, we have an inverse scale space. This
means that we start at u(0) = 0 and converge as t → ∞, i.e. limt→∞ u(t) = f .
We go from the smoothest possible image to the noisy image f . The goal is to use
the flow to denoise the image, i.e. to get closer initially to the denoised image g,
until t crosses a threshhold.

As an example, consider the analytically easier case E(u) = 1
2

∫

|∇u|2that is
detailed in (Scherzer and Groetsch 2001). Then p = −∆u with ∂u

∂n = 0 on ∂Ω.
There is a unique solution for u, given

∫

Ω p = 0, u = −∆−1p. (We also normalize
so

∫

Ω u =
∫

Ω f = 0). Simple manipulation leads us to the equation

d

dt
(u− f) = ∆−1(u− f)

or
u = f − e∆

−1tf → f.



46 TSAI AND OSHER

For example, if Ω is the unit square, then we may expand

f =

∞
∑

i,j=1

f̃ij cos(πix) cos(πjy)

u =

∞
∑

i,j=1

ũij cos(πix) cos(πjy)

where ũij = f̃ij

(

1 − e
− t

(i2+j2)π

)

.

We refer the reader to (Burger et al. n.d.) for an extension to the important case
E(u) =

√

|∇u|2 + ε2.

6.3. Diffusion generated motion and the Esedoglu-Tsai Algorithm

Recently, Esedoglu and Tsai, partially motivated by the algorithms presented above,
proposed a type of fast segmentation algorithm (Esedoglu and Tsai 2004). Their
main algorithm can be regarded as a splitting scheme for the Modica-Mortola func-
tional (5.6) using a thresholding approach similar to the MBO scheme (Merriman et
al. 1994). The segmentation will be represented by a function v such that {v = 0}
and {v = 1} represent the disjoint partitions in the segmentation. Their algorithm
consists of three steps:

1 Evolve

wt = ∆w − λ√
πδt

(

w(c1 − f)2 + (w − 1)(c2 − f)2
)

for t ∈ (tn, tn + δt] using w(tn) = vn and periodic boundary condition.
2 Set

vn+1 =

{

0 if w(x, tn + δt) ∈ (−∞, 1
2 ],

1 if w(x, tn + δt) ∈ ( 1
2 ,∞).

3 Update c1 and c2 by

c1 =

∫

D vfdx
∫

D vdx
, and c2 =

∫

D(1 − v)fdx
∫

D(1 − v)dx
.

The stiffness of the phase field model (5.6) is resolved by the splitting and the
projection to equilibrium (Step 2). Step one involves solving linear PDEs with
standard Laplacian and can be solved using any mature numerical scheme such as
a Fourier method or a multigrid method. The authors studied the consistency of
this algorithm by using an asymptotic expansion near the boundary ({v = 1/2})
and proposed a modified scaling λ̃ = λ/

√
πδt so that the length parameter in the

final algorithm scales independently of any other parameters. See Figure 6.15.
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Figure 6.15. Segmentation results in a succession of grid refinement. With the same
parameters δt and λ, the algorithm converges in three iterations and produce virtually

identical segmentations.

6.4. Computer Graphics and Beyond

We will see that these efforts combine many different ideas to manipulate more
complicated geometrical objects. However, the basic principle and spirit remains
unchanged. In (Burchard et al. 2001, Cheng, Burchard, Merriman and Osher 2002),
the authors provided a level set framework to represent and move curves on im-
plicit surfaces or in three dimensional space. This framework was then generalized
to process images and even more general quantities such as vector fields that are
defined on nonflat surfaces (Bertalmio et al. 2001b). Figure 6.16 shows inpaint-
ing over a sphere. This is one of the pioneering works on more complicated ge-
ometries in the level set framework. Generally speaking, the key is to raise the
space dimension and/or the number of level set functions. For example, in (Zhao
et al. 1996), the authors used multiple level sets to solve a multiphase minimal
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Figure 6.16. The image on the right is the denoised and inpainted result from the left.

Figure 6.17. This figures shows some complicated curves with self intersections using the
approach in

surface problem. Chan-Vese further generalized the idea and applied it to image
segmentations (Vese and Chan 2002). This was discussed in the previous section.
Smereka (Smereka 2000) used multiple level sets to define spirals and study the
formation of screw dislocations in crystal growth. Liao et al (Liao, Bergsneider,
Vese, Huang and Osher 2002) used this approach in brain morphing. Additionally,
(Smith et al. 2002) also had an interesting level set approach to the multiphase
computation that could be used in image segmentation. As a last example, in the
framework of (Burchard et al. 2001, Cheng et al. 2002), a curve is represented as
the intersection of two implicit surfaces, and the differential operators on surfaces
are approximated by the projections of the related operators in the ambient space.
This was then generalized to work on even more complicated geometrical objects
commonly seen in dynamic geometrical optics (Osher et al. 2002a). This approach
makes the manipulation of even more complicated curves and surfaces possible,
see Figure 6.17.

Visibility
The problem of visibility involves the determination of regions in space visible
to a given observer when obstacles to that sight are present. When the observer is
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Figure 6.18. The picture on the right shows the reconstructed surface from multiple
images on the right

replaced by a light source in the simplified geometrical optics setting with perfectly
absorbing boundary condition at the obstacles, the problem translates to that of
finding illuminated regions.

One of the most straightforward applications is in surface rendering. Typically,
explicit ray tracing techniques have been used to render a “realistic” projection of
the visible part of the given surfaces on the image plane. Not surprisingly, some
areas related to the accumulation on surfaces of quantities that propagate as does
light also need visibility information. Examples include etching (Adalsteinsson
and Sethian 1997), the formation of huge ice spikes on the Peruvian Andes Moun-
tains (Betterton 2001), and shape from shading models (Jin, Yezzi, Tsai, Tien
Cheng and Soatto n.d.) (see Figure 6.18).

We point out here that in many of the applications listed above, the data (i.e. sur-
faces) are given implicitly. It is therefore, natural to work directly with the implicit
data without converting to a different explicit representation. A very versatile level
set method for the visibility problem has recently been developed by the authors
and collaborators (Tsai, Cheng, Burchard, Osher and Sapiro 2004). The underly-
ing basic algorithm can be regarded as a multi-level implicit ray tracer that works
with volumetric data. Given a level set function ψ describing the obstacles D that
obstruct the lines-of-sight. The visibility function φ(y;x0) constructed by the al-
gorithm in (Tsai et al. 2004) takes the form

φ(y;x0) = min
z∈L(y,x0)

ψ(z), (6.2)

where L(y, x0) is the integral curve of the vector field r, connecting y and x0. The
simplicity of this formulation and the associated algorithm facilitate many further
extensions and applications.

These algorithms have been applied successfully in reconstructing surfaces from
multiple images of different views (Jin et al. n.d.). They can also be applied directly
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Figure 6.19. The black regions are invisible to the path indicated by the diamonds.
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Figure 6.20. The blue surface borders the visible and invisible regions. The light blue and
yellow curves indicate the silhouettes and swaths.

to some surface renderers. e.g. the “non-photo-realistic” renderer of (Hertzmann
and Zorin 2000). In the algorithm defined in (Tsai et al. 2004), the boundaries
of visible and invisible regions, both silhouette and swath (Duguet and Drettakis
2002), are implicitly represented in the framework of (Burchard et al. 2001, Cheng
et al. 2002), mentioned above. Figure 6.19 shows an accumulated visibility result
of a path above the Grand Canyon. Figure 6.20 shows a result and the silhouette.

This implicit framework for visibility offers many other advantages. For ex-
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ample, the visibility information can be interpreted as the solution of a simple
Hamilton-Jacobi equation and (Tsai et al. 2004) offers a near optimal solution
method on the grid. The dynamics of the visibility with respect to moving vantage
point or dynamic surfaces can be derived and tracked implicitly within the same
framework. Furthermore, using the same framework and the well developed level
set calculus and numerics, one can start solving variational problems involving the
visibility numerically and efficiently (Cheng and Tsai 2004).

Let D be the non-reflecting occluders in a domain Ω. In (Cheng and Tsai 2004),
the authors considered the following three central questions that are important in a
variety of applications:

• What is the optimal location x0 for an observer such that a maximum volume
of Ω is visible?

A larger class of problems emerges when variations and extensions involving the
observer and the space – multiple observers, moving observers, optimality under
different measures – are taken into account. For example:

• What are the optimal locations {xi} for a collection of observers, so that
jointly a maximum volume of Ω is visible?

• What is the optimal path γ(t) of an observer, traveling from A to B, so that
a maximum volume of Ω is visible?

In most situations, it is useful to think of an observer as a light source. Conse-
quently, the authors in (Cheng and Tsai 2004) approach solving the three central
questions by maximizing the volume of illuminated regions in Ω, or maximizing the
averaged illumination (exposure) in Ω. Two ideas are formulated as the two main
variational problems below.

Problem 6.1. (Volume based visibility optimization) Define V (xo) as the vol-
ume of Ω visible from xo. Find xo ∈ A ⊆ Ω such that V (xo) is maximized.
Mathematically,

max
xo∈A⊆Ω

V (x0) =

∫

Ω\D
H(φ(y;x0))dy.

The approach is to introduce an artificial time variable τ and flow xo from a given
initial location to a local maximum. The computation of the gradient of V (xo)
replies heavily on the Lipschitz continuity of φ for accuracy. This, of course, can
be generalized to multiple observers and different weighting in space:

max
xJ∈A⊆Ω

V ({xj}) =

∫

Ω\D
w(y, x1, · · · xj)H(φ(y; {xj})dy.

Here φ(y; {xj}) represents the joint visibility of {xj}; i.e. φ(y; {xj}) ≥ 0 is y is
visible to any of xj.

Define a function X that counts how many times a given point y can be seen from
a collection of observers. This concept can be extended to construct an optimal path
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for surveillance. Consider the amount of time a point y is exposed to an observer
traveling at unit speed along a path γ : [0, 1] → R

d, parameterized by τ ,

X (y; γ) =

∫ 1

0
H ◦ φ(y; γ(τ))|γ ′(τ)|dτ,

which we will refer to as the exposure due to γ on x. Points outside of obstacles
can be said to be viewed in a more uniform manner by an observer moving along
γ if the deviation of the exposure from being constant is small for some constant
C . Thus,

Problem 6.2. (Exposure based visibility optimization) Given p0, p1 ∈ R
d, and a

constant C , find γ : [0, 1] 7→ R
d with γ(0) = p0 and γ(1) = p1 minimizing the

energy

E(γ,C) =
1

2
||X (·; γ) − C||2L2 + λ

∫ 1

0
|γ′(τ)|dτ. (6.3)

Finally, in (Cheng and Tsai 2004), the authors considered a time dependent prob-
lem driven by the presence of an evader y(t). The objective is to keep the evader
from vanishing into the occlusion. The “inescapability” of the evader from the
pursuer is quantified as the distance between the evader and the observer, and the
distance the evader is from the occlusion. Again, taking the advantage of the con-
tinuity of the visibility representation, Cheng and Tsai defined

I(xo, y) =
1

2
|x0 − y|2 − λφ(y;x0),

and formulated the corresponding problem:

Problem 6.3. (Inescapability) Find x(t) so that I(xo(t), y(t)) is strictly decreas-
ing with a prescribed rate.

Various aspects of Problems 6.1 and 6.2 are studied in (Cheng and Tsai 2004).
Figure 6.21 shows a circular initial path being deformed to a locally optimized
path for uniform visibility. Figure 6.22 shows a comparison of the past trajectories
of xo with and without the consideration of maximizing inescapability.

7. Current Trends

Currently, higher order nonlinear PDEs are increasingly appearing in image sci-
ence. For example, in image inpainting of (Chan et al. 2002)(Esedoglu and Shen
2002)(Lysaker, Osher and Tai 2004), a fourth order PDE is derived from regular-
izing the level set curvature a given image. In computer graphics, Tasdizen et al
(Tasdizen, Whitaker, Burchard and Osher 2003) proposed to perform anisotropic
diffusion on the normals of a given level set surface model. In general, fourth order
equations are much harder to analyze, since they rarely have a maximum principle.

An interesting paper of Burchard (Burchard 2002) discusses the diffusion oper-
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Figure 6.21. The upper left figure shows the occluders (red circles), the initial curve
(green circle), and the optimized curve (blue dotted curve). The constant C is chosen to
be 4.2, the curvature regularization term is 0.05. The images in the second row show the

exposure of the initial and the optimized paths.
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Figure 6.22. Past trajectories due to the absence and presence of the visibility gradient
term. The diamonds and crosses indicate the current locations of the observer and the
evader, respectively. The lower left plot is with the absence of the gradient term and

should be compared to the lower right plot. The upper right plot is a longer time
simulation when the gradient term is present.
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ators constrained in color space, which involves a new vector valued extension of
TV minimization.

There are many imaging applications that are formulated as inverse obstacle
problems using level set formulations. Medical imaging contains many such ap-
plications. Recently, level set based optimization methods have been used for the
morphological registration of medical images by Droske and Rumpf (Droske and
Rumpf 2003/04) and by Vemuri et. al. (Vemuri, Ye, Chen and Leonard 2003),
where objective functionals similar to elastic energies have been minimized using
level set based gradient methods. We expect to see more advances in this area.

In many computer graphics simulations using level set formulations, we see an
emergence of semi-Lagrangian methods due to the ease of incorporating them
into some adaptive gridding (Enright, Losasso and Fedkiw 2003)(Falcone and
Ferretti 2002), and also (Losasso, Fedkiw and Osher 2004). There are efforts to
develop Newton method based optimization techniques for finding the minima of
variational image models. We refer the interested readers to the recent review pa-
per Burger and Osher (Burger and Osher n.d.) for these problems and applications
involving optimal design.

We anticipate increasing efforts in the analysis of the mathematical image mod-
els as well as numerical analysis of various aspects of the corresponding algo-
rithms.
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