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Abstract

Image inpainting refers to restoring a damaged image with missing information. In recent years, there
have been many developments on computational approaches to image inpainting problem [2, 4, 6, 9, 11,
12, 13, 27, 28]. While there are many effective algorithms available, there is still a lack of theoretical
understanding on under what conditions these algorithms work well. In this paper, we take a step in this
direction. We investigate an error bound for inpainting methods, by considering different image spaces
such as smooth images, piecewise constant images and a particular kind of piecewise continuous images.
Numerical results are presented to validate the theoretical error bounds.
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1 Introduction

Image inpainting refers to a specific image restoration task, where missing or damaged portions of an image
are reconstructed. For example, cracks on old oil paintings or letters covering parts of magazine photos
would be considered the missing or damaged portions of an image. Inpainting methods use the known image
information to recover those missing areas.

Masnou and Morel [28] addressed this as a disocclussion problem, and used an explicit geometric level
line interpolation procedure to recover the occluded regions. Bertalmio et al. [4] first introduced the notion of
digital image inpainting and use third order partial differential equations (PDE) to diffuse the known image
information into the missing regions along the level lines. Later, this inpainting approach was extended
to include the direction of the level lines [2] and related to the Navier-Stokes equation [3]. An alternative
variational approach was proposed by Chan and Shen [11] that minimizes the total variation of recovered
image while fitting the known information (TV inpainting). This method is later extended by adding the
Euler’s Elastica to the variational functional in [9] in order to allow the curved level lines to be recovered.
We follow these variational approaches in this paper. Some methods are more efficient in computation than
others while producing similar results (unless higher order method is used) and, since variational models are
best suited for error analysis, we consider harmonic and TV inpainting models in this paper. Many inpainting
methods have proved very successful, and been addressed in several recent articles [16, 30, 31, 32]. Further
studies include texture inpainting [5],and Wavelet inpainting [15] and inpainting from multiple view [25, 26].
More related literature can be found in [6, 12, 13, 14, 27, 33].

In general, image inpainting can be described as follows. Let Ω be the image domain, uo : Ω −→ R+∪{0}
be the given original image, and domain D ⊂ Ω represents the region with missing information. We refer
to domain D as the inpainting domain, and we assume it has already been identified. This D is a closed
set with smooth continuous boundary, and ∂D denotes the inpainting boundary ∂D ∈ Ω\D. Variational
image inpainting methods use information from outside the inpainting domain by minimizing a regularization
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(a) (b)

(a) inpainted (b) inpainted

Figure 1: (a) and (b) are the same image with two different inpainting domains. Both inpainting domains
have the same total area, yet inpainted result (a) looks better than inpainted result of (b).

functional such as,

min E(u) = min
∫

D

g(u) dz s.t u = uo

∣∣
∂D

. (1)

We consider two functions for g in this paper; one is g(u) = |∇u|2, which we refer to as harmonic inpainting,
and the other is g(u) = |∇u|, which is the TV inpainting [11]. For general images, harmonic inpainting
is not appropriate since it tends to smooth out the edges. However, we consider it in this paper, since
harmonic inpainting is more natural for inpainting smooth images, and the error term can be carried out
more theoretically. We consider harmonic inpainting for smooth images, and TV inpainting for images with
discontinuities.

In this paper, we are interested in the error bound for such inpainting problems. Intuitively, if more
pixels are missing, one can expect to have a bigger error. However, the purpose of this error analysis is to
show that the error depends more on the geometry and the shape of the inpainting domain than the size
or total area of the inpainting domain. For example, in Fig. 1, two image (a) and (b) have two different
inpainting domains with exactly the same total area; however, the inpainted image (a) looks much better
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than the inpainted image (b). The inpainting results are dependent on the shape of the inpainting domain,
and most of the local inpainting methods are known to work well with “narrow” inpainting domains. One
of the purpose of our paper is to understand this phenomenon.

The outline of this paper is as follows. In Section 2, we consider smooth functions with harmonic
inpainting, and use Green’s function representation to analyze the error. Preliminary work has been done
by Chan and Shen [11], and the outline of their study as well as more refined results are covered in the
section. In Section 3, we consider piecewise constant images with TV inpainting, and use a level line analysis
to consider a region where the error may occur. For the piecewise constant case, the error is dependent on
the geometric details of how the level lines meet with the boundary of the inpainting domain. In Section
4, we study a particular type of piecewise continuous functions with TV inpainting by utilizing results from
the previous sections. We present numerical experiments in Section 5 to illustrate the aspects of the theory,
which is followed by concluding remarks in Section 6.

2 Harmonic Inpainting for Smooth Functions

In 1-dimension, the inpainting domain D is an interval, and inpainting problem can be seen as an interpolation
of the two end-points of interval D. The error term for such interpolation is bounded by the smoothness of
the function and the length between the two end-points. This is also true in the 2-dimensional case. We
consider inpainting as an interpolation of the boundary information such as in equation (1), and define the
error as

err(z) = |u(z)− utrue(z)|, for ∀z ∈ D. (2)

Here, utrue is the true image without any inpainting domains, uo is the given original image with an
inpainting domain D, and u is the interpolation. In this section, we assume u, uo, and utrue are all smooth
functions: u, uo, utrue ∈ C2(Ω). Note that the error, err(z), is a point-wise error, and the total error over D
is

err(D) =
∫

D

err(z)dz ≤ |D|max
z∈D

{err(z)}.

where |D| is the area of the inpainting domain.
For a smooth function, one natural choice for an interpolation is a harmonic extension. Therefore, by

considering the solution of the Laplace’s equation, we can express the error, err(z), using Green’s function.
Assuming D has a smooth boundary, the energy functional for harmonic inpainting is

min
∫

D

|∇u|2dz s.t. u = uo

∣∣
∂D

. (3)

The Euler-Lagrange equation of this functional is equivalent to solving the Laplace’s equation: ∆u = 0,
z ∈ D and u = uo, z ∈ ∂D. As in PDE references [17, 19, 23], if there is a Green’s function G for this
domain D, then the solution of (3) is

u(zo) = −
∫

∂D

uo(z(s))
∂(G(zo, z))

∂η
ds, (4)

where η is the outward normal direction along ∂D, s is the arc-length parameter of ∂D, and G(zo, z) is the
Green’s function satisfying −∆G = δ(z − zo) for zo ∈ D and G

∣∣∣
∂D

= 0 on ∂D. On the other hand, the

true image utrue satisfies : −∆utrue = f for z ∈ D, and utrue = uo for z ∈ ∂D (where f = −∆utrue by
definition). Thus, this utrue can be expressed as

utrue(zo) = −
∫

∂D

uo(z(s))
∂(G(zo, z))

∂η
ds +

∫
D

f(z)G(zo, z)dz.

Here, the first term is the interpolation solution to the harmonic inpainting (4). The second term is the
anti-harmonic term, which gives the error term in (2). Since we assume the image is smooth, we can define

3



the bound for the smoothness to be M , such that |∆u| ≤ M in D. Therefore, for each zo ∈ D, the error is
bounded by

err(zo) = |
∫

D

f(z)G(zo, z)dz| ≤ M

∫
D

G(zo, z)dz. (5)

This is the harmonic inpainting error bound for a smooth function, and we focus on this integral of a Green’s
function throughout this section.

2.1 Review of Green’s function approach

This section is an outline of lemmas and theorem given in [11], some of which are needed to refine the error
bound.

Lemma 1 (Comparison Lemma) Suppose two domains, D1 and D2, and their corresponding Green’s func-
tions, G1(zo, z) and G2(zo, z), are defined. If D1 ⊂ D2, then ∀zo, z ∈ D1,

G1(zo, z) ≤ G2(zo, z).

Lemma 2 Suppose B1 is a unit disk centered at 0, and G1(zo, z) is its corresponding Green’s function.
Then, for all zo ∈ B1, ∫

B1

G1(zo, z)dxdy =
1− |zo|2

4
.

Theorem 1 Let d denote the diameter of a domain D and G(zo, z) be the associated Green’s function for
the Poisson equation on D. Then ∫

D

G(zo, z)dxdy ≤ d2

4
.

Theorem 1 is proved in [11] by covering the inpainting domain D with a disk B1 with a diameter d, and
by using Lemma 1 to show that the integral of the Green’s function over D is smaller than that over B1.
Using the bound M for the smoothness and Lemma 2, the error for ∀zo ∈ D was bounded by,

err(zo) ≤ M

∫
D

G(zo, z)dz ≤ Md2

4
. (6)

This result says, for any point zo inside D, the point-wise intensity error, err(zo), is bounded by a term
proportional to the square of the radius of a disk covering D.

2.2 Long and narrow inpainting domains

The bound (6) is somewhat pessimistic if the shape of the inpainting domain D is not close to a circle. In
particular, if D is a long and narrow domain, the bound (6) doesn’t give an insight on the error. For example,
Fig. 2 shows a smooth function with harmonic inpainting with two different shapes of the inpainting domain
D1 and D2. Image (a) requires a bigger diameter disk covering D1; however, the inpainted image (a) looks
better than the inpainted image (b). In a real experiment, the inpainted result depends more on the “width”
of the inpainting domain than the radius of the disk covering the inpainting domain. Therefore, for a long
and narrow region, one can expect to refine the error bound. In the following Lemma, we use an ellipse to
cover the inpainting domain and refine the error bound from (6).
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utrue (a) (b)

(a) inpainted (b) inpainted

Figure 2: Harmonic inpainting for a smooth function. All images are superposed with each contour plots.
(a) uo with inpainting domain D1, and (b) uo with a different circle-shaped inpainting domain D2. Image
(a) has a bigger diameter disk covering D1 than that covering D2; however, (a) inpainted is closer to utrue

compared to (b) inpainted. D1 and D2 have the same total area.

Lemma 3 Suppose Be(α/2, β/2) is an ellipse centered at 0, x2

(α/2)2 + y2

(β/2)2 = 1, where α ≥ β, and G2(zo, z)
it’s Green’s function. Then, for zo = (xo, yo) ∈ Be,∫

Be

G2(zo, z)dxdy ≤ β2

8
.

Proof. Consider the following Poisson equation on ellipse Be(α/2, β/2),

−∆v = 1, v
∣∣∣
∂Be

= 0.

Then the unique solution v becomes,

v(z) =
1− x2

(α/2)2 −
y2

(β/2)2

2
(α/2)2 + 2

(β/2)2

(
=

β2

4 − β2

α2 x2 − y2

2β2

α2 + 2

)
.

On the other hand, using the Green’s function, v(zo) can also be expressed as

v(zo) =
∫

Be

G2(zo, z)(−∆u(z))dxdy =
∫

Be

G2(zo, z)dxdy.

Therefore, the bound for the Green function on the ellipse Be becomes,∫
Be

G2(zo, z)dxdy =
β2

4 − β2

α2 x2
o − y2

o

2β2

α2 + 2
≤ β2 − 4y2

o

8
.
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For any point z ∈ Be, the integral of Green’s function is bounded by β2

8 , since −β
2 ≤ yo ≤ β

2 . �

This Lemma shows that the integral of Green’s function for an ellipse is bounded by β2

8 . We define β to
be a minor diameter of the ellipse (and α to be the major diameter of the ellipse). Using the error bound (5),
error term for harmonic inpainting is bounded by a term proportional to the square of the minor diameter
of the ellipse covering D.

Theorem 2 For any point in the inpainting domain, zo = (xo, yo) ∈ D, the point-wise intensity error,
err(zo) = |u(zo)− utrue(zo)|, is bounded by

err(zo) ≤
M

8
β2, (7)

where M is a bound for the smoothness of u, |∆u(z)| ≤ M , and β is the minor diameter of an ellipse covering
the inpainting domain D.

Proof. For a given inpainting domain, let Be be an ellipse covering D. For simplicity, translate and rotate
D and Be that the center of Be is on the origin, and the principal axes of ellipse Be lie on the x and y-axis
respectively. Let Ge be the Green’s function of ellipse Be. Then, by Lemma 1 and Lemma 3,∫

D

G(zo, z)dxdy ≤
∫

Be

G(zo, z)dxdy ≤ β2 − 4y2
o

8
≤ β2

8
.

Using the error bound (5),

err(zo) ≤ M

∫
D

G(zo, z)dz ≤ M

8
β2.

This is the point-wise intensity error bound for any zo ∈ D. �
Theorem 2 says if D is covered by an ellipse, the error is bounded by the term which is proportional

to the square of the minor diameter β of the ellipse. The error bound (7) is tighter than the original error
bound (6), especially when α � β. Thus, the narrower the inpainting domain, the smaller the error bound
(7) will be.

2.3 Minimum of the minor diameter β

In the previous subsection, we showed that when D is covered by an ellipse, the error is bounded by a term
proportional to the square of the minor diameter β of the ellipse. From this results, we would like to further
refine the error bound if possible. In this section, we consider a local width from z ∈ D and attempt to
refine the result (7). We consider ellipse-like domains with varying width: the domain D is simply connected
straight, yet, the thickness varies, as in Fig. 3. We first define local width from a point z ∈ D.

z 

q
1
 

q
2
 

Ω 

w(z) D o 

Figure 3: Definition of local width w(z) for point z ∈ D.
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utrue (a) (b)

utrue (a) inpainted (b) inpainted

utrue zoom-in (a) zoom-in (b) zoom-in

Figure 4: (a) uo with a line-shaped inpainting domain D1, (b) uo with a dumbbell-shaped inpainting domain
D2. The total areas of D1 and D2 are the same. The third row shows the contour plots of zoom-in of the
box in the second row utrue. (a) inpainted result is closer to utrue.

Definition 1 For a point z ∈ D, consider a straight line l passing through z with at least two intersections
with ∂D on the opposite sides from z. Define those two closest intersections to be q1 and q2 respectively
(Fig. 3). Then define the minimum distance among all such pairs, q1 and q2, to be the local width w(z),

w(z) = min
∀l
‖q1 − q2‖.

In this definition, q1 and q2 may not be unique; however, the width w is uniquely defined throughout
the region D. With this local width definition, it is tempting to claim that the point-wise inpainting error,
err(z), is locally dependent on this local width w(z). However, this is not true, as illustrated in Fig. 4.
Inpainting domains of image (a) and (b) have the same local width w(z) and the shape around the center,
as well as the same total area. Nevertheless, the inpainted results around the center are quite different, and
the error depends on the global shape of the inpainting domain.

Theorem 3 Let βD be defined by the minimum of β for ellipses covering D,

βD = inf{β | ∀ellipse Be(α/2, β/2) covers D, i.e.D ⊂ Be}.
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Then, for ∀z ∈ D, the point-wise intensity error is bounded by

err(z) ≤ M

8
β2

D, (8)

where M is the smoothness bound for u, |∆u| ≤ M .

Proof. Consider an ellipse B with minor diameter βD and covers the domain D, s.t. D ⊆ B. Let α be
the major diameter of the ellipse B. Then, even as α →∞,∫

B

G(zo, z)dxdy =
β2

D

8 − β2
D

α2 x2 − y2

2β2
D

α2 + 2
≤ 1

8
β2

D.

Therefore, ∀z ∈ D, the error is bounded by M
8 β2

D. �
For images with a straight inpainting domain with varying width, the error is bounded by a term pro-

portional to the square of βD, which is the lower bound among all possible β:

max
z∈D

w ≤ βD ≤ β.

In this subsection, we illustrate that the error bound is not entirely local, i.e. it can not be locally bounded
by a term proportional to the local width w, but the error bound depends on the βD which is defined from
covering the whole inpainting domain by an ellipse. Therefore, the error bound depends on the global shape
of the inpainting domain D.

2.4 Torus shaped inpainting domains

In this subsection, we consider the case when the domain D is a torus shape and further refine the error
bound from (6) or (7).

α 

β T 

Figure 5: Torus shaped inpainting domain.

Theorem 4 Let a point z be in a torus shaped inpainting domain D, which is defined to be α − βT

2 ≤
‖z − zC‖ ≤ α + βT

2 , where α > βT

2 , zC is the center of the torus. Then for z1 = (x1, y1) ∈ D, the point-wise
intensity error, err(z1) = |u(z1)− utrue(z1)|, is bounded by

err(z1) ≤
M

4
(1 +

1
α− βT

2

)β2
T , (9)

where M is a bound for the smoothness of u, |∆u(z)| ≤ M .

Proof. Following the proof of Lemma 3, we consider the Poisson equation on the torus D, and let the
unique solution be v(z). For convenience, we assume the center is at the origin zC = (0, 0). Since torus is

8



radially symmetric, let’s consider the point z on the y-axis, i.e. z = (0, y) ∈ D. Then, vyy is the curvature of
the circle at z which is 1

r with r as a radius from the center. From −∆v = −(vxx + vyy) = 1, vxx = −1− 1
r

(which is bounded by −1− 1

α− βT
2

). Since,. vxx is bounded and v have zeros at y = α± βT

2 , using polynomial

interpolation, v(y) becomes (−1 − 1

α− βT
2

)(y − (α − βT /2))(y − (α + βT /2)) for every point on the y-axis.

Therefore, v(z) is bounded by the maximum (1 + 1

α− βT
2

)(βT

2 )2. By similar argument as in Lemma 3, the

Green’s function of the torus is also bounded by the same term, and using the error form in (5), the bound
is calculated. �

This theorem allows us to further refine the error bound when D can be covered by a torus. The error is
bounded by the term proportional to the square of β2

T which is the width of the torus. This error bound is
smaller than the error bound estimated by either covering by a disk(6) or an ellipse (7). Therefore, one can
further refine the error bound when there are additional information available inside the inpainting domain.

2.5 Transformation of a domain

For any inpainting domain, if one covers the domain by an ellipse the error bound is given by (8). However,
if we consider the domain when the thickness is small but have complicated shape as in Fig. 6 (a), the error
bound given by (8) could be also pessimistic. Considering an ellipse covering D, βD in (8) is large compared
to the local with w. Therefore, in this subsection, we consider a domain transformation to reduce the error
bound which is proportional to a new β which is closer to local width w.

T

D

(a) (b)

D

z z

Figure 6: (a) narrow inpainting domain D, (b) transformed domain D̂ = T (D).

From the given domain D with smooth boundary that ∂D ∈ C1, let’s define a skeleton of the domain
to be s. The skeleton of a domain is a way to represent a plane region with a simple graph; for each point
z ∈ D, find its closest neighbor in ∂D. If there are more than one such neighbor, it is said to belong to the
skeleton of D [20, 22]. Suppose the skeleton of the inpainting domain D is defined by single open curve s
which is also C1 (no branches and smooth).

Let U be a 2-dimensional manifold, and let P be a projection such that the skeleton s in D becomes a
geodesic curve in U ,

P : Ω → U and P (s) = geodesic in U

Let G : U → R2 be a geodesic mapping which maps U to a Cartesian grid V = R2, i.e. this G maps P (s)
into a straight line in V. Then, define a transformation T to be a domain transformation

T = G ◦ P : Ω → V (10)

i.e. this transformation T maps every point on s ∈ D ⊂ Ω onto a geodesic in U , then maps it onto a straight
line in V. Using this transformation, domain D is mapped to an ellipse-like domain D̂ with varying width
D̂ = T (D) ∈ V as in Fig. 6 (b).

Definition 2 We define the skeleton s to be deformable, if the mapping P and G exists and both are isometry
(therefore, T is also isometry).
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We are using the standard definition of isometry that a isometry f from M to N is a one-to-one, onto,
differentiable function f : M → N such that for any curve ρ : [c, d] → M , the length of ρ equals the length
of f · ρ [29]. This transformation T changes the domain Ω to Ω̂ ⊂ V, and the new image û(z) : Ω̂ → R
is defined to be û(ẑ) = u(T−1(ẑ)) for ∀ẑ = T (z) ∈ Ω̂. In the transformed domain D̂, the inpainting error
comes from solving of the new Poisson equation,{

−∆û = f̂ , ∀z ∈ D̂

û = 0, ∀ẑ ∈ ∂D̂,

where f̂ results from the domain transformation T . Let M̂ be the bound for the smoothness, |∆û| ≤ M̂ .
Notice that this smoothness bound M̂ may not be the same as M . Since T is isometry (i.e. it is differentiable),
M̂ is bounded; however, M ≤ M̂ .

Theorem 5 Let D be the inpainting domain with deformable skeleton s (and associated transformation T ).
Then, the error bound for z ∈ D is bounded by

err(z) ≤ M̂

8
β2

D̂
,

where M̂ is the bound for the smoothness |∆û| ≤ M̂ and βD̂ is the minimum of minor diameters of ellipses
covering D̂ = T (D).

Proof. From equation (8), for ∀ẑ ∈ D̂, the error is

err(ẑ) = |û(ẑ)− ûtrue(ẑ)| ≤ M̂

8
β2

D̂

where, βD̂ is the minimum of the minor diameter of ellipses covering D̂. Then, the point-wise intensity error
term for ∀z ∈ D is

err(z) = |u(z)− utrue(z)| = |û(T (z))− ûtrue(T (z))|,

where T (z) = ẑ ∈ D̂ which is also bounded by M̂
8 β2

D̂
. �

Lemma 4 Let D be the inpainting domain with deformable skeleton s. Then for ẑ ∈ D̂, the local width w(ẑ)
at point ẑ is bounded by

w(ẑ) ≤ w(z)

where ẑ = T (z) ∈ D̂ = T (D) and z ∈ D.

Proof. From definition of local width w(z) at a point z, let ls be the line segment defining w(z), i.e ls
is part of l = arg min ‖q1 − q2‖, between q1 and q2 inside D. By definition of deformable skeleton s, the
transformation T is isometry. Therefore, the length of T (ls) is still w(z). However, T (ls) is no longer a
geodesic in V, therefore, there exists a straight line l̂ in V which defines the new local width w(ẑ), and this
w(ẑ) is always less than (or equal to) the length of T (ls). �

According to this Lemma 4, βD̂ in the Theorem 5 is a good bound which is related to the thickness of
the original domain D. As a summary, in general for a smooth function with harmonic inpainting, the error
err(z) at any point z ∈ D, is bounded by a term proportional to the square of either βD̂ or βT . These βs acts
as the maximum of the local width by considering the global shape of the domain D. The total inpainting
error over D for a smooth function with harmonic inpainting is bounded by∫

D

err(z)dz ≤
∫

D

CM̂β̃2dz ≤ C|D|M̂β̃2. (11)

for some constant C and β̃ either of βD, βD̂, or βT .
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3 TV Inpainting for piecewise Constant Images

In the previous sections, we showed the case of smooth functions with harmonic inpainting. However, typical
images have discontinuities and jumps, and here we investigate the case for piecewise constant images with
TV inpainting.

If we consider an interpolation for an 1-dimensional step function with TV inpainting, the error is bounded
by the jump of intensity and the length of the inpainting interval. Therefore, in 2-dimensional case, the error
is also bounded by the jump of the function as well as the area of the inpainting domain

err(D) ≤ (Imax − Imin)|D|, (12)

where Imax and Imin are the maximum and the minimum of the possible intensity values. For a bounded
variation (BV) function, it makes more sense to consider the total error over D than the point-wise error as
in the previous section. Since the point-wise error strongly depends on the location of the point, and the
maximum error bound for each point is always, err(z) = |u(z)− utrue(z)| ≤ (Imax − Imin).

Black

White
White

Black

(b)(a)

D

Ω Ω

D

Figure 7: (a) and (b) have the same inpainting domain D; however, the error regions (the dotted triangles)
for two cases are quite different.

Unlike the case for smooth functions, the error is no longer dependent on the β, but on the geometric
details of how the level lines meet with the inpainting boundary ∂D. In Fig. 7, the two images (a) and (b) have
the same shape and size of D; however, the possible connections of the level lines are very different, and the
connections seem to depend more on the way level lines meet with ∂D. The error becomes the geometrical
property of level lines, and being close to the boundary doesn’t guarantee smaller error. Identifying the
location of the possible error region becomes the focus of error bound for the piecewise constant images. We
first define the level line settings and define the error region R which represents the location of the error.

Let Γµ be the perimeter of {x : u(x) > µ s.t. x ∈ Ω\D} which is the level line of image u. Since we are
considering piecewise constant case, there exists a integer, ∃n s.t. {Γµ} = {Γµi

| for i = 0, 1, . . . n}. Among
these {Γµi

} pick level lines which meet with the inpainting domain D, and refer to them as {Γk}. We define
li to be a level segment, if li is a continuous segment of Γk and meets with ∂D at a unique point qi. (If
li meet with ∂D more than once separate li into two or more level segments.) Curvature of li is κi, si arc
length parameter on li. Since any plane curve can be uniquely defined by its curvature, (by Fundamental
Theorem of curves) we include the extension of li in the direction of curvature inside D i.e. dκi(si)

dsi
= 0 with

initial curvature κi(qi) at qi.
Since utrue is unknown in general, we make the following two assumptions for the piecewise constant true

image, utrue. This utrue is reduced from the information on ∂D in the given original image uo.

1. We assume that the level lines Γk should be a continuous function inside the missing domain D. We
define ltrue to be the true level line connection inside D.

2. We assume the utrue has no objects (covered by D) which cannot be recovered from ∂D information
alone. Fig. 8 shows an example, where image (a) have objects which are covered by D in image (b), then
we consider image (c) as utrue (not image (a) as utrue). Thus, utrue only depends on the information
from ∂D.
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Figure 8: (a) original image, (b) given image uo with D, (c) utrue for image (b).

When TV inpainting method is used, it always connect the level lines with the shortest distance inside
D. From the coarea formula for bounded variation functions [18],∫

RN

|∇u|dxdy =
∫ ∞

−∞
Per({x : u(x) > µ})dµ,

the integral of total variation is minimized when the perimeter Per({x : u(x) > µ}) is minimized. This
occurs when the set {x : u(x) > µ} connects the level lines with the shortest connection. Therefore, when
TV inpainting is used, the level lines are connected with the shortest distance inside D in order to minimize
the total variation. Let the shortest connection between qi and qj to be ltv which is defined by using the
TV inpainting method. Let the length of ltv be dtv.

In the following section, we consider the geometrical properties of the level lines to better represent the
error bound (12), especially using the length dtv.

3.1 Uniquely matching two level lines

Among many level segments li of Γk (for a fixed k), we assume each level segment has a uniquely matching
pair given from utrue. Therefore, each level segment has a uniquely matching pair. We assume the matching
is already identified, and we only consider each pair separately. Since each time we consider each matching
pairs separately, it is similar to considering u as a binary image with only two intensity level and only
two level segments are meeting with ∂D. This can be extended to many matching pairs of level lines by
considering each pairs one by one.

Definition 3 We define the region surrounded by ltrue and ltv to be the error region R. R ⊂ D.

The total error of piecewise constant images becomes

err(D) ≤
∑

i

∂Ii|Ri|, (13)

where Ri are the each error region from each matching level lines, and ∂Ii = Imax ∂Ii
−Imin ∂Ii

is the intensity
difference across the level segment li. This intensity difference ∂Ii is taking values only across from Ii, unlike
Imax and Imin as in (12). This is possible from the second assumption of utrue that piecewise constant utrue

only depends on the boundary ∂D information, and the fact that TV inpainting have a maximum principle.

Theorem 6 If ltrue is a smooth function ∈ C2, then the area of the error region is bounded by

err(D) ≤ ∂ItrueMd3
tv (14)

where M = l
(2)
true(ζ)

12 is the bound for the smoothness of ltrue with respect to ltv, and ∂Itrue the intensity
difference across ltrue.
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Proof. The difference between ltv and ltrue can be calculated by a linear polynomial approximation.
Let q1 and q2 be the two points where ltrue and lTV meets at the boundary ∂D, then ltrue ∈ C2 and ltv
linearly interpolates ltrue at two points q1 and q2. Let ~x be in the direction of ltv and ~y be in the direction
perpendicular to ~x, then for the arc length x defined on ltv, the distance between two curves ltv and ltrue is
bounded by ∫ q2

q1

1
2
l
(2)
true(ζ)(x− q1)(x− q2) ≤Md3

tv

12
,

where the derivative is with respect to x i.e. ∂2ltrue

∂x2 . �
This Theorem 6 covers the most common case of the level line connection which is the two matching level

lines are a part of one smooth curve. The smaller the distance dtv is the smaller the total error will be by a
cube power. The distance dtv is a strong factor for the area of the error region |R|.

If ltrue /∈ C2 i.e. it is continuous but not a smooth curve, then we use the following Lemmas to show
that the area of R is bounded by a term proportional to d2

tv. For particular cases, we can express the area
of this error region |R| using the dtv, κi and the direction of the level segments. If ltrue is C1, we assume
ltrue has only one discontinuous point q̂ inside D, and ltrue is defined by two level segments l1 and l2. The
direction θi is defined to be the angle between ltv and a line connecting q̂ and qi, the angle is taken inside
the domain D.

Lemma 5 When the level segments, l1 and l2, meeting with ∂D are straight lines and have a unique inter-
section q̂ inside D, i.e. κ1 = κ2 = 0, θ1 · θ2 > 0 and |θ1 + θ2| < π, then

|R| ≤ O(d2
12θ).

The area |R| is a function of dtv, θ1 and θ2 where θ = max{θi for θi < π/2, i = 1, 2}.

Proof. Let lh be a line perpendicular to ltv that passes through the intersection q̂. Let b1 be the distance
between q1 and lh along ltv (dtv = b1 + b2 if lh is between q1 and q2, and dtv = |b1 − b2| otherwise). Then
the area of triangle is

|R| = 1
2
(b2

1g(tan θ1) + b2
2g(tan θ2)),

where g(x) = x, and g(x) = 0 only if x = ∞. By definition, function g ignores the case when θi = π
2 . ( If

θ1 = π
2 , it is a right triangle with area

1
2
b2
2 tan θ2.) This equation holds as long as all θi > 0 and θ1 + θ2 < π.

Let θ = max{θi for θi < π/2, i = 1, 2}, then the error is bounded by 1
2d2

tv tan θ ≈ O(d2
tvθ). �

Lemma 5 considers the case when there is a corner inside D and the error region R is a triangle surrounded
by l1, l2 and ltv, the area of the error region is bounded by the term proportional to the square of dtv and the
angle θ. The following Lemma covers the more general case, when the level lines have different curvatures
and have one intersection inside D.

Lemma 6 When two, curved or straight, level lines l1 and l2 have one intersection q̂ inside D, i.e. κ1 6= κ2,
and θ1 · θ2 > 0 and |θ1 + θ2| < π, then

|R| ≤ O(d2
tvh(dtv,M, θ)).

Here θ = max{θi for θi < π/2, i = 1, 2}, and M is the maximum bound for the smoothness of l1 and l2 with
respect to the line connecting q̂ and qi.

Proof. As in Lemma 5, the area of a triangle defined by the three points q1, q2 and q̂, is 1
2 (b2

1s(tan θ1) +
b2
2s(tan θ2)). Let’s refer to this triangle-region as A, then depending on the sign of the curvature κi, the

error region R is either bigger or smaller than triangle A. For example, if κ2 < 0, the area |R| is bigger than
that of |A|, and if κi > 0, then |R| is smaller than |A|. The amount of the difference between |R| and |A|
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can be calculated using equation (14). Then the distance between qi and q̂ is bi

cos θi
. Therefore, the area of

the error region |R| becomes,

|R| =
∑

i=1,2

{1
2
b2
i s(tan θi)±Mi(

bi

cos θi
)3} ≤ O(d2

tv(θ +M dtv

cos3 θ
))

where h(dtv,M, θ) = θ +M dtv

cos3 θ , Mi is the bound for the smoothness of ltrue with respect to the straight
line connecting qi and q̂, i.e. |∂

2ltrue

∂s2 | ≤ Mi where s is a arc parameter on the line connecting qi and q̂. M
is the maximum among Mi. �

Theorem 7 When ltrue ∈ Cn with n ≥ 2, or ltrue ∈ C1 and has a unique discontinuous point inside D, the
area of the error region |R| is bounded by a term proportional to d2

tv, and the total error is bounded by

err(D) ≤ ∂I O(d2
tvf(dtv,M, θ)),

where M, θ and f are defined from above Lemmas.

For smooth functions with harmonic inpainting, the error was bounded by a term proportional to β̃2,
and for the piecewise constant images with TV inpainting, the error is bounded by a term proportional to
d2

tv. The shorter the distance dtv is, the smaller the error region will be.

3.2 Multiple possible connections of level lines and higher order inpainting
methods

In this section, we briefly consider the case with multiple possible connections. These are cases when the
level lines are paired but the possible connections are not unique. For example, as in Fig. 9 (a), there are two
possible connections among the level lines meeting with ∂D which are lc and lf . Define lc to be the shortest
possible connection and lf to be level line extension following the curvature direction. TV inpainting always
prefers the shortest connection lc to minimize Per({x : u(x) > µi}), as the inpainted result is shown in Fig. 9
(b), i.e. lc = ltv. To account for other possible connections such as lf , the error region Rm for this multiple
possible connection case should be the polygon defined by connecting all the intersections qi:

|Rm| = the polygon determined by connecting all qi.

In Fig. 9, TV inpainting connects lc, and the error region is the rectangle with lc and lf as the two sides. In
general, unless the inpainting domain is narrow and lc agrees with the true image connection in utrue, TV
inpainting results in a big error region.

(a) (b)

l
c
 

l
f
 

Figure 9: (a) the gray box in the center is D. The level lines have two different possible connections: lc and
lf . (b) TV inpainting result. TV inpainting prefers lc.
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For these cases with multiple possible connections, when higher order inpainting method is used, the
error region can be further reduced. Here, we consider the Euler’s Elastica method [9]

min
∫

Ω

|∇u|(a + bκ2)dxdy +
λ

2

∫
Ω\D

|u− uo|2dxdy (15)

to illustrate such results. We use reasonable guesses for the two parameters a and b. For a piecewise constant
image u, using the coarea formula for the Elastica model, it becomes∫

D

|∇u|(a + bκ2)dxdy ∼
∫ ∞

−∞

[ ∫
{u=µ}

a + bκ2(s)ds
]
dµ,

where s is a arc length along the perimeter of {x : u(x) = µ}. As an inpainting result, the two terms should
be minimized: the perimeter

∫
{u=µ} 1 ds and the curvature

∫
κ2(s)ds of the level lines. Thus, the length of

the connection should be relatively short, while smoothly connecting the two level lines without any kinks
or sharp corners. Let lcurv be such a curve connecting two matching level lines, connecting intersections q1

and q2 with smoothly changing curvature κ, i.e.

min
dκ(s)

ds
, s ∈ D and κ(qi) = κi, for s ∈ ∂D.

Then the error region for using this Elastica model becomes,

|C| = the area surrounded by ltrue and lcurv. (16)

The difference between TV inpainting (3) and Elastica model (16) is having lcurv instead of ltv (the straight
line connecting q1 and q2). This lcurv is closer to the true image utrue, since it incorporates the curvature
information. In general the error region from Elastica model is smaller than that from TV inpainting,
|C| � |R|. Moreover, for the case with multiple possible connections (as in Fig. 9), Elastica model connects
lf with lcurv, and the inpainting result will be closer to the true image ltrue. Therefore, when higher order
inpainting methods are used, the error region can be further reduced by the lcurv connection.

4 TV Inpainting for Bounded Variation Images

In previous sections, we studied the cases for smooth functions with harmonic inpainting, and piecewise
constant images with TV inpainting. In this section, we consider a particular type of bounded variation
functions with TV inpainting. In [21], authors showed that the total variation of natural image can blow up
when resolution of image increases; however, in this section, we consider BV as image space, and consider a
particular type of piecewise continuous images.

In section 2, we used harmonic inpainting instead of TV inpainting for continuous image u ∈ C2, since
it is more natural for continuous images. However, for BV function with discontinuity, TV inpainting works
better in getting sharp edges. The harmonic inpainting solution u is the solution to

∆u = 0, (17)

while TV inpainting solution u is the solution to

∇ · ( ∇u

|∇u|
) = 0 (18)

which in practice |∇uε| =
√

u2
x + u2

y + ε is used for |∇u| in the denominator to avoid singularities. The

difference between harmonic inpainting and TV inpainting is at the diffusion coefficient 1
|∇uε| . For a smooth

continuous function where exists a bound for a smoothness |∇u| ≤ M , |∇uε| is bounded by ε ≤ |∇uε| ≤ M+ε.
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Therefore, 1
M+ε ≤

1
|∇uε| ≤

1
ε . Suppose u is a solution to (17), then it is also a solution to equation (18),

since the right hand side of equation (18) is bounded by

1
M + ε

∆u ≤ ∇ · ( ∇u

|∇uε|
) ≤ 1

ε
∆u, with ∆u = 0.

In addition, if u is a solution to (18), from above inequality ∆u = 0. Thus, we assume the error bound for
using TV inpainting is the same as in harmonic case (8) for smooth continuous regions. In section 5, we also
numerically compared using harmonic inpainting and TV inpainting for a smooth function (Fig. 11).

As for the error bound for BV image u, in the BV space typically the norm is defined as |u|BV (Ω) =
|u|L1(Ω) +

∫
Ω
|Du|, where

∫
Ω
|Du| is the distributional gradient of u [1]. However, to be consistent with the

previous sections, we consider err(z) = |u(z)− utrue(z)| as the error in this section.

Theorem 8 For piecewise continuous functions u∗ defined as u∗ = us + ud, where us is a smooth function
and ud is a piecewise constant function, then the error bound for using TV inpainting is

err(D) =
∫

D

|u(z)− utrue(z)|dz ≤ 1
8
|D|M̂(us)β̃2 + ∂I(ud) · |R(ud)|

where M̂ is the smoothness bound for us, β̃ is determined from the shape of D by either of βD, βD̂ or βT .
∂I(ud) is the maximum intensity difference of ud on ∂D, and the error region R is defined from the level
lines of ud.

Proof. The error term for image u∗ on D is,

err(D) =
∫

D

|u∗(z)− u∗true(z)|dz ≤
∫

D

|us(z)− us
true(z)|dz +

∫
D

|ud(z)− ud
true(z)|dz

by the definition of function u∗ = us + ud. For smooth function us, the error is bounded by the equation
(11), and for piecewise constant function ud, the error is bounded by ∂I|R| as in section 3. Therefore, for
piecewise continuous function u∗ defined by u∗ = us + ud, the bound for the total error is the addition of
two error bounds. �

Theorem 8 shows that for a particular type of BV functions, the error bounds from previous sections can
be utilized and represents the dependence of β̂ and dtv.

5 Numerical Experiments

In this section, we present some numerical experiments to validate the theoretical error bound we derived in
the previous sections. For the numerical computation, instead of using the constrained minimization problem
(1), we use the unconstrained equation such as

Jλ(u) =
∫

Ω

g(u)dxdy +
λ

2

∫
Ω\D

|u− uo|2dxdy

with the Euler-Lagrange equation. We use simple finite difference schemes as well as the digital TV filter
[10] type methods for the computations. For harmonic inpainting, we solve ut = ∆u + λD(uo − u), with a
big value for λD(z) for z ∈ Ω\D, and λD(z) = 0 for z ∈ D. For TV inpainting, we use methods described
in [11]. As for color image inpainting, we considered color as a RGB color vector and used the vectorial TV
inpainting method [8, 24]. (Color images of this paper can be found at [7].)

The first example, Fig. 10, is harmonic inpainting for smooth functions. From section 2, the total error
bound was given by err(D) = 1

8Mβ2
D|D|. From image (a) to (c), βD is increasing by a factor of 1.5, while

the areas of the inpainting domains remains the same. The graph (d) is a plot of L∞ difference between
each image and utrue, and a quadratic function shows that the error is bounded by a term proportional to
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(a) (b) (c)

(a) inpainted (b) inpainted (c) inpainted

(d) L∞ norm (e) log-log plot
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Figure 10: (a), (b), and (c) are uo with different D (white ellipses and a circle). All inpainting domains have
the same total area, while β are increasing by a factor of 1.5. (d) is a plot of L∞ difference between each
inpainted result and utrue. The dots are the error and the curve is a quadratic function. (e) is the log-log
plot of (d), and the dotted line has a slope 2.

β2
D. The graph (e) shows a log-log plot of the errors, i.e. log err(D) verses log βD, and the slope of the errors

are also bounded by the linear function with slop 2 (a dotted line). Numerical result is consistent with the
error bound (8).

Fig. 11 is an example of the comparison between harmonic inpainting, TV inpainting, and Euler’s Elastica
model (15) for a smooth image. In section 4, we assumed the difference between using harmonic inpainting
and TV inpainting are negligible, and Fig. 11 shows that the errors are indeed similar. For this experiment,
utrue as well as the inpainting domains are the same as the numerical example in Fig. 10, and the width
βD is increasing by a factor of 1.5. The graph (a) shows L∞ difference between each inpainting results and
utrue, and all the results are similar. The log-log plots of the L∞ difference in graph (b) also shows that all
error are bounded by a linear function with a slop 2.

As in the cases of section 3.1, Fig. 12 is an example of a piecewise constant image using TV inpainting
for uniquely matching two level lines. By applying Lemma 5 to calculate |R|, for image (a), the area of the
error region is |R| ≈ 0, while for image (b), it is |R| ≈ d2

tv

2 . The error for image (b) is bigger since the angle
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(a) L∞ norm (b) log-log plot
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Figure 11: Comparison of harmonic inpainting, TV inpainting, and Euler’s Elastica (15) for a smooth
function. (Experiments are the same as Fig. 10). The error are bounded by a quadratic function and the
slope of log-log plots are bounded by 2.

θ and dtv are bigger in image (b). This is consistent with the numerical result that image (b) have a bigger
noticeable error (the corner of number 2 is missing).

Next example is the case in section 3.2, when level lines meeting with ∂D have multiple possible connec-
tions. Given lf and lc, TV inpainting always prefers the closer connection lc, and Fig. 13 shows an example
of having different lc. Comparing images (a) and (b), lc for image (a) is the true connection, while for image
(b), lf is the true connection. Therefore, image (a) gives better results, and TV inpainting always prefers
closer connection lc.

Final couple of results are using TV inpainting for general piecewise continuous images. In Fig. 14 and
Fig. 15, the widths of each inpainting domain are increasing by a factor of 2 while keeping the same total
area. The inpainting results shows that the narrower the inpainting domain the better the result. Two plots
(a) and (b) in Fig. 16 show the L∞ difference between each inpainting result and utrue, for Fig. 14 and
Fig. 15 respectively.

6 Conclusion

We have investigated the error bounds for image inpainting problems. For general inpainting experiments,
local inpainting methods are known to work well for narrow inpainting domains, and the error analysis in
this paper give some analysis on this phenomenon. For a smooth function with harmonic inpainting, the
error is bounded by a term proportional to the square of β̃,

err(D) ≤ 1
8
|D|M̂β̃2.

This β̃ is the global maximum of the local width of the inpainting domain which is either βD, βD̂ or βT , and
M̂ depends on how complicated the shape of D is. For a smooth function, the inpainting error depends on
the global shape of the inpainting domain. For a piecewise constant image with TV inpainting, the error is
more locally determined by the error region R,

err(D) ≤ ∂I|R| ≤ ∂IO(d2
tvf(dtv,M, θ))

for some function f defined in section 3. The distance between the level lines dtv is one of the major factor,
and the error is bounded by a term proportional to the square of dtv. The width β̃ and the distance dtv
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utrue (a) (b)

(a) inpainted (b) inpainted

Figure 12: (a) and (b) are different uo with the same square D in different locations. Image (b) have bigger
θ1, θ2, and dtv, compared to those of image (a). The inpainted results reflect the different error regions. The
corner is missing in (b) inpainted.

play important rules in the error bound for image inpainting. Therefore, the narrower β̃ and the smaller dtv,
the smaller the error bound will be, and the inpainting results will be better when the inpainting domain is
narrow.
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Figure 16: (a) L∞ difference between utrue and TV inpainting results of Fig. 14. (b) L∞ difference of Fig. 15.
As the width β increases, the error strictly increases.

23


