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Abstract

Y. Meyer has recently introduced an image decomposition model to split an image
into two components: a geometrical component and a texture (oscillatory) compo-
nent. Inspired by his work, numerical models have been developed to carry out the
decomposition of gray scale images. In this paper, we propose a decomposition al-
gorithm for color images. We introduce a generalization of Meyer’s G norm to RGB
vectorial color images, and use Chromaticity and Brightness color model with total
variation minimization. We illustrate our approach with numerical examples.
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1 Introduction

In [1], Meyer introduced an image decomposition model based on the Rudin-
Osher-Fatemi’s total variation minimization (TV) model [2]. A given image f
is separated into f = u + v by minimizing the following functional,

inf
(u,v)∈BV ×G/f=u+v

∫

Ω
|∇u| + α‖v‖G . (1)

1 We acknowledge supported by grants from the NSF under contracts DMS-
0312223, DMS-9973341, ACI-0072112, INT-0072863, the ONR under contract
N00014-03-1-0888, the NIH under contract P20 MH65166, and the NIH Roadmap
Initiative for Bioinformatics and Computational Biology U54 RR021813 funded by
the NCRR, NCBC, and NIGMS.
2 Email :aujol@math.ucla.edu (Aujol), skang@ms.uky.edu (Kang)

Preprint submitted to Elsevier Science 7 December 2004



The first term is a TV minimization which reduces u as the bounded variation
(BV) component of the original image f . It is well known that BV is well suited
to model the structure component of f [2], which means the edges of f are in
the BV component u. The second term gives the v component containing the
oscillatory part of the image, which is textures and noise. The Banach space
G contains such signals with large oscillations. A distribution v belongs to G
if v can be written as

v = ∂1g1 + ∂2g2 = Div(g) g1, g2 ∈ L∞.

The G-norm ‖v‖G in (1) is defined as the infimum of all ‖g‖L∞ = supx∈Ω |g(x)|,

where v = Div(g) and |g(x)| =
√

|g1|2 + |g2|2(x). Any function belonging to
the space G can present strong oscillations, nonetheless have a small norm
[1,3].

Meyer’s model (1) was first successfully implemented by Vese and Osher [4,5],
by considering the space Gp(Ω) = {v = Div(g) | g1, g2 ∈ Lp(Ω)} with ‖v‖Gp

=

inf ‖
√

g2
1 + g2

2‖p. The authors minimized the energy with respect to u, g1 and
g2, and they solved the associated Euler-Lagrange equations. In [6], the authors
used the H−1 norm instead of Meyer’s G norm. A different approach has been
proposed in [7,8] by minimizing a convex functional which depends on the two
variables u and v:

inf
u∈BV, ‖v‖G≤µ

∫

Ω
|∇u| +

1

2λ
‖f − u − v‖2

L2 . (2)

In this paper, we follow the image decomposition model of [7]. We review this
method in section 2.1. More literature on image decomposition models can be
found in [3,9–13]. These decomposition models are mostly devoted to gray-
scale images. In this paper, we propose a decomposition algorithm for color
images.

There are various ways to deal with color images. For example, it can be
treated as 3-dimensional vectorial functions [14], as tensor products of dif-
ferent color components such as Chromaticity and Brightness (CB) or HSV
nonlinear color models. Many related literature on color image models can
be found at [15–21]. In this paper, we use 3D vectorial TV model [14], as
well as Chromaticity and Brightness model. In [15], the authors showed that
using Chromaticity and Brightness (CB) model gives a better color control
and detail recovery for color image denoising, compared to channel by channel
denoising or vectorial denoising. This CB model also provides a better color
recovery compared to denoising HSV color system separately. Typically color
images are represented by RGB (Red, Green, and Blue) color system,

u : Ω → R3
+ = {(r, g, b) : r, g, b > 0}.

In the CB model, u is separated into the Brightness component ub = ‖u‖, and
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the Chromaticity component uc = u/‖u‖ = u/ub. The Brightness component
ub can be treated as a gray-scale image, while the Chromaticity component uc

stores the color information which takes values on the unit sphere S2.

The main contribution of the paper is to propose a color image decomposition
model using TV minimization for color images. This paper is organized as fol-
lows. In section 2, we generalize Meyer’s definition to color textures through
the theory of convex analysis, following the review of [7] in section 2.1. We
introduce a functional whose minimizers correspond to the color image de-
composition, and we conclude this section by presenting some mathematical
results. In section 3, we illustrate the details of numerical computations, and
present numerical examples. In section 4, we conclude the paper with some
final remarks.

2 Color Decomposition Model

Meyer has introduced the G norm to capture textures in a noise free image [1].
The idea is that, while BV is a good space to model piecewise constant images,
a space close to the dual of BV is well suited to model oscillating patterns.
However, the dual of BV is not a separable space, and in [7], the authors
considered the polar semi-norm associated to the total variation semi-norm
for such purpose. We first review this approach.

2.1 Review of an image decomposition model for gray-scale images

In [7], the authors introduced the following image decomposition model:

inf
u∈BV, ‖v‖G≤µ

{

J1D(u) +
1

2λ
‖f − u − v‖2

L2

}

,

where J1D(u) =
∫

Ω |∇u| is the 1D total variation of u. The parameter λ
controls the L2-norm of the residual f − u − v. The smaller λ is, the smaller
the L2-norm of the residual gets. The bound µ controls the G norm of the
oscillating component v. It is shown in [7] that solving (2) is equivalent to
computing Meyer’s image decomposition (1). Let us denote by:

µBG = {v ∈ G such that ‖v‖G ≤ µ} .

We recall that the Legendre-Fenchel transform of F is given by F ∗(v) =
supu (〈u, v〉L2 − F (u)), where 〈., .〉L2 stands for the L2 inner product [22,23].
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It is shown in [7] that:

J∗
1D

(

v

µ

)

= χµBG
(v) =











0 if v ∈ µBG

+∞ otherwise
.

Then, one can rewrite problem (2) above as:

inf
(u,v)

{

J1D(u) + J∗
1D

(

v

µ

)

+
1

2λ
‖f − u − v‖2

L2

}

. (3)

This functional (3) can be minimized with respect to the two variables u
and v alternatively. First, fix u and solve for v which is the solution of
infv∈µBG

‖f − u − v‖2, then fix v and solve for u which is the solution of

infu

(

J1D(u) + 1
2λ
‖f − u − v‖2

)

. In [7], the authors use Chambolle’s projec-

tion algorithm [22] to compute the solution of each minimization problem.

2.2 Proposed model for color images

Let us first define J as the total variation for 3D vector:

J(u) =
∫

Ω

√

|∇ur|2 + |∇ug|2 + |∇ub|2 ,

where r, g, and b stands for RGB channels. Let us denote by J ∗ the Legendre-
Fenchel transform of J [24]. Then, since J is 1-homogeneous (that is J(λu) =
λJ(u) for every u and λ > 0), it is a standard fact in convex analysis [22,23]
that J∗ is the indicator function of a closed convex set K. We have:

J∗(v) = χK(v) =











0 if v ∈ K

+∞ otherwise
. (4)

We define the ~G norm by setting:

‖v‖ ~G = inf {µ > 0 | v ∈ µK} = inf

{

µ > 0
∣

∣

∣ J∗

(

v

µ

)

= 0

}

.

We use ~G notation for 3-dimensional G norm. Notice that in one dimensional,
this definition is exactly the same as Meyer’s original G norm [1], and this
new definition is a natural extension of Meyer’s to the color case. Here, K is
quite a complicated set; however, the simplest characterization is that K =
{v | J∗(v) = 0}.

We now propose a functional to split a color image f into a bounded variation
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component u and a texture component v:

inf
u+v=f

{J(u) + α‖v‖ ~G} . (5)

In order to derive a partical numerical scheme, we slightly modify this func-
tional by adding a L2 residual:

inf
u,v

{

J(u) +
1

2λ
‖f − u − v‖2 + J∗

(

v

µ

)}

. (6)

We show the details of the relation between equation (5) and equation (6)
in subsection 2.3. Here, λ is to be small so that the residual f − u − v is
negligeable, and µ controls the ‖.‖ ~G norm of v. Since the functional (6) is
convex, a natural way to handle the problem is to minimize the functional
with respect to each of the variable u and v alternatively, i.e.

• First v being fixed, we search for u as a solution of:

inf
u

(

J(u) +
1

2λ
‖f − u − v‖2

)

. (7)

• Then, u being fixed, we search for v as a solution of:

inf
v∈µK

‖f − u − v‖2. (8)

To solve these two minimization problems, we use the dual approach to the one
used in [7]: we consider the direct total variation minimization approach. This
will allow us to use total variation minimization algorithms devoted to color
images [15]. We cannot use the numerical approach of [7], since the projection
algorithm of [22] only works for gray-scale images.

2.3 Mathematical analysis of our color image decomposition model

In this section, we only consider the discrete setting (for the sake of clarity),
and present some mathematical results of the proposed functional. First, in
the following proposition, we show that (8) can be solved by using direct TV
minimization.

Proposition 1 ṽ is the solution of (8), if and only if, w̃ = f − u − ṽ is the
solution of:

inf
w

(

J(w) +
1

2µ
‖f − u − w‖2

)

. (9)
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Proof : This is a classical convex analysis result [3,22]. Let’s denote ∂H as
the subdifferential of H (see [23,24]), and we recall that:

w ∈ ∂H(u) ⇐⇒ H(v) ≥ H(u) + 〈w, v − u〉L2 , for all v in L2.

Here 〈., .〉L2 stands for the L2 inner product. First, we remark that ṽ is the
solution of (8) if and only if it minimizes:

inf
v

{

‖f − u − v‖2 + J∗

(

v

µ

)}

, (10)

since J∗ is defined by (4). Let ṽ be the solution of (10). Then, as in [22,23],

this is equivalent to ṽ + u − f ∈ ∂J∗
(

ṽ
µ

)

, which means ṽ
µ
∈ ∂J (ṽ + u − f).

Since w̃ is defined as w̃ = f − u− ṽ, we get 0 ∈ ∂J (w̃) + 1
µ

(−f + u + w̃), i.e.

w̃ is a solution of (8). �

We have just shown that equation (8) can be solved by direct computation of
TV minimization (9). All the following lemma and propositions can be proved
by straightforward generalization of results in [7]; therefore, we refer readers
to [7] for more details, and we omit the proofs in this paper.

Lemma 2 Problem (6) admits a unique solution (û, v̂).

Outline of the proof : The existence of a solution comes from the convexity
and the coercivity of the functional [24]. For the uniqueness, we first remark
that (6) is strictly convex on BV ×µK, except in the direction (u,−u) . Then,
with simple computations, it can be shown that if (û, v̂) is a minimizer of (6),
then, for t 6= 0, (û + tû, v̂ − tû) is not a minimizer of (6). �

From lemma 2, we know that problem (6) has a unique solution. To compute it,
we consider alternatively equations (7) and (8). This means that we consider
the following sequence (un, vn): we set u0 = v0 = 0, define un+1 as the solution

of infu

(

J(u) + 1
2λ
‖f − u − vn‖

2
)

, and vn+1 as the solution of infv∈µK ‖f −

un+1 − v‖2. As a consequence of lemma 2, we get the convergence of (un, vn)
to the unique solution (û, v̂) of (6).

Proposition 3 The sequence (un, vn) converges to (û, v̂), the unique solution
of problem (6), when n → +∞.

From this result, we see that solving iteratively (7) and (8) amounts to solving
(6). This justify the algorithm that we will propose in section 3.1.

In section 2.2, we claimed that solving (6) is a way to solve (5). To explain
this equivalence, we first introduce the following problem:

inf
u+v=f

(J(u) + J∗(v/µ)) . (11)
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The next result states the link between (5) and (11).

Proposition 4 For a fixed α > 0, let (û, v̂) be a solution of problem (5).
Then, if µ = ‖v̂‖ ~G in (11),

• (û, v̂) is also a solution of problem (11).
• Conversely, any solution (ũ, ṽ) of (11) (with µ = ‖v̂‖ ~G) is a solution of (5).

This proposition says that (5) and (11) are equivalent. To close the link be-
tween (5) and (6), we check what happens when λ goes to zero in problem
(6). This is explained in the followong result.

Proposition 5 For a fixed α > 0 in (5), let α = ‖v̂‖ ~G in (6) and (11). Let
(uλn

, vλn
) be the solution of problem (6) with λ = λn. Then, when λn goes to

0, any cluster point of (uλn
, vλn

) is a solution of problem (11).

All these results show that solving(7) and (8) iteratively is a way to solve
problem (5): this is the theoretical justification of the decomposition algorithm
that we will propose in section 3.1. In the following section, we detail the
algorithm we use, and we show numerical examples to illustrate its efficiency.

3 Numerical Experiments

For numerical computation for color image decomposition (5), we minimize the
two functionals (7) and (9) alternatively. For the minimization, we compute
the associated Euler-Lagrange equations. Notice that the two functionals (7)
and (9) are almost exactly the same as the classical TV minimizing functional.
Therefore, we can utilize all the benefits of well-known TV minimization tech-
niques. Since we deal with color images, we use the results in [15]. In [15], the
authors showed that Chromaticity and Brightness (CB) model gives the best
denoising results, compared to denosing RGB channel by channel separately,
denoising HSV channel by channel separately, or even vectorial color TV [14].

For solving (7), we use the CB model for the BV component u, and we use color
TV for the texture component v by solving equation (9). This u component
is the 3D RGB vector which is the structure component of the image. For u,
we separate it into Chromaticity uc and Brightness ub components, and we
denoise them with TV minimization separately, i.e. u = uc×ub. We believe this
is the best way to keep the edges sharp, and get a good BV component of the
image, as in [15]. As for the texture component v, we keep it as 3D RGB color
vector and use color TV for denoising [14]. We could use the CB model for this
v component as well; however, we kept it as one vector for the following three
reasons. First of all, if color texture is one component it is easier to control.
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Since the BV part u is already well kept by the CB model, the rest will also
represents the texture well, and having one vector for v will be good enough
and easy to handle. Secondly, by using color TV instead of the CB model,
only one iteration is needed unlike two iterations in the CB model. Thirdly,
which is the main reason for our choice, it is better to introduce some relations
(coupled information) between the Chromaticity and Brightness components
of u, and this is precisely what we do in the following algorithm.

3.1 Algorithm

(1) Initially we set, f = fo, u = fo and v = 0 (fo is the original given image).
(2) iterate m times:

(a) Separate u to Chromaticity uc and Brightness ub components. (Also,
separate f = fc × fb and v = vb × vb to chromaticity and brightness
component respectively.)

(b) For the Chromaticity component uc, solve the Euler-Lagrange equa-
tion of (7) with vc and fc, and iterate n times:

un+1 − un

∆t
= ∇ ·

∇un

|∇un|
+

1

λ
(fc − un − vc). (12)

(c) For the Brightness component ub, solve the 1D version of (12) with
vb and fb, and iterate n times.

(d) With updated uc and ub, let new u = uc × ub and w = f − u − v.
Solve the Euler-Lagrange equation of (9) for w, and iterate n times;

wn+1 − wn

∆t
= ∇ ·

∇wn

|∇wn|
+

1

µ
(f − u − wn).

(e) Update v = f − u − w.
(3) Stopping test: we stop if

max(|un+1 − un|, |vn+1 − vn|) ≤ ε

This algorithm decomposes a color image into f = u + v, where u is the
structure component of the image, and v is the color texture component of
the image. As a numerical computation, we used digital TV filter [25] type
computation for non-flat TV denoising [15,26] as well as color TV [14]. For
numerical computational details, we refer readers to [15,25].

3.2 Numerical Experiments

For typical experiments, image intensity was between 0 and 1. We used total
iteration m = 5 and subiteration n = 30. For λ, for chromaticity we used
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(a) f (b) u (c) v

Fig. 1. (a) original image f , (b) BV component u, (c) texture v component (v + 0.5
plotted). Some of of the thicker branches are in the BV part u, while the thin and
narrow branches in the bottom middle are in the v component. u as well as v are
both color images.

(a) f (b) u (c) v

Fig. 2. (a) original image f , (b) BV component u, (c) texture v component (v + 0.5
plotted). All the details of image are in v, while the BV component is well kept in
u.

λc = 0.04, for brightness λb = 0.01, and we used µ = 0.1.

The first two figures, Fig. 1 and Fig. 2, are image decomposition examples.
From the original image f in (a), f is separated into two components u in
image (b) and v in image (c). The texture part of the image, v clearly shows
the color texture and the details of the images, while the u component captures
the BV part of the image.

The second example is applying image decomposition model to image denois-
ing problems. In all our restoration examples, we have used a white Gaussian
noise with standard deviation σ = 0.8, image values in each channel rank
from 0 to 1 (this is equivalent to σ = 204 for image intensity ranging from
0 to 255). In the following three experiments, Fig. 3, Fig. 4 and Fig. 5, we
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(a) f (b) u (c) CB model

true image (b) v (c) CB residual

Fig. 3. (a) noisy original image f . (b) u, (c) CB denoising model [15]. In the second
row : (b) v component (v + 0.5 plotted), and (c) is the residual of CB denoising
model (f − CB result + 0.5 plotted).

compared image decomposition model with CB denoising model [15] which
is one of the best color image denoising models using TV minimization. The
denoising results in the top raw are similar; however, in the residual of the
results (the v component), we see that image decomposition model have less
edge information compared to the residual from CB denoising model. In all
the experiments presented, the parameters have been tuned so that we show
the best numerical results for both our color decomposition model as well as
the CB denoising model. Notice that the CB denoising results displaid here
are of the same quality as the ones presented in the original paper [15].

The final example, Fig. 6 is comparing different numerical implementations
fo our color image decomposition model (5). When we solve the two coupled
equations (7) and (9), we have many options. For example, we can treat both
u and v as 3D vectors and use color TV model (two iterations: one for u and
one for v), as in image (a), or we can treat both u and v with CB model
and have four iterations (two sets of iterations for u and v each) as in image
(c). In Fig. 6, we consider the noisy image displaid in Fig. 3. It shows the
comparison between (a) using both color TV, (b) our model (CB model for
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(a) f (b) u (c) CB model

true image (b) v (c) CB residual

Fig. 4. (a) noisy original image f . (b) u, (c) CB denoising model [15]. In the second
row : (b) v component (v + 0.5 plotted), and (c) is the residual of CB denoising
model (f − CB result + 0.5 plotted).

u and vectorial TV for v), and (c) CB model for both u and v. The denoised
results u are quite similar to each other; therefore, we only plot the noise
v components (Top rows). Comparing (a) and (b), using CB model results
in better color and detail control as in[15], and v component looks better
in (b). Comparing (b) and (c), the results are almost similar (top row (b)
and (c)); nevertheless, there are some difference. We separated v components
to chromaticity component vc = v

‖v‖
and brightness component vb = ‖v‖ in

second and third rows for better comparison (for image (c), vc and vb are
given from the algorithm). Interesting points to notice are that, since the v
component is coupled in our model (b), vc for (b) clearly only shows random
color noise, while vc for (c) have uniform regions of similar colors. It is more
dramatic for brightness vb components : vb for (b) hardly contains any edges
of the image compared to vb for (c).

4 Conclusion

In this paper, we have proposed a color image decomposition algorithm. We
generalize Meyer’s G norm [1]: we define the G norm as the polar semi norm
associated to the 3D total variation semi norm. Then we extend the approach
of [7] to color images. To derive a powerfull algorithm, we use the Chromaticity
and Brithness model as well as vectorial TV model, the numerical frameworks
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(a) f (b) u (c) CB model

true image (b) v (c) CB residual

Fig. 5. (a) noisy original image f . (b) u, (c) CB denoising model [15]. In the second
row : (b) v component (v + 0.5 plotted), and (c) is the residual of CB denoising
model (f − CB result + 0.5 plotted).

of [15]. We provide mathematical analysis of our model, as well as numerical
experimental results. Our model compares well to other classical approaches.
For more color numerical results, we refer the reader to [27].
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[7] J.-F. Aujol, G. Aubert, L. Blanc-Féraud, A. Chambolle, Image decomposition
into a bounded variation component and an oscillating component, Journal of
Mathematical Imaging and Vision 22 (2005) (1).
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