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Abstract

In this paper we extend the two dimensional methods set forth in [4],
proposing a variational approach to a path planning problem in three
dimensions using a level set framework. After defining an energy integral
over the path, we use gradient flow on the defined energy and evolve the
entire path until a locally optimal steady state is reached. We follow
the framework for motion of curves in three dimensions set forth in [2],
modified appropriately to take into account that we allow for paths with
positive, varying widths. Applications of this method extend to robotic
motion and visibility problems, for example. Numerical methods and
algorithms are given, and examples are presented.

1 Introduction

This paper extends results seen in [4] to path planning in three dimensions. Path
planning in an obstacle-ridden environment while simultaneously attempting to
search is an inherently difficult, and well-studied problem. In particular, in the
field of unmanned aerial vehicle path planning, many different solution tech-
niques have been studied. Potential field path planning methods have appeared
frequently in the literature [22], but are plagued with inherent limitations [17].
Probabilistic road mapping [15] is a technique which uses a heuristic method to
generate a road map through the space, then searches to find the lowest cost
path. The heuristic nature of the path generation leads to a difficulty in char-
acterizing the algorithms in terms of performance, robustness, complexity and
reliability [14]. An optimization-based technique using a mixed integer linear
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programming (MILP) method has recently been shown to perform quite well in
specific instances [26],[10]. This method combines linear programming with the
ability of constraining some subset of the state variables to be integers.

In general, path planning methods tend to fall in a spectrum with complex
direct optimization approaches on one side and more pragmatic heuristic ap-
proaches on the other. Most approaches fall somewhere in between the two
extremes and make use of both heuristic and optimization based components.
Combining these components can lead to some guarantees on performance and
robustness with reduced complexity and computation time. Also, and perhaps
most relevant, is the fact that rarely, if ever is the globally optimal path ever
required. In practice, most applications require a process that produces a rea-
sonable result with the cost of the solution increasing with longer solve time.

The general problem of finding the optimal path through a domain under
some given constraints has many applications. Given that the domain is not
homogeneous, i.e. there is an associated cost function to the path in the domain,
the general solution begins to increase rapidly in complexity.

A specific instance of the general problem is that of finding an optimal-
path map for a known environment. The optimal-path map for a known three-
dimensional terrain is a function ω(x, y, z) whose values describe how to best
reach a goal point from the location (x, y, z). Optimality in this case could be
shortest path, least visibility from above, largest patrol area, etc. Previous
work on true optimal-path maps for autonomous robotics have almost always
investigated restricted cases.

Another field of relevance is that of robotic motion. In [16] path planning
for robots was studied using level sets where there were objects to be avoided
in the domain. The method of solution was to construct a weighted distance
function over the entire domain and then, from a final position, back propagate
the solution perpendicular to the level sets of the distance function, resulting in
an optimally shortest path. Path planning algorithms for mobile robots are also
described in [19],[3],[18]. Also, in the context of manipulators there has been
path planning research done within a variational framework [28].

In [31] the framework for studying visibility and its dynamics using level sets
was established. In [6] various variational problems were approached using the
framework established in [31]. In [6] a parameterized path planning algorithm
was introduced that treats the path as a finite union of multiple observers which
are evolved so as to maximize the accumulated visibility along the path. See
also [33] for a path planning algorithm based on visibility.

In this paper, we investigate the general problem of finding a “search path”
through a domain where we know some information about where targets and
obstacles may be located. An agent searching such a domain would want to
have a path that satisfies being shortest with having a high confidence of finding
targets while avoiding obstacles. The searcher can only “see” a finite distance
about it at any given point, and this distance may vary spatially according
to local weather conditions, altitude, etc. Therefore, we wish to generate an
optimal path that gives a certain level of confidence of locating targets, while
simultaneously avoiding obstacles, which will be determined via the information
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we know about the domain.
Computationally we represent the path, Γ, as in intersection of the sets

{x|φ(x) = 0} ∩ {x|ψ(x) = 0} of two level set functions φ, ψ : R
3 → R. This

framework was originally established in [2] and [7]. However, the extension of
their method to our case requires that we evolve a tube, not just a codimension-
2 curve, whose axis is Γ and whose boundary represents the edge of the “visible”
region of the observer located on Γ.

The remainder of the paper is organized as follows, in the next section,
we formulate the search path problem in a general framework, with general
metrics describing the optimization, and constraints stemming from the search
path problem. Following that, we introduce the level set method, and then our
algorithm. We present simulations of canonical examples demonstrating the
method and conclude with some remarks about the generality of the method.

2 Problem Formulation

The general path planning problem has had many formulations. For a given set
Ω ∈ R

3, we seek a path Γ : [0, 1] → R
3, with the following properties:

1. Optimize some function of Γ (Arclength, Curvature, etc.).

2. Given an a priori distribution, P , on Ω, maximize

∫

SΓ

P (x)dx

where SΓ = {x ∈ Ω : |x− Γ| ≤ c(x)} , where c(x) is the radius of the set
“cut-out” of the domain by the path Γ.

We note that our work on this problem was motivated by the task of com-
puting optimal search strategies in the presence of a priori knowledge [20]. The
function P represents any knowledge of the search domain, Ω. Possible choices
for the optimization would include minimal arclength and minimal curvature.
Also, we note that this encompasses obstacle avoidance when 2 is minimized or
the sign of P is changed.

2.1 Level Set Formulation

The search path Γ will be represented by the intersection of the 0 level sets of
two functions φ, ψ : Ω → R. This follows the framework established in [2] and
[7]. Given initial functions φ(t = 0), ψ(t = 0), and an energy E(φ, ψ) to be
minimized/maximized, we use the method of gradient descent/ascent to arrive
at a set of coupled PDEs of the form

∂φ

∂t
= −/+

∂E

∂φ
,
∂ψ

∂t
= −/+

∂E

∂ψ
, (1)
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where ∂E
∂φ
, ∂E
∂ψ

are taken from the Euler-Lagrange equations. These PDEs are
then evolved to steady state resulting in φ, ψ obtaining local minima. Most of
our variational problems will be nonconvex, so the initial choices of φ, ψ will
determine the local minima in which we finish. The numerical methods for
solving (1) will be discussed later.

2.2 Examples of Energies and PDEs

The energy representing

∫

SΓ

P (x)dx (2)

will always be included in our variational formulation. First, we assume φ, ψ
are weighted signed distance functions, and that they are perpendicular, i.e.
∇φ · ∇ψ = 0. Given this assumption, we can see that

χ(SΓ) = H(r − ‖(φ, ψ)‖), (3)

where χ is the characteristic function, and H is the Heaviside function, and in
practice we use ‖φ, ψ‖ ≡

√

φ2 + ψ2. Here, the width of the tube r is a constant.
We note that this results in a cylindrical path whose cross sections are circles
of radius r, whose center axis is Γ. See Figure 1 for a sample tube construction.
If other norms were used instead of l2 then we would have tubes whose cross
sections would be other objects, such as squares when using the l1 norm.

Our integral (2) can then be written as

∫

SΓ

P (x)dx =

∫

Ω

H(r −
√

φ2 + ψ2) P (x) dx, (4)

where we have integrated over the entire domain Ω. To maximize this integral
we perform gradient ascent and arrive at the PDEs

φt = P (x)δ(r −
√

φ2 + ψ2)
−φ

√

φ2 + ψ2
, (5a)

ψt = P (x)δ(r −
√

φ2 + ψ2)
−ψ

√

φ2 + ψ2
, (5b)

where δ(y) = H ′(y) denotes the Dirac delta function. Intuitively, solving (5)

attempts to move the set {x|
√

φ2 + ψ2} = r away from the 0 level set where
P > 0, so that

∫

SΓ

P becomes larger as time progresses.
Note that we have made the assumptions that φ, ψ are weighted signed

distance functions, and that ∇φ · ∇ψ = 0. It is necessary for these assumptions
to hold for (4) to be valid. Therefore, we need to enforce these conditions during
the PDE evolutions. The way we do this is by periodically solving a set of PDEs
whose steady state solutions satisfy the necessary criteria.
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Figure 1: The graphs of {φ = 0} (red xz plane), {ψ = 0} (green sinusoidal
plane), and {‖(φ, ψ)‖2 = 0.2} (blue tube).

When we say that φ is a signed distance function, we mean that φ satisfies

|∇φ| =
1

R(x)
, (6)

where R(x) > 0, with boundary condition given by {φ(x) = 0|x ∈ Γ}, and that
sign(φ) is specified in Ω. One way of solving this is to solve the PDE

φt + S(φ)

(

|P∇ψ∇φ| −
1

R(x)

)

= 0, (7)

to steady state, where S(x) is a regularized signum function, φ(x, t = 0) = φ0

in Ω, and φ(x ∈ Γ) = 0. The solution, φ∞, is a signed distance function with
distance measured on the sets {ψ = c}, ∀c ∈ R. Similarly, to enforce that the
level sets of φ are perpendicular to the 0 level set of ψ we can solve the following
PDE to steady state

φt + S(ψ)
∇ψ

|∇ψ|
· ∇φ = 0, (8)

with φ(x, t = 0) = φ0 in Ω, and φ(t ≥ 0)|ψ=0 = φ(t = 0)|ψ=0, thus yielding

∇ψ

|∇ψ|
· ∇φ = 0, (9)

We will discuss numerical solvers for these problems later.
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Another common energy term to be minimized is the length of Γ. We can
write

|Γ| =

∫

Ω

δ(φ)δ(ψ)|P∇ψ∇φ||∇ψ| dx, (10)

where

Pv = I −
v ⊗ v

|v|2
(11)

is the orthogonal projection matrix projecting onto the plane with normal v. In
standard codimension-1 level set methods the mean curvature motion

ut = |∇u|κ (12)

can be derived by minimizing an integral analogous to (10) by gradient descent,
resulting in

ut = δ(u)κ, (13)

and then replacing the δ function by |∇u| (here κ is the signed mean curvature
of the codimension-1 surface). In our framework it was shown in [2] that when
minimizing (10) one ends up with a diagonal matrix of δ functions that can be
replaced by a matrix serving the analogous role of |∇u| in the codimension-1
case, which will result in the PDEs

φt + kN · ∇φ = 0 (14a)

ψt + kN · ∇ψ = 0, (14b)

where kN is curvature times the normal vector of Γ, i.e. after applying gradient
descent we arrive at

(

φt
ψt

)

=

(

δ(φ)δ(ψ) 0
0 δ(φ)δ(ψ)

)





−∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ|

|∇ψ|
)

−∇ ·
(

P∇φ∇ψ
|P∇φ∇ψ|

|∇φ|
)



 .

Then the matrix of δ functions is replaced by

(

|∇φ|
|P∇φ∇ψ|

∇φ·∇ψ
|P∇ψ∇φ||∇ψ|

∇φ·∇ψ
|P∇φ∇ψ||∇φ|

|∇ψ|
|P∇ψ∇φ|

)

,

which is a symmetric positive definite matrix, indicating that we are still fol-
lowing a gradient descent direction minimizing (10).

We note that the vector kN can be found by taking the tangent vector

T =
∇ψ ×∇φ

|∇ψ ×∇φ|
,
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and deriving

kN =
dT

ds
= ∇T · T =





∇T1 · T
∇T2 · T
∇T3 · T



 , (15)

where Ti is the ith component of T and s is an parameterization of Γ, see [1],[2]
for more details.

For certain problems one may want to control the magnitude of k along the
path. Energies to be minimized in this case could be of the form

∫

Ω

δ(φ)g(k) dx, (16)

where g is a non-negative function of k such as |k|p, p > 0. The PDEs resulting
from (16) are fourth order involving second partial derivatives of k.

In general we will evolve (5) with its right hand side augmented by adding
weighted terms that are found from the additional energy minimizations/maximizations
that each particular problem demands.

3 Numerical Methods

The PDEs found in section 2.2 are generally Hamilton-Jacobi equations. To
discretize them we construct a uniform rectangular grid on Ω. Viscosity solu-
tions for these types of equations have been studied well [9], [12], and numerical
methods that converge to the viscosity solution have been implemented [8], [27],
[24]. We use these methods to solve our equations. In general they consist of
upwind type spatial discretizations and explicit Runge-Kutta time discretiza-
tions, and also fast sweeping solutions to find steady state solutions. We note
that the notation below will refer to φ as the unknown function where ψ is fixed,
but all algorithms and PDEs are also applied to ψ with φ fixed.

3.1 Advancement of Time Dependent PDEs Resulting from

Gradient Flows

The level set problem formulations found in [2],[7] involve only one level set
of interest, the set Γ0 = {φ(x) = 0} ∩ {ψ(x) = 0}. Thus the PDEs to be
evolved only involve δ functions that have support localized near Γ0. However,
for our problem, (5) includes a δ functions whose support lies near the set
SΓ = {x|‖(φ, ψ)‖2 = r}, when we use a numerical approximation to δ. When
(5) is combined with a Lagrange multiplier term derived from minimizing λ|Γ0|,
then we have a PDE system with δ functions localized near Γ0 also.

The goal is simultaneously evolve all the PDEs derived from gradient flow
on the energy integrals, as well as from the distance function and perpendic-
ularity requirements. We have chosen to use a splitting technique similar to
that in [4]. The general idea introduced for a 2d domain there was to evolve
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1 2φ=β , ψ=β

1 2φ=γ , ψ=γ
φ=0, ψ=0

1φ=α , ψ=α2

Figure 2: Tube SΓ around Γ0 (dotted line), with three curves,
Γ(α1,α2),Γ(β1,β2),Γ(γ1,γ2), that lie on SΓ, i.e. ‖(α1, α2)‖2 = ‖(β1, β2)‖2 =
‖(γ1, γ2)‖2 = r.

φ near the −r, 0, r level sets separately, while enforcing (or pseudo-enforcing)
the distance function requirement in between advancements. In 3d we have
not only the added burden of enforcing perpendicularity, but also an infinite
number of codimension-2 curves, Γ(a,b) ≡ {φ(x) = a} ∩ {ψ(x) = b}, where
‖(a, b)‖2 = r, of which the tube SΓ is composed. Our approach numerically will
be to approximate these infinite number of curves by a finite number. Also, the
perpendicularity requirement will be met by also solving (9), along with (6), in
between advancements near the curves Γ0 or Γ(a,b). See Figure 2.

Thus if we are using the l2 norm to determine SΓ, then we discretize a
circular cross section of SΓ (found by taking T (y) · (x − y) for a point y ∈ Γ0)
into M points by

{(ai, bi)}
M
i=1 = {cos(θ0 + 2πi/M), sin(θ0 + 2πi/M)}Mi=1, (17)

where θ0 can be chosen arbitrarily. Then we split the evolution of Γr into M
separate evolutions near the curves {φ = ai} ∩ {ψ = bi}. After φ has been
advanced for one timestep using an explicit Runge-Kutta method near Γ(ai,bi),
we perform pseudo-reinitialization (as was done in the 2d case). This pseudo-
reinitialization propagates the information from Γ(ai,bi) to the rest of Ω. We
repeat the advancement and pseudo-reinitialization for ψ near Γ(ai,bi) as well
before advancing near another Γ(aj ,bj) for j 6= i. In practice we try to choose
the (aj , bj) so that (ai, bi) · (aj , bj) is minimized.

In order to avoid the discretization of the δ function we modify the PDE
(5a), for example, by replacing the δ(r − ‖(φ, ψ)‖) with |∇φ|Cr(r − ‖(φ, ψ)‖),
where Cr(x) is a cutoff function, as described in [25] with support over points
where |x| < r. This allows all level sets of φ to move with the same speed, and
still maintains the local nature (near Γ(ai,bi)) of the evolution. The term |∇φ|
is discretized using a Godunov numerical Hamiltonian.

Near Γ0 we use the same technique except that we note that in (14) the
δ functions have already been substituted out, and instead of using pseudo-

8



reinitialization after each step, we use true reinitialization. To discretize kN we
use the formulation (15) with central finite differences used to approximate all
derivatives.

3.2 Fast Sweeping Reinitialization

Because of the frequency with which we solve (7) and (9) to steady state, it is
imperative that we have a fast solution method. Fortunately, there has been
progress made in this area recently. Solution methods known as fast sweeping
[36],[27], [32], and fast marching [29] take advantage of the hyperbolic nature of
the problems to sweep or march along characteristics to derive the steady state
solution with a minimal number of operations per gridpoint. For reinitialization
on manifolds, however, the straightforward extension of these fast methods to
the projected eikonal equation

|P∇ψ∇φ| =
1

R(x)
(18)

does not work, as (18) does not satisfy the requirements for the currently de-
signed sweeping and marching methods. This was noted in [21] where a fast
method was proposed for solving (18) by instead solving (6) in a small band
around the set {ψ = 0}. As the width of this band goes to 0, the solution
converges to that of (18).

The method we use is to use the banded domain method of [21] to define the
locations where φ will be evolved, and then employ the fast sweeping technique
to solve (6). Some modifications are done to the methods to fit in our framework.
Firstly, to avoid the overhead of initializing the band (and to keep the framework
of the fast sweeping algorithm fixed), we instead solve the problem

|∇φ| =
1

R(x)(Ch(ψ(x)) + ǫ)
, (19)

where again Ch is a piecewise constant cutoff function, taking only values {0, 1},
with support width h, and 0 < ǫ ≪ dx. Also, to obtain a signed distance
function as our solution we store the sign of φ at each point prior to starting
the evolution, and then let φ = |φ| before starting the sweeping procedure (note
that the sweeping procedure then requires an initialization of every point away
from a fixed band where |φ| ≤ δ = 1.5dx to a large positive value). After the
sweeping iterations have ended we correct each φ by multiplying it by its original
sign.

We note that in practice, because of the frequent perpendicularizations and
reinitializations, the local coordinate system of φ, ψ inside of each cross section
of Γr resembles that of two perpendicular axes, thus the projected Hamiltonian

|P∇ψ∇φ| =
√

|∇φ|2 − |∇φ · ∇ψ|2 ≈ |∇φ|, (20)

as ∇φ · ∇ψ ≈ 0. Thus reasonable solutions can be obtained with large band
widths, h.
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The exact formulas used in the Gauss-Seidel sweeping step for 2d are listed
in [36], and a procedure for deriving them is higher dimensions is given in [35].
For completeness we list them for 3d here.

Given a uniform grid with spacing dx, with function values indexed by ui,j,k,
we discretize (19) (with the right hand side forcing term replaced by fi,j,k)

[(uni,j,k − unxmin)
+]2 + [(uni,j,k − unymin)

+]2 + [(uni,j,k − unzmin)
+]2 = f2

i,j,kdx
2,

(21)

where

unxmin = min(uni−1,j,k, u
n
i+1,j,k),

unymin = min(uni,j−1,k, u
n
i,j+1,k),

unzmin = min(uni,j,k−1, u
n
i,j,k+1),

and (x)+ = max(x, 0). At ∂Ω we use one sided differences consisting only of
points lying within Ω.

Assuming we have ordered the ai from smallest to largest by a1 ≤ a2 ≤ a3,
then the solution to

[(u − a1)
+]2 + [(u− a2)

+]2 + [(x− a3)
+]2 = f2dx2,

which is the same as (21), is given by the following formulas:

u =











µ1 ≡ a1 + fdx if µ1 ≤ a2,

µ2 ≡ a1+a2+[2(fdx)2−(a2−a1)2]1/2

2 else if µ2 ≤ a3,

µ3 ≡
(
∑

3

i=1
ai)+[3(fdx)2−2((

∑
3

i=1
a2

i )−a1a2−a1a3−a2a3)]1/2

3 otherwise.

(22)

3.3 Pseudo-reinitialization

As noted in [4] when reinitializing after an advancement near the tube boundary,
we cannot use straightforward eikonal equation solvers as we lose interesting
portions of solutions that differ from the viscosity solution. To remedy this
problem we use the same type of pseudo-reinitialization as was introduced in
[4].

The idea is that instead of using the PDE method of reinitialization to a
weighted signed distance function [30] which solves the equation

φt + S(φ)

(

|∇φ| −
1

R(x)

)

= 0, (23)

we instead solve

φt + S(φ)

(

∇φ ·
η

|η|
− |η|

)

= 0, (24)
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where η is a static vector field found by taking η = ∇φ prior to starting the
pseudo-reinitialization.

To solve (24) we first choose η. This is done in a Godunov type upwind
manner. For each gridpoint xi,j we make the following choices:

η1 = maxmod(max(D−
x φi,j,k, 0),min(D+

x φi,j,k, 0))/dx,

η2 = maxmod(max(D−
y φi,j,k, 0),min(D+

y φi,j,k, 0))/dy,

η3 = maxmod(max(D−
z φi,j,k, 0),min(D+

z φi,j,k, 0))/dz, (25)

if S(φi,j,k) ≥ 0, and

η1 = maxmod(min(D−
x φi,j,k, 0),max(D+

x φi,j,k, 0))/dx,

η2 = maxmod(min(D−
y φi,j,k, 0),max(D+

y φi,j,k, 0))/dy,

η3 = maxmod(min(D−
z φi,j,k, 0),max(D+

z φi,j,k, 0))/dz, (26)

if S(φi,j,k) < 0, where

maxmod(x, y) =

{

x if |x| ≥ |y|,
y otherwise.

Here

D±
x φi,j,k = ±(φi±1,j,k − φi,j,k),

D±
y φi,j,k = ±(φi,j±1,k − φi,j,k),

D±
z φi,j,k = ±(φi,j,k±1 − φi,j,k).

We note that more accurate W/ENO methods can also be used to construct
η. At ∂Ω we enforce that there will be no incoming characteristics by taking
Vi = 0 if Vi has the sign of an incoming characteristic, e.g. at the left boundary
in x we take V1 = min(V1, 0). These boundary conditions are consistent with
those used in (21), which employ an approximation to the Neumann boundary
conditions, ∂φ/∂n = 0, when incoming characteristics are found.

Once η has been chosen we solve (24) using a fast sweeping method adapted
to this linear PDE. The basic form of the steady state PDE is

V · ∇φ = f, (27)

where in this case V = S(φ)η/|η|, f = S(φ)|η|. In this case the Godunov
Hamiltonian is found by upwinding depending on the sign of Vi. So we discretize
φx, for example, by

φx ≈

{

(φi,j,k − φi−1,j,k)/dx, if V1 ≥ 0,
(φi+1,j,k − φi,j,k)/dx, if V1 < 0.

(28)

Thus we can write the discretized version of (27) as

3
∑

i=1

Vi(aiφi,j,k + biφoffseti)/dxi = f, (29)
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where ai, bi ∈ {−1, 1}, and φoffseti is found from equations analogous to (28)
by taking the indices of the point chosen in the approximation of φxi that is
different from φi,j,k. If we note the dependence of ai, bi on the sign of Vi, then
we can write (29) as

3
∑

i=1

|Vi|(φi,j,k − φoffseti)/dxi = f. (30)

Then solving for φi,j,k we find

φi,j,k =
f +

∑3
i=1 |Vi|(φoffseti)/dxi
∑3

i=1 |Vi|/dxi
. (31)

If Vi = 0 then is does not matter which offset point we choose, and in the cases
where

∑3
i=1 |Vi| ≈ 0 we set φi,j,k to the average of its neighbors with indices

(a, b, c) such that ‖(a, b, c) − (i, j, k)‖l1 ≤ 1.
The sweeping directions used are the same as those used for the eikonal

equation, however, we do not initialize the grid to large positive values away
from the fixed band. Rather outside the fixed band where |φ| ≤ δ = 1.5dx we
use the current values of φ as initial values.

3.4 Perpendicularization

For perpendicularization we note that (9) can be discretized as (27) with f = 0
and V = S(ψ)∇ψ/|∇ψ|. The solution to this PDE is found by fast sweeping
using the same framework and initialization, including Gauss-Seidel sweeps us-
ing (31) as was done in the pseudo-reinitialization case. In this case the fixed
band is taken where |ψ| ≤ δ = 1.5dx. The vector V is found using central dif-
ferencing, where we regularize the denominator in V , and correct for incoming
characteristics as well.

3.5 Topology Preservation

For certain problems such as searching it makes physical sense that the search
path Γ0 enters Ω from one point a ∈ ∂Ω, and leaves through another point
b ∈ ∂Ω and has fixed topology. For codimension-1 level set dynamics there is a
method, outlined in [13], that guarantees topology preservation. This was used
in [4] to keep the path from changing topology in 2d. However, for codimension-
2 curves in 3d there is no existing algorithm of this type. Therefore, in the spirit
of the projected PDEs with which we have been working, we attempt to project
the 2d method from [13] onto the surface with normal ∇ψ/|∇ψ|.

The idea is that when we are changing the value of φi,j,k, if the sign is
being changed and we are near the set {ψ = 0}, then we attempt to find a local
neighborhood, N , of φ values on {ψ = 0}, and projectN to the standard 2d nine
point neighborhood where the topology preservation can be enforced. To find
N we first calculate the normal vector to ψ: nψ = ∇ψ(xi,j,k)/|∇ψ(xi,j,k)| using
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Figure 3: Projection of an 8 point 3d neighborhood onto a 2d plane. The bold
lines represent the boundary of the neighborhood.

central finite differences. Then we find the normal vector w that approximates
nψ such that w ∈ W = {xa,b,c − xi,j,k}, where ‖(a, b, c) − (i, j, k)‖l∞ = 1. We
do this by taking the w ∈W that maximizes nψ ·w/|w|. Once this approximate
normal is found we fill N with all points such that (xa,b,c−xi,j,k) ·w = 0, where
‖(a, b, c) − (i, j, k)‖l∞ = 1, i.e. we take points from the 26 nearest neighbors to
xi,j,k that lie on the plane passing through xi,j,k with normal w. The cardinality
of N is 8 unless ‖w‖l1 = dx+ dy + dz, in which case it is 6.

Next, we project N onto a local 2d grid by finding a nonzero component
of w and projecting to the plane perpendicular to this component direction.
For example, if w = (1, 0, 1), then we could project any node xa,b,c ∈ N onto
yb,c or ya,b. Once we have this 2d neighborhood, all of whose points lie on a
regular 2d grid, we can apply the standard topology preservation method from
[13]. See Figure 3 for an example of how N is projected onto a 2d plane when
card(N) = 8.

If card(N) = 6 then we need to fill out the projected 2d neighborhood with 2
extra points, or else our algorithm will be too severe in its judgment of whether
or not topology has changed. Thus we examine all three symmetric extensions
of N that include the points, xa,b,c, that are closest to xi,j,k, are lying on our
grid, and have the property that (xa,b,c − xi,j,k) · w = 0. These extra points
have the property that exactly one of the indices {a, b, c} is offset from the index
{i, j, k} by ±2. Figure 4 shows an example of the hexagonal neighborhood in 3d,
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A 1

A 2

B 1

B 2

C 2

C 1

Figure 4: Projection of a 6 point 3d neighborhood onto a 2d plane. The bold
lines represent the boundary of the neighborhood. The hexagon along with
either {A1, A2}, {B1, B2}, or {C1, C2} makes up an 8 point neighborhood that
can be mapped to a standard 8 point rectangular neighborhood of the center
point.

along with its three possible extended symmetric 8 point projections onto a 2d
plane, each of which can be mapped in a one to one manner onto a rectangular
8 point neighborhood where the usual topology preservation algorithm can be
run. For points where card(N) = 6 we run the topology change test on all three
possible extended neighborhoods, and prohibit a sign change in φ at xi,j,k if any
of the three tests indicates a topology change.

While the work done in constructing N is more significant than what was
done in the 2d case, the codimension-2 nature of Γ0 means that this proce-
dure must be applied an order of magnitude fewer times during the evolution.
In practice we require |ψ| ≤ 2dx before the topology preservation method is
applied.

We also note that if it is necessary to keep the points where Γ0 intersects
the boundary (or any other subset of Ω) fixed, we imposed Dirichlet boundary
conditions φ = ψ = 0 at these points. If these points do not lie on the uniform
grid then we can modify the grid slightly near them so that they are included
in the discretization of Ω. If this is done then a local method for advancing the
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solution on an unstructured grid could be used near the points.

3.6 Outline of Evolution Procedure

In this section we outline the evolution procedure. We give a listing of the steps
taken during one iteration. The evolution procedure is repeated until steady
state is reached.

In certain steps of the computational procedure we shift φ, ψ by adding or
subtracting (ai, bi) at all points so that identical equations being solved near
Γ(ai,bi) can be solved using the same coded functions for all i. This is explained
in this way to emphasize that coding can be done using a smaller number of
functions that do identical jobs on shifted versions of the data. When this is
done we denote the shifted version of φ as φ + ai. It is assumed that after the
step in question is completed, that φ is then shifted back the opposite way by
−ai. This is done similarly with ψ.

The evolution loop advancing the solution from time t1 to t1 + dt is given
below. We illustrate the steps with an example PDE system of the form:

φt = P (x)δ(r −
√

φ2 + ψ2)
−φ

√

φ2 + ψ2
− λkN · ∇φ, (32a)

ψt = P (x)δ(r −
√

φ2 + ψ2)
−ψ

√

φ2 + ψ2
− λkN · ∇ψ (32b)

where we will use the substitutions

δ(r −
√

φ2 + ψ2) → |∇φ|Cr(r − ‖(φ, ψ)‖), in (32a) or (33)

δ(r −
√

φ2 + ψ2) → |∇ψ|Cr(r − ‖(φ, ψ)‖) in (32b),

when they are implemented numerically.

1. Advance functions near Γ(ai,bi), for i = 1, . . .M where we choose (ai, bi)
such that ‖(ai, bi)‖ = r.

(a) Find η ≈ ∇φ based on φ− ai, ψ − bi using (25), (26).

(b) Evolve φ from time t1 to t1 +dt the points near where φ = ai, ψ = bi,

i.e. evolve all φt PDE terms with δ(r −
√

φ2 + ψ2) in them, e.g.

φt = P (x)δ(r −
√

φ2 + ψ2)
−φ

√

φ2 + ψ2
.

(c) Pseudo-reinitialize φ using a banded fast sweeping method within a
fixed band around {ψ − bi = 0}, using {φ − ai ≈ 0} as the points
where φ is fixed during the sweeping process.

(d) Find η ≈ ∇ψ based on φ− ai, ψ − bi using equations (25), (26) with
ψ substituted in place of φ.
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(e) Evolve ψ from time t1 to t1 +dt the points near where φ = ai, ψ = bi,

i.e. evolve all ψt PDE terms with δ(r −
√

φ2 + ψ2) in them, e.g.

ψt = P (x)δ(r −
√

φ2 + ψ2)
−ψ

√

φ2 + ψ2
.

(f) Pseudo-reinitialize ψ using a banded fast sweeping method within a
fixed band around with {φ−ai = 0}, using {ψ−bi ≈ 0} as the points
where ψ is fixed during the sweeping process.

2. Advance functions near Γ0.

(a) Evolve φ from time t1 to t1 + dt the points near where φ = ψ = 0,

i.e. evolve all φt PDE terms with δ(
√

φ2 + ψ2) in them, e.g.

φt = −λkN · ∇φ.

(b) Reinitialize φ using a banded fast sweeping method within a fixed
band around with {ψ = 0}, using {φ ≈ 0} as the points where φ is
fixed during the sweeping process.

(c) Perpendicularize φ with fast sweeping, using {ψ ≈ 0} as the points
where φ is fixed during the sweeping process.

(d) Evolve ψ from time t1 to t1 + dt the points near where φ = ψ = 0,

i.e. evolve all ψt PDE terms with δ(
√

φ2 + ψ2) in them, e.g.

ψt = −λkN · ∇ψ.

(e) Reinitialize ψ using a banded fast sweeping method within a fixed
band around with {φ = 0}, using {ψ ≈ 0} as the points where ψ is
fixed during the sweeping process.

(f) Perpendicularize ψ with fast sweeping, using {φ ≈ 0} as the points
where ψ is fixed during the sweeping process.

4 Numerical Simulations

In this section we present some numerical simulations. The PDE we evolve to
steady state is (32), using the methods mentioned above. The domain Ω is
[−1, 1]3 for all problems, discretized in a uniform rectangular grid. A conserva-
tive estimate on the CFL condition for the problem is

dt max

{

|P |

dx
+

|P |

dy
+

|P |

dz
, λkmax

(

1

dx
+

1

dy
+

1

dz

)}

≤ 1, (34)

where kmax is the magnitude of the maximum curvature that we allow to be
discretized on the grid. In practice this is set at 1/dx. We use the max applied to
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the P and k terms individually instead of to their sum because we are splitting
the evolution procedure.

For the individual examples we do not explicitly write the initial conditions,
but rather show them in contour plots. The way they are constructed is by
determining an initial curve Γ0(t = 0) and finding arbitrary functions that have
{φ(t = 0) = 0}∩ {ψ(t = 0) = 0} = Γ0(t = 0), and then running reinitializations
and perpendicularizations if necessary. More details about the initializations
can be found in [2], or in [34] where Clebsch variables (from hydrodynamics)
that are constant along particle paths are discussed.

For some figures the energy vs. time steps plots are shown, where the energy
to be maximized is defined by (4) summed with −λ|Γ| using (10). The δ and
Heaviside functions used are the compactly supported ones given in [5], with
support parameter ǫ = 2dx. It should be noted that a more accurate numerical
construction of these singular functions can be found in [11] should a more exact
measure of the energy be needed.

In Figure 5 we show an example where SΓ is a tube of radius 0.2 and there is
an obstacle (a sphere with a tunnel through it) where P (x) = −1. Outside of the
obstacle P (x) = 0. Here we fix the boundary of the tube where x = {±1}. The
regularization parameter λ = 0.01. We use a uniform rectangular discretization
with dx = dy = dz = 2/50. The number of SΓ advancements is M = 5. At
each time step these are chosen using (17), where θ0 is chosen randomly. In
the figure it is seen that the tube locates the tunnel and avoids the areas where
P (x) < 0.

In Figure 6 we show two examples starting form identical initial conditions,
but where topology preservation is enforced in one example but not in the other.
Here SΓ is a tube of radius 0.2, and there are two balls where P (x) > 0, a box
where P (x) < 0, and P (x) = 0 elsewhere. The regularization parameter λ =
0.02. We use a uniform rectangular discretization with dx = dy = dz = 2/50.
The number of SΓ advancements is M = 4. At each time step these are chosen
using (17), where θ0 is chosen randomly. In the figure we see that the topology
is prohibited from changing when the topology preservation is enforced.

In Figure 7 we show an example where pseudo-reinitialization allows for
cusped regions to form. Here SΓ is a tube of radius 0.2, and there is a rectangle
where P (x) > 0. The regularization parameter λ = 0.01. We use a uniform
rectangular discretization with dx = dy = dz = 2/50. The number of SΓ

advancements is M = 4. At each time step these are chosen using (17), where θ0
is chosen randomly. The figure demonstrates how cusped regions are allowed to
form when pseudo-reinitialization is used as opposed to standard reinitialization.
If standard reinitialization is used instead of pseudo-reinitialization, then we do
not capture the cusped region and the result is that of Figure 8.

In Figure 9 we show an example where the path width is spatially varying.
In this example R(x) = 1 when x ≤ 0, while R(x) = 2 when x > 0. Here SΓ is
a tube of radius 0.15, and there is a sphere where P (x) = −1 centered near the
origin. The regularization parameter λ = 0.02. We use a uniform rectangular
discretization with dx = dy = dz = 2/50. The number of SΓ advancements
is M = 5. At each time step these are chosen using (17), where θ0 is chosen
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Figure 5: Top, left to right: Initial condition, boundary of region where P < 0,
final solution. Bottom, left to right: Final solution together with boundary of
region where P < 0, and energy vs. time steps plot.

Figure 6: Left to right: Boundary of sets where P > 0 (blue spheres) and P < 0
(black box), initial condition of tube, final tube with no topology preservation,
final tube with topology preservation.
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Figure 7: Left to right: Initial Γ and boundary of rectangle where P > 0,
advanced Γ, and advanced SΓ. In this example pseudo-reinitialization is used.

Figure 8: Left to right: Initial SΓ and boundary of rectangle where P > 0,
and advanced SΓ. In this example standard reinitialization is used instead of
pseudo-reinitialization.
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Figure 9: Left to right: Boundary of set where P < 0, initial SΓ, and final SΓ.
In this example R(x) is spatially varying.

randomly.

5 Conclusion

We have presented an extension of the level set based algorithm for solving
a variational approach to path planning that was originally proposed in [4].
This involved adapting the codimension-2 level set framework established in
[2] for motions of curves in R

3. Some key features of this algorithm are the
energy integrals used to define the search criteria, the splitting technique used to
advance the PDEs, the fast methods for reinitialization, pseudo-reinitialization,
prependicularization, and the topology preservation for curves in R

3.
The energy integrals used are very basic and encompass general properties

that are desirable in many path planning problems. However, they are not
exhaustive and more complicated energies based on functionals of curvature,
torsion, or other path properties can be constructed.

Some other problems which we have not approached but are feasible for
future research are: multiple non-intersecting paths, time dependent parameters
such as R,P, µ, paths passing through multiple prescribed points, and self-
intersecting paths. Also, it may be possible to use the ideas from [23] to use this
3d method to construct self-intersecting paths for problems with 2d domains.
Level set motion of tubes having small positive width may also have applications
in image processing, such as segmentation of filaments or other thin objects such
as blood vessels.
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