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Abstract

Y. Meyer has recently intro duced an image decomposition model to split an image
into two components: a geometrical component and a texture (oscillatory) compo-
nent. Inspired by his work, numerical models have beendeveloped to carry out the
decomposition of gray scaleimages.In this paper, we proposea decomposition al-
gorithm for color images.We intro ducea generalizationof Meyer's G norm to RGB
vectorial color images,and useChromaticit y and Brightnesscolor model with total
variation minimization. We illustrate our approach with numerical examples.
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1 In tro duction

In [1], Meyer introducedan imagedecomposition model basedon the Rudin-
Osher-Fatemi's total variation minimization (TV) model [2]. A given imagef
is separatedinto f = u + v by minimizing the following functional,

inf
(u;v )2 B V � G=f = u+ v

Z



jr uj + � kvkG : (1)
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The �rst term is a TV minimization which reducesu asthe boundedvariation
(BV) component of the original imagef . It is well known that BV is well suited
to model the structure component of f [2], which meansthe edgesof f are in
the BV component u. The secondterm givesthe v component containing the
oscillatory part of the image,which is textures and noise.The Banach space
G contains such signalswith large oscillations.A distribution v belongsto G
if v can be written as

v = @1g1 + @2g2 = Div (g) g1; g2 2 L 1 :

The G-norm kvkG in (1) is de�ned asthe in�m um of all kgkL 1 = supx2 
 jg(x)j,
where v = Div (g) and jg(x)j =

q
jg1j2 + jg2j2(x). Any function belonging to

the spaceG can present strong oscillations, nonethelesshave a small norm
[1,3].

Meyer's model (1) was�rst successfullyimplemented by Veseand Osher[4,5],
by consideringthe spaceGp(
) = f v = Div (g) j g1; g2 2 L p(
) g with kvkGp =

inf k
q

g2
1 + g2

2kp. The authors minimized the energywith respect to u; g1 and
g2, and they solvedthe associatedEuler-Lagrangeequations.In [6], the authors
usedthe H � 1 norm insteadof Meyer's G norm. A di�eren t approach hasbeen
proposedin [7,8]by minimizing a convex functional which dependson the two
variablesu and v:

inf
u2 B V; kvkG � �

Z



jr uj +

1
2�

kf � u � vk2
L 2 : (2)

In this paper, we follow the imagedecomposition model of [7]. We review this
method in section2.1. More literature on imagedecomposition modelscan be
found in [3,9{13]. Thesedecomposition models are mostly devoted to gray-
scaleimages.In this paper, we proposea decomposition algorithm for color
images.

There are various ways to deal with color images.For example, it can be
treated as 3-dimensionalvectorial functions [14], as tensor products of dif-
ferent color components such as Chromaticity and Brightness (CB) or HSV
nonlinear color models. Many related literature on color image models can
be found at [15{21]. In this paper, we use 3D vectorial TV model [14], as
well as Chromaticity and Brightnessmodel. In [15], the authors showed that
using Chromaticity and Brightness (CB) model gives a better color control
and detail recovery for color imagedenoising,comparedto channelby channel
denoisingor vectorial denoising.This CB model also provides a better color
recovery comparedto denoisingHSV color systemseparately. Typically color
imagesare represented by RGB (Red, Green,and Blue) color system,

u : 
 ! R3
+ = f (r; g; b) : r; g; b> 0g:

In the CB model, u is separatedinto the Brightnesscomponent ub = kuk, and

2



the Chromaticity component uc = u=kuk = u=ub. The Brightnesscomponent
ub can be treated asa gray-scaleimage,while the Chromaticity component uc

storesthe color information which takesvalueson the unit sphereS2.

The main contribution of the paper is to proposea color imagedecomposition
model usingTV minimization for color images.This paper is organizedasfol-
lows. In section2, we generalizeMeyer's de�nition to color textures through
the theory of convex analysis, following the review of [7] in section 2.1. We
introduce a functional whoseminimizers correspond to the color image de-
composition, and we concludethis sectionby presenting somemathematical
results. In section3, we illustrate the details of numerical computations, and
present numerical examples.In section 4, we concludethe paper with some
�nal remarks.

2 Color Decomp osition Mo del

Meyer hasintroducedthe G norm to capture textures in a noisefreeimage[1].
The ideais that, while BV is a good spaceto model piecewiseconstant images,
a spacecloseto the dual of BV is well suited to model oscillating patterns.
However, the dual of BV is not a separablespace,and in [7], the authors
consideredthe polar semi-norm associated to the total variation semi-norm
for such purpose.We �rst review this approach.

2.1 Reviewof an imagedecomposition model for gray-scale images

In [7], the authors introducedthe following imagedecomposition model:

inf
u2 B V; kvkG � �

�

J1D (u) +
1

2�
kf � u � vk2

L 2

�

;

where J1D (u) =
R


 jr uj is the 1D total variation of u. The parameter �
controls the L 2-norm of the residual f � u � v. The smaller � is, the smaller
the L 2-norm of the residual gets. The bound � controls the G norm of the
oscillating component v. It is shown in [7] that solving (2) is equivalent to
computing Meyer's imagedecomposition (1). Let us denoteby:

�B G = f v 2 G such that kvkG � � g :

We recall that the Legendre-Fenchel transform of F is given by F � (v) =
supu (hu; vi L 2 � F (u)), where h:; :i L 2 stands for the L 2 inner product [22,23].
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It is shown in [7] that:

J �
1D

 
v
�

!

= � �B G (v) =

8
><

>:

0 if v 2 �B G

+ 1 otherwise
:

Then, onecan rewrite problem (2) above as:

inf
(u;v )

(

J1D (u) + J �
1D

 
v
�

!

+
1

2�
kf � u � vk2

L 2

)

: (3)

This functional (3) can be minimized with respect to the two variables u
and v alternatively. First, �x u and solve for v which is the solution of
inf v2 �B G kf � u � vk2, then �x v and solve for u which is the solution of
inf u

�
J1D (u) + 1

2� kf � u � vk2
�
. In [7], the authors use Chambolle's projec-

tion algorithm [22] to compute the solution of each minimization problem.

2.2 Proposed model for color images

Let us �rst de�ne J as the total variation for 3D vector:

J (u) =
Z




q
jr ur j2 + jr ugj2 + jr ubj2 ;

wherer , g, and b standsfor RGB channels.Let us denoteby J � the Legendre-
Fenchel transform of J [24]. Then, sinceJ is 1-homogeneous(that is J (�u ) =
�J (u) for every u and � > 0), it is a standard fact in convex analysis[22,23]
that J � is the indicator function of a closedconvex set K . We have:

J � (v) = � K (v) =

8
><

>:

0 if v 2 K

+ 1 otherwise
: (4)

We de�ne the ~G norm by setting:

kvk~G = inf f � > 0 j v 2 �K g = inf

(

� > 0
�
�
� J �

 
v
�

!

= 0

)

:

We use ~G notation for 3-dimensionalG norm. Notice that in onedimensional,
this de�nition is exactly the sameas Meyer's original G norm [1], and this
new de�nition is a natural extensionof Meyer's to the color case.Here, K is
quite a complicated set; however, the simplest characterization is that K =
f v j J � (v) = 0g.

We now proposea functional to split a color imagef into a boundedvariation
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component u and a texture component v:

inf
u+ v= f

f J (u) + � kvk~Gg: (5)

In order to derive a partical numerical scheme,we slightly modify this func-
tional by adding a L 2 residual:

inf
u;v

(

J (u) +
1

2�
kf � u � vk2 + J �

 
v
�

! )

: (6)

We show the details of the relation between equation (5) and equation (6)
in subsection2.3. Here, � is to be small so that the residual f � u � v is
negligeable,and � controls the k:k ~G norm of v. Since the functional (6) is
convex, a natural way to handle the problem is to minimize the functional
with respect to each of the variable u and v alternatively, i.e.

� First v being �xed, we search for u as a solution of:

inf
u

�

J (u) +
1

2�
kf � u � vk2

�

: (7)

� Then, u being �xed, we search for v as a solution of:

inf
v2 �K

kf � u � vk2: (8)

To solve thesetwo minimization problems,weusethe dual approach to the one
usedin [7]: we considerthe direct total variation minimization approach. This
will allow us to usetotal variation minimization algorithms devoted to color
images[15].We cannot usethe numerical approach of [7], sincethe projection
algorithm of [22] only works for gray-scaleimages.

2.3 Mathematical analysisof our color imagedecomposition model

In this section,we only considerthe discretesetting (for the sake of clarity),
and present somemathematical results of the proposedfunctional. First, in
the following proposition, we show that (8) can be solved by using direct TV
minimization.

Prop osition 1 ~v is the solution of (8), if and only if, ~w = f � u � ~v is the
solution of:

inf
w

 

J (w) +
1

2�
kf � u � wk2

!

: (9)
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Pro of : This is a classicalconvex analysis result [3,22]. Let's denote @H as
the subdi�eren tial of H (see[23,24]),and we recall that:

w 2 @H (u) ( ) H (v) � H (u) + hw; v � ui L 2 , for all v in L 2.

Here h:; :i L 2 stands for the L 2 inner product. First, we remark that ~v is the
solution of (8) if and only if it minimizes:

inf
v

(

kf � u � vk2 + J �

 
v
�

! )

; (10)

sinceJ � is de�ned by (4). Let ~v be the solution of (10). Then, as in [22,23],
this is equivalent to ~v + u � f 2 @J �

�
~v
�

�
, which means ~v

� 2 @J (~v + u � f ).
Since ~w is de�ned as ~w = f � u � ~v, we get 0 2 @J ( ~w) + 1

� (� f + u + ~w), i.e.
~w is a solution of (8). �

We have just shown that equation (8) can be solved by direct computation of
TV minimization (9). All the following lemmaand propositionscanbe proved
by straightforward generalizationof results in [7]; therefore,we refer readers
to [7] for more details, and we omit the proofs in this paper.

Lemma 2 Problem(6) admits a unique solution (û; v̂).

Outline of the pro of : The existenceof a solution comesfrom the convexity
and the coercivity of the functional [24]. For the uniqueness,we �rst remark
that (6) is strictly convex on BV � �K , exceptin the direction (u; � u) . Then,
with simplecomputations, it can be shown that if (û; v̂) is a minimizer of (6),
then, for t 6= 0, (û + tû; v̂ � tû) is not a minimizer of (6). �

From lemma2, weknow that problem(6) hasa uniquesolution. To computeit,
we consideralternatively equations(7) and (8). This meansthat we consider
the following sequence(un ; vn ): we set u0 = v0 = 0, de�ne un+1 asthe solution
of inf u

�
J (u) + 1

2� kf � u � vnk2
�
, and vn+1 as the solution of inf v2 �K kf �

un+1 � vk2. As a consequenceof lemma 2, we get the convergenceof (un ; vn )
to the unique solution (û; v̂) of (6).

Prop osition 3 The sequence (un ; vn ) convergesto (û; v̂), the uniquesolution
of problem(6), whenn ! + 1 .

From this result, we seethat solving iterativ ely (7) and (8) amounts to solving
(6). This justify the algorithm that we will proposein section3.1.

In section 2.2, we claimed that solving (6) is a way to solve (5). To explain
this equivalence,we �rst introducethe following problem:

inf
u+ v= f

(J (u) + J � (v=� )) : (11)
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The next result states the link between(5) and (11).

Prop osition 4 For a �xed � > 0, let (û; v̂) be a solution of problem (5).
Then, if � = kv̂k~G in (11),

� (û; v̂) is also a solution of problem(11).
� Conversely,any solution (~u; ~v) of (11) (with � = kv̂k ~G) is a solution of (5).

This proposition says that (5) and (11) are equivalent. To closethe link be-
tween (5) and (6), we check what happens when � goes to zero in problem
(6). This is explainedin the followong result.

Prop osition 5 For a �xed � > 0 in (5), let � = kv̂k ~G in (6) and (11). Let
(u� n ; v� n ) be the solution of problem(6) with � = � n . Then, when � n goes to
0, any cluster point of (u� n ; v� n ) is a solution of problem(11).

All these results show that solving(7) and (8) iterativ ely is a way to solve
problem(5): this is the theoretical justi�cation of the decomposition algorithm
that we will propose in section 3.1. In the following section, we detail the
algorithm we use,and we show numerical examplesto illustrate its e�ciency .

3 Numerical Exp erimen ts

For numericalcomputation for color imagedecomposition (5), weminimize the
two functionals (7) and (9) alternatively. For the minimization, we compute
the associated Euler-Lagrangeequations.Notice that the two functionals (7)
and (9) arealmost exactly the sameasthe classicalTV minimizing functional.
Therefore,we canutilize all the bene�ts of well-known TV minimization tech-
niques.Sincewe deal with color images,we usethe results in [15]. In [15], the
authors showed that Chromaticity and Brightness(CB) model givesthe best
denoisingresults, comparedto denosingRGB channel by channel separately,
denoisingHSV channelby channelseparately, or even vectorial color TV [14].

For solving(7), weusethe CB model for the BV component u, andweusecolor
TV for the texture component v by solving equation (9). This u component
is the 3D RGB vector which is the structure component of the image.For u,
we separateit into Chromaticity uc and Brightness ub components, and we
denoisethem with TV minimization separately, i.e. u = uc� ub. Webelievethis
is the best way to keepthe edgessharp,and get a good BV component of the
image,asin [15].As for the texture component v, we keepit as3D RGB color
vector and usecolor TV for denoising[14].Wecould usethe CB model for this
v component aswell; however, we kept it asonevector for the following three
reasons.First of all, if color texture is one component it is easierto control.
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Sincethe BV part u is already well kept by the CB model, the rest will also
represents the texture well, and having one vector for v will be good enough
and easy to handle. Secondly, by using color TV instead of the CB model,
only one iteration is neededunlike two iterations in the CB model. Thirdly ,
which is the main reasonfor our choice,it is better to introducesomerelations
(coupled information) betweenthe Chromaticity and Brightnesscomponents
of u, and this is preciselywhat we do in the following algorithm.

3.1 Algorithm

(1) Initially we set, f = f o, u = f o and v = 0 (f o is the original given image).
(2) iterate m times:

(a) Separateu to Chromaticity uc and Brightnessub components. (Also,
separatef = f c � f b and v = vb � vb to chromaticity and brightness
component respectively.)

(b) For the Chromaticity component uc, solve the Euler-Lagrangeequa-
tion of (7) with vc and f c, and iterate n times:

un+1 � un

� t
= r �

r un

jr un j
+

1
�

(f c � un � vc): (12)

(c) For the Brightnesscomponent ub, solve the 1D versionof (12) with
vb and f b, and iterate n times.

(d) With updated uc and ub, let new u = uc � ub and w = f � u � v.
Solve the Euler-Lagrangeequation of (9) for w, and iterate n times;

wn+1 � wn

� t
= r �

r wn

jr wn j
+

1
�

(f � u � wn ):

(e) Update v = f � u � w.
(3) Stopping test: we stop if

max(jun+1 � un j; jvn+1 � vn j) � �

This algorithm decomposesa color image into f = u + v, where u is the
structure component of the image, and v is the color texture component of
the image. As a numerical computation, we used digital TV �lter [25] type
computation for non-
at TV denoising[15,26]as well as color TV [14]. For
numerical computational details, we refer readersto [15,25].

3.2 Numerical Experiments

For typical experiments, imageintensity was between0 and 1. We usedtotal
iteration m = 5 and subiteration n = 30. For � , for chromaticity we used
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(a) f (b) u (c) v

Fig. 1. (a) original image f , (b) BV component u, (c) texture v component (v + 0:5
plotted). Someof of the thicker branchesare in the BV part u, while the thin and
narrow branches in the bottom middle are in the v component. u as well as v are
both color images.

(a) f (b) u (c) v

Fig. 2. (a) original image f , (b) BV component u, (c) texture v component (v + 0:5
plotted). All the details of image are in v, while the BV component is well kept in
u.

� c = 0:04, for brightness� b = 0:01, and we used� = 0:1.

The �rst two �gures, Fig. 1 and Fig. 2, are image decomposition examples.
From the original image f in (a), f is separatedinto two components u in
image(b) and v in image(c). The texture part of the image,v clearly shows
the color texture and the detailsof the images,while the u component captures
the BV part of the image.

The secondexampleis applying imagedecomposition model to imagedenois-
ing problems.In all our restoration examples,we have useda white Gaussian
noise with standard deviation � = 0:8, image values in each channel rank
from 0 to 1 (this is equivalent to � = 204 for image intensity ranging from
0 to 255). In the following three experiments, Fig. 3, Fig. 4 and Fig. 5, we
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(a) f (b) u (c) CB model

true image (b) v (c) CB residual

Fig. 3. (a) noisy original image f . (b) u, (c) CB denoisingmodel [15]. In the second
row : (b) v component (v + 0:5 plotted), and (c) is the residual of CB denoising
model (f � CB r esult + 0:5 plotted).

comparedimage decomposition model with CB denoisingmodel [15] which
is one of the best color imagedenoisingmodels using TV minimization. The
denoisingresults in the top raw are similar; however, in the residual of the
results (the v component), we seethat imagedecomposition model have less
edgeinformation comparedto the residual from CB denoisingmodel. In all
the experiments presented, the parametershave beentuned so that we show
the best numerical results for both our color decomposition model as well as
the CB denoisingmodel. Notice that the CB denoisingresults displaid here
are of the samequality as the onespresented in the original paper [15].

The �nal example,Fig. 6 is comparing di�eren t numerical implementations
fo our color imagedecomposition model (5). When we solve the two coupled
equations(7) and (9), we have many options. For example,we can treat both
u and v as 3D vectorsand usecolor TV model (two iterations: one for u and
one for v), as in image (a), or we can treat both u and v with CB model
and have four iterations (two setsof iterations for u and v each) as in image
(c). In Fig. 6, we consider the noisy image displaid in Fig. 3. It shows the
comparisonbetween(a) using both color TV, (b) our model (CB model for
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(a) f (b) u (c) CB model

true image (b) v (c) CB residual

Fig. 4. (a) noisy original image f . (b) u, (c) CB denoisingmodel [15]. In the second
row : (b) v component (v + 0:5 plotted), and (c) is the residual of CB denoising
model (f � CB r esult + 0:5 plotted).

u and vectorial TV for v), and (c) CB model for both u and v. The denoised
results u are quite similar to each other; therefore, we only plot the noise
v components (Top rows). Comparing (a) and (b), using CB model results
in better color and detail control as in[15], and v component looks better
in (b). Comparing (b) and (c), the results are almost similar (top row (b)
and (c)); nevertheless,there are somedi�erence. We separatedv components
to chromaticity component vc = v

kvk and brightnesscomponent vb = kvk in
secondand third rows for better comparison(for image (c), vc and vb are
given from the algorithm). Interesting points to notice are that, since the v
component is coupledin our model (b), vc for (b) clearly only shows random
color noise,while vc for (c) have uniform regionsof similar colors. It is more
dramatic for brightnessvb components : vb for (b) hardly contains any edges
of the imagecomparedto vb for (c).

4 Conclusion

In this paper, we have proposeda color image decomposition algorithm. We
generalizeMeyer's G norm [1]: we de�ne the G norm as the polar seminorm
associated to the 3D total variation seminorm. Then we extend the approach
of [7] to color images.To derivea powerfull algorithm, weusethe Chromaticity
and Brithnessmodel aswell asvectorial TV model, the numerical frameworks
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(a) f (b) u (c) CB model

true image (b) v (c) CB residual

Fig. 5. (a) noisy original image f . (b) u, (c) CB denoisingmodel [15]. In the second
row : (b) v component (v + 0:5 plotted), and (c) is the residual of CB denoising
model (f � CB r esult + 0:5 plotted).

of [15]. We provide mathematical analysisof our model, as well as numerical
experimental results. Our model compareswell to other classicalapproaches.
For more color numerical results, we refer the readerto [27].
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