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Abstract

Y. Meyer hasrecertly introduced an image decomposition model to split an image
into two componerts: a geometrical componert and a texture (oscillatory) compo-
nent. Inspired by his work, numerical models have beendeweloped to carry out the
decomposition of gray scaleimages.In this paper, we proposea decomposition al-
gorithm for color images.We intro duce a generalization of Meyer's G norm to RGB
vectorial color images,and use Chromaticity and Brightnesscolor model with total
variation minimization. We illustrate our approac with numerical examples.
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1 Intro duction

In [1], Meyer introduced an image decomposition model basedon the Rudin-
Osher-Fatemi's total variation minimization (TV) model [2]. A givenimagef
is separatedinto f = u+ v by minimizing the following functional,

z
jr uj+ kvkg : (1)

inf
(u;v)2BV G=f=u+v
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The rst termisa TV minimization which reducesu asthe boundedvariation
(BV) componert of the original imagef . It is well known that BV is well suited
to model the structure componert of f [2], which meansthe edgesof f arein
the BV componert u. The secondterm givesthe v componert cortaining the
oscillatory part of the image, which is textures and noise. The Banad space
G contains sud signalswith large oscillations. A distribution v belongsto G
if v canbe written as

V= @+ @% = Div(g) G2 L*:

The G-norm kvkg in (1) isde neqqasthe inmumofall kgk : = sup, ja(x)j,
wherev = Div(g) and jg(X)j = jaij? + j&j?(x). Any function belongingto
the spaceG can presen strong oscillations, nonethelesshave a small norm
[1,3].

Meyer's model (1) was rst successfullimplemerted by Veseand Osher[4,5],
by cgnsideringthe spaceGy() = fv=Div(9)jdi; % 2 LP() gwith kvkg, =
infk g2+ gsk,. The authors minimized the energywith respect to u;g; and
02, andthey solvedthe assaiated Euler-Lagrangeequations.In [6], the authors
usedthe H ! norm instead of Meyer's G norm. A di erent approad hasbeen
proposedin [7,8] by minimizing a corvex functional which dependson the two
variablesu and v:

z 1

. . . el 2 .
UZB\/l;rIR‘/kG jrouj+ > kf  u vk{:: (2)
In this paper, we follow the image decompsition model of [7]. We review this
method in section2.1. More literature on imagedecompmsition modelscan be
found in [3,9{13]. These decompmsition models are mostly dewted to gray-
scaleimages.In this paper, we proposea decomposition algorithm for color
images.

There are various ways to deal with color images. For example, it can be
treated as 3-dimensionalvectorial functions [14], as tensor products of dif-
ferert color componerts sud as Chromaticity and Brightness (CB) or HSV
nonlinear color models. Many related literature on color image models can
be found at [15{21]. In this paper, we use 3D vectorial TV model [14], as
well as Chromaticity and Brightnessmodel. In [15], the authors shaved that
using Chromaticity and Brightness (CB) model gives a better color cortrol
and detail recovery for colorimagedenoising,comparedto channelby channel
denoisingor vectorial denoising.This CB model also provides a better color
recovery comparedto denoisingHSV color systemseparately Typically color
imagesare represeted by RGB (Red, Green,and Blue) color system,

u: ! RE=1(r;g;b:r;g;b> 0Og:

In the CB model, u is separatedinto the Brightnesscomponent u, = kuk, and



the Chromaticity component u. = u=kuk = u=u,. The Brightnesscomponen
Up canbe treated asa gray-scaleimage, while the Chromaticity componert u.
storesthe color information which takesvalueson the unit sphereS2.

The main cortribution of the paper is to proposea colorimagedecompsition
model using TV minimization for colorimages.This paper is organizedasfol-
lows. In section 2, we generalizeMeyer's de nition to color textures through
the theory of corvex analysis, following the review of [7] in section2.1. We
introduce a functional whose minimizers correspnd to the color image de-
composition, and we concludethis sectionby presening somemathematical
results. In section 3, we illustrate the details of numerical computations, and
presen numerical examples.In section 4, we concludethe paper with some
nal remarks.

2 Color Decomp osition Mo del

Meyer hasintroducedthe G norm to capture texturesin a noisefreeimage[1].
The ideais that, while BV is a good spaceto model piecewiseconstart images,
a spacecloseto the dual of BV is well suited to model oscillating patterns.
Howewer, the dual of BV is not a separablespace,and in [7], the authors
consideredthe polar semi-norm assaiated to the total variation semi-norm
for sudh purpose.We rst review this approad.

2.1 Reviewof an image decomposition model for gray-s@le images

In [7], the authors introducedthe following image decompsition model:

. 1 5 .
UZBVI;rllflkG JlD(u)+2_kf uovk:

where Jip (U) = R jr uj is the 1D total variation of u. The parameter
cortrols the L2-norm of the residualf u v. The smaller is, the smaller
the L2-norm of the residual gets. The bound cortrols the G norm of the
oscillating componert v. It is shown in [7] that solving (2) is equivalent to
computing Meyer's image decomposition (1). Let us denoteby:

B ¢ = fv2 G sud that kvkg g:

We recall that the Legendre-fendel transform of F is given by F (v) =
sup, (hu;vi 2 F(u)), whereh;:i . standsfor the L? inner product [22,23].



It is shawvn in [7] that:

| go ifv2 B
\Y} v G
“ +1 otherwise

Then, one can rewrite problem (2) above as:
( ! )
. v 1 5 .
inf JlD(U) + ‘JlD — + —kf u VkLz . (3)
(uv) 2

This functional (3) can be minimized with respect to the two variables u
and v alternatively. First, x u and solwe for v which is the solution of
infrog . ki u vk? then x v and solwe for u which is the solution of
inf, Jip(u) + Zikf u vk? . In [7], the authors use Chambolle's projec-
tion algorithm [22] to compute the solution of eady minimization problem.

2.2 Proposal model for color images

Let us rst de ne J asthe total variation for 3D vector:
Z q
J(u) = Jroupj?+ jrougi? + jr upj? ;

wherer, g, and b standsfor RGB channels.Let usdenoteby J the Legendre-
Fendel transform of J [24]. Then, sinced is 1-homogeneougthat isJ(u ) =
J (u) for every u and > 0), it is a standard fact in corvex analysis[22,23]
that J is the indicator function of a closedcorvex setK . We have:

8

20 ifv2K
JWV)= «v)=_ o
“ +1 otherwise

(4)

We de ne the G norm by setting:
( ! )
kvkg = inff >0jv2 Kg=inf >0 J =0

We useG notation for 3-dimensionalG norm. Notice that in onedimensional,
this de nition is exactly the sameas Meyer's original G norm [1], and this
new de nition is a natural extensionof Meyer's to the color case.Here,K is
quite a complicated set; howewer, the simplest characterization is that K =

fvijJ (v) = 0g.

We now proposea functional to split a colorimagef into a boundedvariation



componert u and a texture componert v:

inf fJ(u)+ kvksg: (5)
utv=f

In order to derive a partical numerical shheme,we slightly modify this func-
tional by adding a L? residual:

( )
inf J(u) + Zikf u owke+d Lo 6)

We show the details of the relation between equation (5) and equation (6)
in subsection2.3. Here, is to be small so that the residualf u vis
negligeable,and  cortrols the k:ik; norm of v. Sincethe functional (6) is
convex, a natural way to handle the problem is to minimize the functional
with respect to eat of the variable u and v alternatively, i.e.

First v being xed, we seard for u asa solution of:

. 1 5

|ﬂf J(u) + z—kf u vke : (7)
Then, u being xed, we seard for v asa solution of:

inf kf u vk (8)

v2 K

To solve thesetwo minimization problems,we usethe dual approad to the one
usedin [7]: we considerthe direct total variation minimization approad. This
will allow us to usetotal variation minimization algorithms dewted to color
images[15]. We cannot usethe numerical approad of [7], sincethe projection
algorithm of [22] only works for gray-scaleimages.

2.3 Mathematial analysisof our color image decomposition maodel

In this section,we only considerthe discrete setting (for the sake of clarity),
and presen somemathematical results of the proposedfunctional. First, in
the following proposition, we shav that (8) can be solved by using direct TV
minimization.

Prop osition 1 w is the solution of (8), if andonly if, w=f u wisthe

solution of: |

- 1 2
'Q/f J(W)+2—kf u wk : 9



Pro of : This is a classicalcorvex analysisresult [3,22]. Let's denote @1 as
the subdi erential of H (see[23,24]),and we recall that:

w2 @(u) () H(v) H(u)+hv,v ui,forallvinlL?2

Here It;:i . standsfor the L2 inner product. First, we remark that v is the
solution of (8) if and only if it minimizes:
( v! )
inf kfu vk2+J = (10)

sinceJ is de ned by (4). Let v be the solution of (10). Then, asin [22,23],
thisisequivalen tov+u f 2 @ Y ,whichmeans® 2 @ (v+u f).
Sincewisdened asw=f u v weget02 @ W+ 1( f+u+w),ie.
W is a solution of (8).

We have just shavn that equation (8) can be solved by direct computation of
TV minimization (9). All the following lemmaand propositions can be proved
by straightforward generalizationof results in [7]; therefore, we refer readers
to [7] for more details, and we omit the proofsin this paper.

Lemma 2 Problem(6) admits a unique solution (0;%).

Outline of the pro of : The existenceof a solution comesfrom the corvexity
and the coercivity of the functional [24]. For the uniquenesswe rst remark
that (6) is strictly convexonBV K , exceptin the direction (u; u) . Then,
with simple computations, it can be shavn that if (0; ¢) is a minimizer of (6),
then, fort 6 O, (0 + t0;¢ td) is not a minimizer of (6).

From lemmaz2, we know that problem (6) hasa uniquesolution. To computeit,

we consideralternatively equations(7) and (8). This meansthat we consider
the following sequencdu,;Vv,): we setug = Vo = 0, de ne u,.+; asthe solution
of inf, J(u) + zikf u vy,k? , and v,.; as the solution of inf,, x kf

un+1 VK2 As a consequencef lemma 2, we get the corvergenceof (un; V)
to the unique solution (0;¥) of (6).

Prop osition 3 The seuene (u,;V,) convegesto (0; ), the unique solution
of problem(6), whenn! +1 .

From this result, we seethat solvingiterativ ely (7) and (8) amourts to solving
(6). This justify the algorithm that we will proposein section3.1.

In section 2.2, we claimed that solving (6) is a way to solve (5). To explain
this equivalence,we rst introducethe following problem:

Jnf (Qu)+J (v=)): (11)



The next result statesthe link between(5) and (11).

Prop osition 4 For a xed > 0, let (0;¢) be a solution of problem (5).
Then, if = kokg in (11),

(0; ) is also a solution of problem(11).
Conversely,any solution (t; ) of (11) (with = k¢ks) is a solution of (5).

This proposition says that (5) and (11) are equivalert. To closethe link be-
tween (5) and (6), we ched&k what happenswhen goesto zeroin problem
(6). This is explainedin the followong result.

Prop osition 5 For a xed > 0in (5), let = k¢kg in (6) and (11). Let
(u ;v ,) be the solution of problem(6) with = . Then, when , geesto
0, any cluster point of (u ;v ,) is a solution of problem(11).

All these results shav that solving(7) and (8) iteratively is a way to solwe
problem (5): this is the theoretical justi cation of the decompsition algorithm
that we will proposein section 3.1. In the following section, we detail the
algorithm we use,and we shov numerical examplesto illustrate its e ciency.

3 Numerical Exp erimen ts

For numerical computation for colorimagedecomposition (5), we minimize the
two functionals (7) and (9) alternatively. For the minimization, we compute
the assaiated Euler-Lagrangeequations.Notice that the two functionals (7)
and (9) are almost exactly the sameasthe classicalTV minimizing functional.
Therefore,we can utilize all the bene ts of well-known TV minimization tech-
niques.Sincewe deal with color images,we usethe resultsin [15].In [15], the
authors shaved that Chromaticity and Brightness(CB) model givesthe best
denoisingresults, comparedto denosingRGB channel by channel separately
denoisingHSV channelby channel separately or even vectorial color TV [14].

For solving(7), we usethe CB model for the BV componert u, and we usecolor
TV for the texture componert v by solving equation (9). This u componert
is the 3D RGB vector which is the structure componernt of the image. For u,
we separateit into Chromaticity u. and Brightness u, componerts, and we
denoisethem with TV minimization separatelyi.e.u = u; u,. Webeliewethis
is the bestway to keepthe edgessharp, and get a good BV componert of the
image,asin [15]. As for the texture componert v, we keepit as3D RGB color
vector and usecolor TV for denoising[14]. We could usethe CB model for this
v componert aswell; however, we kept it asonevector for the following three
reasons.First of all, if color texture is one componert it is easierto cortrol.



Sincethe BV part u is already well kept by the CB model, the rest will also
represems the texture well, and having one vector for v will be good enough
and easyto handle. Secondly by using color TV instead of the CB model,
only one iteration is neededunlike two iterations in the CB model. Thirdly,
which is the main reasonfor our choice, it is better to introducesomerelations
(coupledinformation) betweenthe Chromaticity and Brightnesscomponerts
of u, and this is preciselywhat we do in the following algorithm.

3.1 Algorithm

(1) Initially weset,f = fo, u= f,andv = 0 (f, is the original givenimage).
(2) iterate m times:

(a) Separateu to Chromaticity u, and Brightnessu, componerts. (Also,
separatef = f, fpandv= v, V,to chromaticity and brightness
componert respectively.)

(b) For the Chromaticity componert uc, solve the Euler-Lagrangeequa-
tion of (7) with v; and f, and iterate n times:

. 1
L L (RN TRRTAY (12)

(c) For the Brightnesscomponert uy,, solve the 1D version of (12) with
Vp and f,, and iterate n times.

(d) With updated u. and up, let newu = uc. upandw=f u .
Solwe the Euler-Lagrangeequation of (9) for w, and iterate n times;

Wn+1 Wn _ r r Wn 1
t r Waj

+ —(f u w):

(e) Updatev=f u w.
(3) Stopping test: we stop if

MmaxX(jun+1  Un);jVn+1  Vn))

This algorithm decompsesa color image into f = u + v, where u is the
structure componert of the image, and v is the color texture componert of
the image. As a numerical computation, we useddigital TV lter [25]type
computation for non- at TV denoising[15,26]as well as color TV [14]. For
numerical computational details, we refer readersto [15,25].

3.2 Numerical Experiments

For typical experimerts, imageintensity was between0 and 1. We usedtotal
iteration m = 5 and subiteration n = 30. For , for chromaticity we used



Fig. 1. (a) original imagef , (b) BV componert u, (c) texture v componert (v+ 0:5
plotted). Someof of the thicker branchesare in the BV part u, while the thin and
narrow branchesin the bottom middle are in the v componert. u aswell asv are
both color images.

Fig. 2. (a) original imagef, (b) BV componert u, (c) texture v componert (v+ 0:5
plotted). All the details of image are in v, while the BV componert is well kept in
u.

¢ = 0:04, for brightness , = 0:01,and we used = 0:1.

The rst two gures, Fig. 1 and Fig. 2, are image decomsition examples.
From the original imagef in (a), f is separatedinto two componerts u in
image (b) and v in image(c). The texture part of the image, v clearly showvs
the colortexture and the details of the images,while the u componert captures
the BV part of the image.

The secondexampleis applying image decompsition model to image denois-
ing problems.In all our restoration examples,we have useda white Gaussian
noise with standard deviation = 0:8, image valuesin ead channel rank
from O to 1 (this is equivalent to = 204 for image intensity ranging from
0 to 255). In the following three experimerts, Fig. 3, Fig. 4 and Fig. 5, we



(c) CB model

Fig. 3. (@) noisy original imagef . (b) u, (c) CB denoisingmodel [15]. In the second
row : (b) v component (v + 0.5 plotted), and (c) is the residual of CB denoising
model (f CB result + 0:5 plotted).

comparedimage decompsition model with CB denoisingmodel [15] which
is one of the best color image denoisingmodels using TV minimization. The
denoisingresults in the top raw are similar; howewer, in the residual of the
results (the v componert), we seethat image decompsition model have less
edgeinformation comparedto the residual from CB denoisingmodel. In all
the experimerts presened, the parametershave beentuned sothat we shov
the best numerical results for both our color decompsition model as well as
the CB denoisingmodel. Notice that the CB denoisingresults displaid here
are of the samequality asthe onespresetted in the original paper [15].

The nal example, Fig. 6 is comparing di erent numerical implemertations
fo our color image decompsition model (5). When we solve the two coupled
equations(7) and (9), we have many options. For example,we can treat both
u and v as 3D vectorsand usecolor TV model (two iterations: onefor u and
one for v), asin image (a), or we can treat both u and v with CB model
and have four iterations (two setsof iterations for u and v ead) asin image
(c). In Fig. 6, we considerthe noisy image displaid in Fig. 3. It shows the
comparisonbetween (a) using both color TV, (b) our model (CB model for

10



(c) CB model

(c) CB residual

Fig. 4. (a) noisy original imagef . (b) u, (c) CB denoisingmodel [15]. In the second
row : (b) v component (v + 0.5 plotted), and (c) is the residual of CB denoising
model (f CB result + 0:5 plotted).

u and vectorial TV for v), and (c) CB model for both u and v. The denoised
results u are quite similar to eat other; therefore, we only plot the noise
v componerts (Top rows). Comparing (a) and (b), using CB model results
in better color and detail cortrol as in[15], and v componert looks better

in (b). Comparing (b) and (c), the results are almost similar (top row (b)

and (c)); newerthelessthere are somedi erence. We separatedv componerts

to chromaticity componert v, = 7 and brightness componert v, = kvk in

secondand third rows for better comparison (for image (c), v, and v, are
given from the algorithm). Interesting points to notice are that, sincethe v

componert is coupledin our model (b), v, for (b) clearly only shavs random
color noise,while v, for (c) have uniform regionsof similar colors. It is more
dramatic for brightnessv, componerns : v, for (b) hardly cortains any edges
of the image comparedto vy, for (c).

4 Conclusion

In this paper, we have proposeda color image decompsition algorithm. We
generalizeMeyer's G norm [1]: we de ne the G norm asthe polar seminorm
assaiated to the 3D total variation seminorm. Then we extend the approad
of [7]to colorimages.To derive a powerfull algorithm, we usethe Chromaticity
and Brithness model aswell asvectorial TV model, the numerical frameworks

11



(c) CB model

true image (b) v (c) CB residual

Fig. 5. (a) noisy original imagef . (b) u, (c) CB denoisingmodel [15]. In the second
row : (b) v componert (v + 0:5 plotted), and (c) is the residual of CB denoising
model (f CB result + 0:5 plotted).

of [15]. We provide mathematical analysisof our model, as well as numerical
experimertal results. Our model compareswell to other classicalapproades.
For more color numerical results, we refer the readerto [27].
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