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Abstract

This paper investigates the use of regularization functionals with non-
local correlation terms for the problem of image denoising and image de-
blurring. These functionals are expressed as integrals over the Cartesian
product of the pixel space. We show that the class of neighborhood fil-
ters can be described in this framework. Using these functionals we can
consider the functional analytic properties of some of these neighborhood
filters, and show how they can be seen as regularization terms using a
smoothed version of the Prokhorov metric. Moreover, we define a non-
local variant of the well-known bounded variation regularization, which
does not suffer from the staircase effect. We show existence of a minimizer
of the corresponding regularization functional for the denoising and de-
blurring problem and we present some numerical examples comparing the
nonlocal version to the bounded variation regularization and the nonlocal
mean filter.

1 Introduction

Denoising and denoising of images are among the most fundamental problems
in image processing. The problem of image denoising is to find a clear image u
from a noisy image f . In the deblurring problem a given image f is regarded
as a blurry version of an unknown exact image u, which is to be found.

A vast variety of methods for doing this are available touching very different
fields of mathematics. Many successful methods for denoising and deblurring
can be derived from the energy method. In this framework image processing
problems are considered as variational problems where a (cleaner of deblurred)
image is computed by a minimization of some energy functional. Typically, such
functionals consist of a fidelity term such as the norm of the difference between
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the clean image and the original noisy image and a regularization term which
penalizes high frequency noise.

Besides the variational approach many alternative concepts were developed
as well, for instance, filtering by smoothing operators (one of the simplest cases
is Gaussian convolution), or approximation by appropriate basis functions - the
wide field of Wavelet approximation falls into this field. Moreover, considering
the noise as random variable leads to stochastic models. Of course, all these
fields are not separated from each other and many algorithms can be viewed
under the aspect of filtering, approximation, energy minimization or within the
stochastic framework.

In this article we focus on the energy method. The results of such an ap-
proach are mainly determined by the choice of the regularization functional.
A successful filter in this class is the Rudin-Osher-Fatemi-Method (ROF) [22].
Here the clear image is defined by a variational problem using the bounded
variation seminorm as regularization term:

u = argminv∈BVλ‖v − f‖2 + |v|BV . (1)

|v|BV denotes the bounded variation seminorm

|v|BV = sup
φ∈C∞0 ,‖φ‖∞≤1

∫

Ω

v ∇φ(x) dx.

The success of the BV-norm stems from the fact that it allows discontinuous
solutions and hence preserves edges while filtering high frequency oscillations
due to noise. Several other methods such as texture models ([17, 19, 25]) or
methods for different noise models [21] are derived from the original ROF model.

The ROF-method and similar regularization methods which penalize deriva-
tives are each essentially a local method. The regularization involves only the
values and derivatives of v at the same point. Hence, the corresponding Euler-
Lagrange equation can be written as a (nonlinear) differential equation.

In contrast to most of the well-known regularization methods we investi-
gate functionals which involve nonlocal terms. In this case the Euler-Lagrange
equations are not partial differential equations but include integrals. Our main
motivation for such nonlocal models comes from the recent work of [6] using
neighborhood filters. Such filters have originally been proposed by Yaroslavsky
[26, 27], and further generalized in [23, 24]. In contrast to spatial filtering such
as convolution, these filters clean a noisy image by taking an average over similar
pixel values (assuming uniform noise). Since similar pixel values can be located
far from each other this leads to an essentially nonlocal filtering. These meth-
ods are usually considered within filtering theory. However, it is the aim of this
paper to show they can also be interpreted within the variational framework.
Due to the nonlocality of the neighborhood filters it is not surprising that the
corresponding functionals are nonlocal ones.

The main aim of this paper it to relate the neighborhood filter to an energy
minimization. The relation is in the sense that applying a neighborhood filter
can be interpreted as one step of solving the optimality condition for a certain
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functional, see Section 3. Moreover, by the interpretation as a minimization
problem we can consider functional analytic properties of the penalization func-
tional. Since in general such functionals are not convex, they cannot be related
to norms in Banach space. However, we show that the filtering can be inter-
preted as minimization of a metric similar to the metric of convergence in mea-
sure (or Prokhorov metric), see Section 4. In Section 5 we define a generalization
of the ideas in Section 3: we propose to minimize an energy using a nonlocal
bounded variation (NLBV) functional derived from the space of bounded vari-
ation. In Section 5 we study the analytic properties of this. We establish the
equivalence of the NLBV-functional with a quotient norm on BV, and prove
existence and uniqueness of the corresponding denoising and deblurring func-
tionals. Finally in Section 6 we show some numerical results for denoising and
deblurring problems using these nonlocal functionals.

2 Neighborhood Filter

Neighborhood filters have been originally proposed by Yaroslavsky [27, 26]. The
main idea is to compute a filtered image u by taking an average of the noisy
image f . The average is taken over pixels which have similar greyvalues, and
not over pixels which are close in the image, as it is usual for a convolution. The
general form of these filters is the following: The value of the cleared image u
at position x is defined by

u(x) =
1

C(x)

∫

Ω

K(x, y, f)f(y)dy C(x) =
∫

Ω

K(x, y, f)dy. (2)

The choice of the kernel K(x, y, f) (which depends on f) determines the actual
filter. C(x) acts as a normalization to ensure that a constant function f is
mapped to itself.

In particular, the original Yaroslavsky neighborhood filter – in the following
denoted by YNF1,h – is defined by

K(x, y, f) = KYNF1,h
(x, y, f) =

{
1 if |f(x)− f(y)| ≤ h
0 else .

From a computational point of view is more practical to limit the average
to a neighborhood of x, which defines the filter YNF1,h,ρ:

K(x, y, f) = KYNF1,h,ρ
(x, y, f) =

{
1 if |f(x)− f(y)| ≤ h and |x− y| ≤ ρ
0 else

The previous filters do not take into account differences in the grey values
of f(x) larger than h. This can lead to undesirable blocky structures. A version
of the original Yaroslavsky filter weights the different grey level by a Gaussian
(known as SUSAN-method in [23]). This defines a second kind of Yaroslavsky
neighborhood filter denoted by YNF2,h:

K(x, y, f) = KYNF2,h
(x, y, f) = e−

|f(x)−f(y)|2
h2
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Of course, a similar localized version YNF2,h,ρ can be defined if the integration
is restricted to a neighborhood |x − y| ≤ ρ, or by an appropriate weighting
function (see the bilateral filtering in [24]).

Finally, these filters experienced a significant improvement by Buades, Coll
and Morel [6]. They proposed the following (”nonlocal-mean” filter) NLMh:

K(x, y, f) = KNLMh
(x, y, f) = e−

Gσ∗|f(x−.)−f(y−.)|2(0)
h2 , (3)

here f is assumed to be periodically extended outside of the rectangular domain
Ω, as it is common in image processing. This filter mixes grey levels with a
spatial filtering. Here Gσ∗ denotes a convolution with a mollifier, i.e. Gσ is a
positive function converging to the δ-distribution as σ → 0. Hence for small σ,
the nonlocal-mean filter approximates the Yaroslavsky filter YNF2,h.

The idea behind the neighborhood filters is to define a measure of similarity
between different regions in the image, and that the cleared image at some point
x is an average of all pixels which are similar to the grey value f(x) at this point.
The nonlocal mean filter differs from the YNF-filters, because not only the pixel
values are used to define similarity, but neighborhoods of pixels (”windows”)
are compared. This is the interpretation of the convolution Gσ. Note that the
mollifier is conveniently taken as a function with compact support. The size of
the support defines the size of the windows which are compared. A reasonable
choice for the size of the support and hence the size of the neighborhoods is to
compare ranges from 5× 5 to 9× 9 pixels for a typical image of size 256× 256
pixels. For colored images this can be even smaller [6].

Remark 2.1. Let us remark that a slight modification of the kernel in the pre-
vious filter at x = y yields a significant improvement. Obviously, a pixel is
always similar to itself, indicated by the fact that all kernel functions K(x, y, f)
take their maximum value 1 at x = y. By the normalization via C(x), only the
relative difference in similarity is taken into account, hence a maximum value
at x = y, lowers the similarity for all other values. In a numerical procedure
it is better to redefine the value of K(x, y, f) at x = y, for instance [6] use
K(x, x, f) = maxx 6=y K(x, y, f). This increases the ability of the filter to find
similarities, away from x = y.

3 Nonlocal Functionals

In this section we show how the neighborhood filters can be derived from a
variational principle. The main observation is their characterization as one
step of a fixed-point iteration to solve the optimality conditions of nonlocal
functionals.

Such functionals take the general form:

J(u) :=
∫

Ω×Ω

g

( |u(x)− u(y)|2
h2

)
w(|x− y|)dxdy (4)
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with an appropriate positive weight function w, a differentiable filter function
g : R+ → R, and a parameter h. We formally derive the directional derivative of
J(u): Let v ∈ L2(Ω), t ∈ R, w ∈ L∞(R+), and g ∈ C1(R+), then the following
derivative exists:

d

dt
J(u + tv) |t=0

=
2
h2

∫

Ω×Ω

g′
( |u(x)− u(y)|2

h2

)
(u(x)− u(y)) (v(x)− v(y)) w(x− y)dxdy.

The integral can be split into a term involving v(x) and v(y). In the latter a
change of variables (x, y) → (y, x) gives the same integral as that with v(x),
hence we end up with

d

dt
J(u+tv) |t=0=

4
h2

∫

Ω×Ω

g′
( |u(x)− u(y)|2

h2

)
(u(x)− u(y)) w(x−y)dxv(y)dy.

This shows that under the mentioned assumptions on w and g the Frechet-
derivative of J as a functional from L2(Ω) to R is given by

J ′(u) =
4
h2

∫

Ω

g′
( |u(x)− u(y)|2

h2

)
(u(x)− u(y)) w(|x− y|)dy. (5)

If u is a stationary point of J(u), then by (5), it is a solution to the fixed-
point equation:

u(x) = Fg,w(u) :=
1

C(x)

∫

Ω

g′
( |u(x)− u(y)|2

h2

)
u(y)w(|x− y|)dy (6)

C(x) =
∫

Ω

g′
( |u(x)− u(y)|2

h2

)
w(|x− y|)dy. (7)

Note that Fg,w has the form of a neighborhood filter (2). If we set u0 = f , and
perform a fixed-point iteration

un+1 = Fg,w(un)

then the first step is identical to a nonlocal filtering as above.
The Yaroslavsky neighborhood filter YNF1,h is obtained by the choice w = 1

and

g1(s) :=
{

s 0 ≤ s ≤ 1
1 else ⇒ g′1(s) =

{
1 0 ≤ s ≤ 1
0 else .

For the corresponding localized version YNF1,h,ρ we can choose w as a cut-off
function

w(x) =
{

1 |x| ≤ ρ
0 else

In a similar manner we obtain YNF2,h by

g2(x) := 1− e−x ⇒ g′2(x) = e−x,
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which gives the functional

J1,h(u) :=
∫

Ω×Ω

(
1− e−

|u(x)−u(y)|2
h2

)
w(|x− y|)dxdy. (8)

The Buades-Coll-Morel nonlocal-mean filter is not directly related to a func-
tional of the form (4). In analogy to the nonlocal-mean filter a suitable general-
ization of (4) would be a functional including a convolution (with fixed σ > 0):

J2,h(u) :=
∫

Ω×Ω

(
1− e−

Gσ∗|u(x−.)−u(y−.)|2(0)
h2

)
w(|x− y|)dxdy (9)

The formal derivative of the J2,h is given by

J ′2,h(u) =
4
h2

∫

Ω

Kσ(x, y) (u(x)− u(y)) w(|x− y|)dxdy

Kσ(x, y) = Gσ ∗K1(x− ., y − .)

K1(x, y) =
∫

Ω

e−
Gσ∗|u(x−.)−u(y−.)|2(0)

h2 dxdy

Using the assumption that u is periodically extended outside of Ω, the derivative
can be derived similar as in (5) observing that the convolution satisfies the
identity

∫
Ω
(Gσ ∗ q)(x)p(x) =

∫
Ω
(Gσ ∗ q)(x)p(x)dx for any periodic p, q. There

is a slight difference between the filter defined by the optimality conditions of
(9) and the nonlocal mean filter. The latter uses K1(x, y) as kernel in (2),
while the optimality conditions leads to the kernel Kσ(x, y). So except from
the convolution of K1 the corresponding fixed point iteration is identical to the
nonlocal mean filter NLMh.

3.1 Regularization functional

The previous fixed-point iteration can be considered as finding a stationary
point of the functional J(u) in (4). Note that this functional does not include
any fidelity term ‖u − f‖. The interpretation of the neighborhood filters as a
minimization step allows us to generalize the iteration (6) to a regularization
functional similar to (1). We may add a least squares term to (4) and look for a
stationary point of the corresponding functional. The nonlocal functional term
is then considered as a regularization term. Following this idea, we may define
the following functional:

L(u) = J1,h(u) + λ‖u− f‖2. (10)

The condition for a stationary point can be written in fixed-point form as:

u(x) =:
1

C(x)

(
λf+

∫

Ω

g′
( |u(x)− u(y)|2

h2

)
u(y)w(|x− y|)dy

)
(11)

C(x) = λ +
∫

Ω

g′
( |u(x)− u(y)|2

h2

)
w(|x− y|)dy. (12)

6



A similar formula holds for the NLM-functional. Note that the first step of the
fixed-point iteration with starting point u0 = f takes the general form (2) with

K(x, y, f) = λδ(x− y) + g′
( |f(x)− f(y)|2

h2

)
w(|x− y|). (13)

This filter is simply a modification of the neighborhood filter at x = y. This
should be compared with the modification of the neighborhood filters mentioned
in Remark 2.1. Indeed, the only difference between (13) and the corresponding
kernel in (6) happens at x = y. If the value of λ is close to the mean value of∫
Ω

g′
(
|f(x)−f(y)|2

h2

)
w(|x− y|)dy, and if additionally w(0) = 0, this modification

is very similar to that in Remark 2.1, but with K(x, x, f) =
∫

K(x, y, f)dy.
The functional (10) is, in general, not convex. However, for the choice

g(x) := 1 − e−x and for sufficiently large λ the quadratic term dominates and
for this case (10) convexity holds. Let us formulate this as a theorem:

Theorem 3.1. For bounded Ω and weighting function w ∈ L∞ there exists a
λ0(h) > 0, such that, for all λ > λ0(h), L(u) in (10) with g(x) = 1 − e−x is
convex.

Proof. For brevity we introduce the operator ∆x,yu := u(x) − u(y). For fixed
v ∈ L2(Ω) the second derivative in direction v is given by

d2

dt2
L(u+tv) =

∫

Ω×Ω

g̃ (∆x,yu + t∆x,yv) (∆x,yv)2 w(|x−y|)dxdy+2λ

∫

Ω

v(x)2dx,

where

g̃(τ) =
d2

dτ2
(1− e−

τ2

h2 ) =
2
h2

e−
τ2

h2 (1− 2
τ2

h2
).

A minimum of d2

dx2 e−x2
= 2e−x2

(1−2x2) is attained at x = −
√

3
2 with minimal

value −4e−
3
2 . Hence we can estimate

d2

dt2
L(u + tv) ≥ − 4

h2
e−

3
2

∫

Ω×Ω

(v(x)− v(y))2w(|x− y|)dxdy + 2λ

∫

Ω

v(x)2dx

≥
(
− 4

h2
e−

3
2 4|Ω|‖w‖L∞ + 2λ

)
‖v‖2L2 .

For λ > 8
h2 e−

3
2 |Ω|‖w‖L∞ this will be positive, hence L(u) is convex.

For practical applications the previous theorem is of limited use as the lower
bound on λ for which (10) is convex is too large to be used in numerical com-
putations. For our computations we observed that a smaller value of λ < λ0(h)
usually gives better results.

Let us mention, that a nonlocal functional of the form (4) with g(t) =
arctan(t) and w(s) = e−s2

has been introduced by De Giorgi as an approxima-
tion to the Mumford-Shah functional. This relation has been studied further in
[13] and in [8] for the discrete case.
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Moreover, (8) bears some resemblance to the Perona-Malik equation [20].
Indeed if h is small and the weighting function w approaches the δ-distribution,
the corresponding functional is approximately

∫

Ω

(1− e−
|∇u(x)|2

κ )dx

with some parameter κ. The corresponding steepest descent flow is a variant of
the Perona-Malik equation. However, this is not really similar to our approach,
since it is local. We do not consider h asymptotically small. But it is worth
noticing that up to a time scaling this flow can be considered a descent flow for
the metric (16) with f(x) = ∇u(x) and g(x) = 0.

4 Functional analytic properties

The general form of the nonlocal functional (4) allows a range of possibilities
for constructing a norm or a metric. Besides the fact that it is nonlocal, the
resulting regularization procedure depends essentially on the filter properties
determined by the choice of g and w. We give some examples of standard
(semi) norms which are a special case of (4).

For g(t) = tp, 1 ≤ p < ∞, w(|x − y|) = |x − y|−(n+νp) with ν ∈ (0, 1), (4)
defines a seminorm, which for sufficiently smooth boundary can be made into
an equivalent norm of the fractional Sobolev space W ν,p(Ω) ([1]):

‖u‖p
W ν,p = ‖u‖p

Lp + J(u)

On the subspace of functions satisfying
∫
Ω

u(x)dx = 0, J(u)1/p is in fact a
norm. Choosing an increasing weighting function w(|x− y|) = |x− y|(nq+νq−1)

and g(t) = tq, 1 < q < ∞, 1
q + 1

p = 1 we obtain a norm on this subspace, which
is similar to a dual norm on W ν,p: If

∫
Ω

u(x)dx = 0 then

|u|(W ν,p)∗ = sup
|φ|W ν,p≤1

∫

Ω

u(x)φ(x)dx ≤ J(u)1/p

Thus, the weight function w controls the place of J(u) in a Sobolev scale. The
interesting case is the choice of g and w in the case of (8) and (9). Different
from the previous examples, this does not give a seminorm. Nevertheless, we
can associate a metric to J(u). In the following we show how the regularization
term J(u) can be related to a variant of the Prokhorov metric.

Let us give the definition of the Prokhorov metric in the case of random
variables:

Definition 4.1. Let X, and Y be random variables. Then the Prokhorov metric
is defined as

ρ(X, Y ) = inf{h > 0 | h ∈ R : µX(B) ≤ µY (Bh) + h, ∀Borel-setsB}
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where µX , µY denotes the probability distribution of X and Y , respectively:

µX(A) = P{X ∈ A} µY (A) = P{Y ∈ A},

and Bh := {x | ‖x− y‖ ≤ h, y ∈ B}.
This definition can slightly be generalized to real-valued measurable func-

tions defined on a subset of Rn, with the Lebesgue-measure used instead of a
probability measure:

Definition 4.2. Let f, g : Ω → Rn be measurable functions, then we define the
Prokhorov distance to the 0-function by

ρ0(f, 0) = inf{h > 0 | meas{x | |f(x)| > h} ≤ h} (14)

The distance between two functions is defined as

ρ0(f, g) := ρ0(f − g, 0) (15)

If Ω is equipped with a probability measure, then (14) coincides with Defi-
nition 4.1. However, for Definition 4.2 a probability measure is not necessary.
According to [12] (15) defines a metric and it forms a complete metric space in
the set of measurable functions. The Prokhorov metric has mainly been stud-
ied in the stochastic setting [4, 15]. Recently, a convergence theory for inverse
problems using the Prokhorov metric has been developed [10].

The relation to the nonlocal functionals is indicated by the observation that
the Gaussian is just a smooth approximation to a cut-off function:

∫

Ω

(
1− e

− |f(x)|2
(2h)2

)
dx ∼

∫

{x | |f(x)|>h}
dx = meas{x | |f(x)| > h}

Hence we may define two variants of a smoothed version of the Prokhorov metric.
One is related to the YNF2,h filter and the other to the nonlocal mean filter
NLMh. Additionally we include a dependence on a regularization parameter α:

Theorem 4.3. Let f, g be measurable functions, α > 0 then

ρ1,α(f, g) := inf{h > 0 |
∫

Ω

(
1− e−

|f(x)−g(x)|2
h2

)
dx ≤ αh} (16)

ρ2,α(f, g) := inf{h > 0 |
∫

Ω

(
1− e−

Gσ∗|f(x−.)−g(x−.)|2(0)
h2

)
dx ≤ αh} (17)

define a metric. The infimum is attained at the unique number h, where equality
holds in (16) and (17).

Proof. Consider the functionals

ρ1,α,h(f) :=
∫

Ω

(
1− e−

|f(x)|2
h2

)
dx, ρ2,α,h(f) :=

∫

Ω

(
1− e−

Gσ∗|f(x−.)|2(0)
h2

)
dx
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ρ1,α(f) is positive and vanishes iff f(x) = 0 a.e. Hence the infimum in (16) is 0
iff f(x) is identical 0 a.e. The same holds for for G∗|f(x− .)|2. If G is a positive
mollifier, the term vanishes iff |f | vanishes, thus we conclude that ρ2,α(f, g) = 0
iff f = g a.e.

Next we have to show the triangle inequality. For a, b ∈ R, ν ∈ [0, 1] we start
with the inequality:

e−(νa+(1−ν)b)2 ≥ min{e−a2
, e−b2}. (18)

This is a consequence of the fact that exp(−x2) attains no interior minimum on
a compact interval. For arbitrary h1, h2, set a = f1(x)

h1
, b = f2(x)

h2
, ν = h1

h1+h2
.

With (18) and exp(−x2) ≤ 1 we obtain

1− e
− |f1(x)+f2(x)|2

(h1+h2)2 ≤ 1−min
{

e
−
� |f1(x)|

h1

�2

, e
−
� |f2(x)|

h2

�2}

≤ 1− e
−
� |f1(x)|

h1

�2

+ 1− e
−
� |f2(x)|

h1

�2

.

If f1,f2 satisfy
ρ1,α(f1, h1) ≤ αh1, ρ1,α,h2(f2) ≤ αh2,

then the previous estimate shows that

ρ1,α,h1+h2(f1 + f2) ≤ α(h1 + h2),

which proves the triangle inequality for the metric ρ1,α.
For ρ2,α the triangle inequality follows in a similar manner from

e−[Gσ∗|νf1(x)+(1−ν)f2(x)|2](0) ≥ e−ν[Gσ∗|f1(x)|2](0)+(1−ν)[G∗|f2(x)|2](0),

and (18).
By basic calculus ρ1,α,h(f), ρ2,α,h(f), is strictly monotonically increasing in

h unless f = 0. Since αh is increasing, by the mean value theorem there exists
an h where equality holds in the definition of (16) and (17), moreover this is
precisely the number where the infimum is attained.

Note that for any choice of α > 0 there exists a corresponding h such that
equality holds in (16) and (17). The opposite is also true: For a given h we can
find a α(h) leading to equality in the definition. The later is more convenient, as
we can consider h as a regularization parameter and α(h) be implicitly defined
by (16) and (17). Using h as parameter we can consider the metric ρi,α on the
space of measurable functions defined on Ω × Ω: this allows us to rewrite the
functionals (8), (9) as

Ji,h(u) = α(h)ρi,α(h) (u(x)− u(y), 0) .

This shows the similarity of the neighborhood filter with a regularization func-
tional. In fact (10) takes the form of a regularization functional

L(u) = λ‖u− f‖2 + α(h) ρi,α(h) (u(x)− u(y), 0) ,
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with an error term and a regularization term defined via the Prokhorov-like
metric of a nonlocal term u(x)−u(y). The equivalence to standard regularization
method is, however, not complete. Given h the corresponding regularization
parameter α(h) will also depend on u.

5 Nonlocal BV

The functionals in the previous section do not take into account the gradient of
the image f . This might suffice for denoising purposes, where the problem is not
ill-posed in the space L2. For the deblurring case this is a drawback, since adding
a Prokhorov term will in general not regularize the problem in a reasonable
space. In fact, the set of functions, which are bounded in the Prokhorov metric
is not compact in L2. Hence, if the problem is ill-posed a functional involving
gradients will do better. For image deblurring it is desirable to avoid blurring of
edges, so a good choice is to use nonlocal functionals derived from the space of
bounded variations. Following the ideas of Section 3 we therefore propose the
following nonlocal regularization term: for u ∈ W 1,1(Ω) we define

NLBV(u) :=
∫

Ω×Ω

|∇u(x)−∇u(y)|dxdy (19)

or
NLBVτ (u) :=

∫

{(x,y)∈Ω×Ω | |x−y|≤τ}
|∇u(x)−∇u(y)|dxdy (20)

If u is merely in L1(Ω), we can extend the previous definition by duality similar
to the definition of the BV-seminorm we have:
∫

Ω×Ω

|∇u(x)−∇u(y)|dxdy = sup
φ∈C∞0 (Ω×Ω)

‖φ‖∞≤1

∫

Ω×Ω

(∇u(x)−∇u(y)) φ(x, y)dxdy.

An integration by parts leads to the generalization or definitions (19) and (20)
to functions u ∈ L1(Ω):

NLBV(u) := sup
φ∈C∞0 (Ω×Ω),‖φ‖∞≤1

∫

Ω×Ω

u(x) (∇xφ(x, y)−∇xφ(y, x)) dxdy (21)

and

NLBVτ (u) = sup
φ∈X,‖φ‖∞≤1

∫

Ω×Ω

u(x)(∇xφ(x, y)−∇xφ(y, x))dxdy (22)

where X = {φ ∈ C∞0 ({(x, y) ∈ Ω×Ω | |x− y| ≤ τ})}. The corresponding space
NLBV(Ω) is defined as (using (21))

NLBV(Ω) := {u ∈ L1(Ω) | NLBV(u) < ∞}.
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This space shares many properties with the space of functions of bounded
variation. It includes discontinuous functions just as the space BV(Ω) (see
Lemma 5.2). By adding the L1-norm to the NLBV(Ω)-functional we end up
with a norm, making NLBV(Ω) a Banach space (compare Lemma 5.3). (A sim-
ilar conclusion applies to the NLBVτ -functional). However, due to the nonlocal
form, the functional also measures similarities in an image, which are spatially
separated.

We can as well consider more general functionals of the same type:

F (u) :=
∫

Ω×Ω

g(|∇u(x)−∇u(y)|2)w(x− y)dxdy, (23)

where g is a nonnegative differentiable function, and w a positive weight func-
tion. For the sake of generality we state the Euler-Lagrange equation for the
denoising functional with (23) as regularization term:

J(u) = λ‖u− f‖2L2 + F (u).

A minimizer of J(u) satisfies

λ(u(x)− f(x)) = 2∇
(∫

Ω

g′(|∇u(x)−∇u(y)|2)(∇u(x)−∇u(y))w(x− y)dy

)
.

(24)
For the case of the nonlocal BV-functional g′(x) = 1√

x
. Another important

choice for g in (23) comes up at the numerical computations where the nondif-
ferentiable function 1√

x
is replaced by the well-known ε-regularization g = 1√

x+ε
.

One of the advantages of the NLBV-functional is that it does not suffer
from the staircase effect, since linear functions are preferred over piecewise con-
stant ones. If is obvious, that NLBV(g) = 0 and NLBVτ (g) = 0, if g is an
affine function. However, the functional does not vanish for piecewise constant
functions, hence we expect, that a regularization procedure with the NLBV-
seminorm will prefer affine functions over piecewise constant one, which should
avoid staircasing. The numerical examples in Section 6 will show this.

For further analysis we need lower semicontinuity and approximation prop-
erties of the NLBV-functionals:

Lemma 5.1. Let u ∈ L1(Ω) and un ∈ W 1,1(Ω) be a sequence converging to u
either in the L1-norm topology or weakly in L2, then

NLBV(u) ≤ lim inf
n→∞

NLBV(un) NLBVτ (u) ≤ lim inf
n→∞

NLBVτ (un).

Moreover for any u ∈ L1(Ω) with NLBV(u) < ∞ (or NLBVτ (u) < ∞) a
sequence of C∞-functions un exists converging in L1 to u and which satisfy

lim
n→∞

NLBV(un) = NLBV(u) (or lim
n→∞

NLBVτ (un) = NLBVτ (u).)

Proof. The proof is analogue to the BV-case (cf. [2, Thm. 3.9])
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The functional NLBV can be interpreted as an equivalent norm on a suitable
quotient space of BV. In fact, we have the following lemma:

Lemma 5.2. Let Ω be a bounded extension domain, u ∈ NLBV(Ω) then

|Ω| inf
g(x) affine

|u− g|BV ≤ NLBV(u) ≤ 2|Ω| inf
g(x) affine

|u− g|BV. (25)

Proof. Define the set X̃ := {ψ ∈ C∞0 (Ω×Ω) | ‖φ‖∞ ≤ 1}. Let g be an arbitrary
affine function g(x) = hx + c, h, c ∈ R, then

NLBV(u) = NLBV(u− g)

≤ sup
φ,ψ∈X̃

∫

Ω×Ω

(u(x)− g(x)) (∇xφ(x, y)−∇xψ(y, x)) dxdy

≤ 2 sup
φ∈X̃

∫

Ω

(u(x)− g(x))∇x

∫

Ω

φ(x, y)dydx

≤ 2 sup
η(x)=

R
φ(x,y)dy,φ∈X̃,

∫

Ω

(u(x)− g(x))∇x
η(x)
‖η‖∞ dx ‖η‖∞

≤ 2|u− g|BV |Ω|,
where the last inequality follows from | ∫

Ω
φ(x, y)dy| ≤ |Ω| for φ ∈ X̃ and the

definition of the BV-seminorm. Since g was arbitrary the right hand side of
(25) follows.

For the left hand side let u ∈ W 1,1(Ω), take h := 1
|Ω|

∫
Ω
∇u(y)dy, and g(x)

as the affine function g(x) = hx + c.

|u(x)− g(x)|BV =
∫

Ω

| 1
|Ω|

∫

Ω

∇u(x)−∇u(y)dy|dx

≤ 1
|Ω|

∫

Ω

∫

Ω

|∇u(x)−∇u(y)|dydx =
1
|Ω|NLBV(u). (26)

For general u ∈ NLBV(Ω) by Lemma 5.1 we can find a sequence of smooth
functions un ∈ C∞(Ω) with limn→∞ ‖u − un‖L1 = 0, limn→∞NLBV(un) =
NLBV(u). With gn(x) := 1

|Ω|
∫
Ω
∇un(y)dy x and (26) we find that |un(x) −

gn(x)| ≤ 1
|Ω|NLBV(un) ≤ C1 for some constant C1. According to the Poincaré-

inequality for BV ([2]) for each n we can find constants mn such that

‖un(x)− gn(x)−mn‖L1 ≤ C2|un(x)− gn(x)|BV ≤ C3.

This means that the sequence un(x)− gn(x)−mn is uniformly bounded in BV,
and by compact embedding [2] has a convergent subsequence in L1. But since
un converges in L1 the sequence of affine functions g̃n(x) := gn(x) −mn must
have a L1 convergent subsequence limn′ g̃n′ =: g(x) , which limit has to be an
affine function. By weak lower semicontinuity we get

|u(x)− g(x)|BV ≤ lim inf
n→∞

|un − g̃n|BV =
1
|Ω| lim inf

n→∞
NLBV(un) =

1
|Ω|NLBV(u).

This proves (25).
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Although Lemma 5.2 establishes an equivalence of norms, this does not nec-
essarily mean that the results for denoising with these norms as regularization
are equivalent. Since in general convergence of a denoising algorithm for func-
tionals like (1) (e.g as λ → ∞) happens only in the weak-∗-topology and not
in the norm topology. This phenomenom can also be observed when comparing
denoising with an anisotropic BV norm (see [11]) to the usual one. Although in
this case the norms are equivalent the computational result are significantly dif-
ferent. Moreover, a denoising algorithm using the quotient norm in (25) seems
to be more involved than the corresponding NLBV-minimization.

The result of Lemma 5.2 shall be compared to other seminorms, which also
annihilate affine functions. One possible candidate would be a generalization
of the BV-functional using the second derivative, for instance, ‖∇2u‖L1 . This
functional is, however, much stronger, as it uses second derivatives, whereas
NLBV does not. This difference is also obvious in the embedding theorems
- at least in one dimension. Note that a higher order Sobolev space using
‖∇2u‖L1 (such as W 2,1(R)) only contains continuous functions, while NLBV
allows discontinuous ones as well.

For the NLBVτ -functional the equivalence to a quotient norm is not uniform
in τ as the constants in such an inequality depend strongly on τ , and a similar
inequality does not hold in the limiting case τ → 0. An illuminating example
is the case of the functional (23), with g(x) = x, Ω = Rn, and w a suitable
weight function with

∫
w(x)dx = 1. This can be seen as a nonlocal form of

the H1(R)-norm, and it can be completely solved by Fourier analysis. Since
the Euler-Lagrange equation only involves derivatives and convolution with w
in Fourier space (24) takes the form

λ
(
û(ξ)− f̂(ξ)

)
= −2|ξ|2 (1− ŵ(ξ)) û(ξ),

hence

û(ξ) =
f̂(ξ)

λ + 2|ξ|2(1− ŵ(ξ))
. (27)

For example, if w is taken as a Gaussian this filters high frequencies, just the
same as a H1 regularization, since ŵ(ξ) ∼ 0 for ξ large. However, the low
frequencies are filtered less, because 1− ŵ(ξ) ∼ 0 for ξ small. This shows that
the nonlocal functionals with a weight function act as an additional low-pass
filter, while not altering the high frequency behavior.

In the extremal case w ∼ 1, which corresponds to the NLBV-functional,
ŵ converges to the δ-distribution and supp(ŵ) → {0}. As can be seen from
(27) no low-pass filtering happens at all in this case. Since there are no affine
functions in H1(R), the corresponding quotient space is equivalent to the usual
Sobolev space H1(R). However, including a weight w gives a norm which is not
equivalent to H1(R). This indicates, that the NLBVτ might be weaker then the
quotient norm.

The next issue is to prove that the denoising functional with the NLBV-
seminorm has a solution in BV. For this we need a Poincaré-type inequality. We
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assume that Ω is a Sobolev extension domain, i.e. for all Sobolev spaces W k,p(Ω)
a linear and bounded operator exists, which extends functions u from W k,p(Ω)
to W k,p(Rn). Any domain with Lipschitz boundary is a Sobolev extension
domain. For geometric conditions on Ω to be a extension domain we refer to
[16].

Lemma 5.3. Let Ω be a bounded Sobolev extension domain and let u ∈ W 1,1(Ω),
then there exists a constant C(Ω) such that

∫

Ω

|∇u(x)|dx ≤ C(Ω)
(∫

Ω×Ω

|∇u(x)−∇u(y)|dxdy + ‖u‖L1(Ω)

)
.

Proof. By a suitable normalization we may assume that
∫
Ω
|∇u(x)|dx = 1. Take

0 < ε < 1 arbitrarily but fixed.
First we consider the case

∫
Ω×Ω

|∇u(x) − ∇u(y)|dxdy ≥ ε, then we obtain
by the normalization condition

∫

Ω

|∇u(x)|dx ≤ 1
ε

∫

Ω×Ω

|∇u(x)−∇u(y)|dxdy. (28)

For the case
∫
Ω×Ω

|∇u(x)−∇u(y)|dxdy ≤ ε we define ~a = 1
|Ω|

∫
Ω
∇u(x)dx and

get
∫

Ω

|∇u(x)− ~a|dx =
∫

Ω

|∇u(x)− 1
|Ω|

∫

Ω

∇u(y)dy|dx

=
1
|Ω|

∫

Ω

|
∫

Ω

(∇u(x)−∇u(y)) dy|dx

≤ 1
|Ω|

∫

Ω

∫

Ω

|∇u(x)−∇u(y)|dydx ≤ ε

|Ω| .

Now define the affine linear function v(x) := ~ax+d with d ∈ R, then ∇v(x) = ~a
and by the previous inequality we get

|~a| = |
∫

Ω

∇v(x)dx| =
∫

Ω

|∇v(x)|dx =
∫

Ω

|∇u(x) + (∇v(x)−∇u(x)) |dx

≥
∫

Ω

|∇u(x)| −
∫

Ω

|∇v(x)−∇u(x)|dx ≥ 1− ε

|Ω| .

Now let us consider the case Ω = [0, 1]n, hence |Ω| = 1. In the definition of v
the constant d can be chosen such that

∫
Ω

u(x) − v(x)dx = 0. In this case the
Poincaré inequality [1] yields

∫

Ω

|u(x)− v(x)|dx ≤ C0

∫

Ω

|∇u(x)−∇v(x)|dx ≤ C0ε

On the other hand, since v is a linear function there exists a positive constant
C1, depending only on Ω, with ‖v‖L1(Ω) ≥ C1‖∇v‖L1(Ω) ≥ C1(1 − ε). This
implies that for ε sufficiently small

‖u‖L1(Ω) ≥ ‖v‖L1(Ω) − ‖u− v‖L1(Ω) ≥ C1(1− ε)− C0ε ≥ C1

2
.
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With this ε we obtain ∫

Ω

|∇u(x)|dx ≤ 2
C1
‖u‖L1(Ω). (29)

The choice of ε only depends on the constants C0, C1, which only depend on Ω,
hence (28) and (29) imply the result for Ω = [0, 1]n.

Now let Ω be an extension domain. For any u(x), v(x) ∈ W 1,1(Ω) there exist
extensions U(x), V (x) to Rn such that

∫

Rn

|∇U(x)|dx ≤ CΩ

∫

Ω

|∇u(x)|dx

∫

Rn

|∇U(x)−∇V (x)|dx ≤ CΩ

∫

Ω

|∇u(x)−∇v(x)|dx.

Proceeding as before we assume the case
∫
Ω×Ω

|∇u(x)−∇u(y)|dxdy ≤ ε. Con-
sider S a n-dimensional cube which contains Ω. By appropriate scaling we can
assume that S = [0, 1]n. Define ~a = 1

|Ω|
∫
Ω
∇u(x)dx, v(x) = ax + d and denote

by V (x) its extension to Rn. Since the extension operator is linear, we can find
a constant d such that

∫
S

U(x)− V (x)dx = 0. With this constant the Poincaré
inequality can be applied on S, hence∫

Ω

|u(x)− v(x)|dx ≤
∫

S

|U(x)− V (x)|dx ≤ C0

∫

S

|∇U(x)−∇V (x)|dx

≤ C0CΩ

∫

Ω

|∇u(x)−∇v(x)|dx ≤ C0CΩε.

Again we can estimate

‖u‖L1(Ω) ≥ ‖v‖L1(Ω) − ‖u− v‖L1(Ω)

≥ C̃Ω‖a‖ − C0CΩε ≥ C̃Ω

(
1− ε

|Ω|
)
− C0CΩε >

1
2
C̃Ω.

for ε sufficiently small and some generic constant C̃Ω only depending on the
domain. Hence in this case∫

Ω

|∇u(x)|dx ≤ 2
C̃Ω

‖u‖L1(Ω).

Now ε depends only on the generic constants so the result for the general case
follows using (28).

Sobolev extension domains can be quite complicated, for instance the von
Koch snowflake has this property. For more details on the Poincaré-inequality
see [5, 7]. Let us remark that the same proof holds if we only assume that the
L1-Poincaré inequality holds for Ω.

We are now in the position to prove existence of a minimizer for the denoising
functional with the NLBV and NLBVτ -regularization: For λ, τ > 0 let us define
the functionals for a given image f :

J1(u) := λ‖u− f‖2L2 + NLBV(u) (30)
J2(u) := λ‖u− f‖2L2 + NLBVτ (u) (31)
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Theorem 5.4. Let Ω be a bounded Lipschitz domain and f ∈ L2(Ω), λ, τ > 0.
Then each of the functionals (30), (31) attains a unique minimum in BV(Ω).

Proof. Let un ∈ L2(Ω) be a minimizing sequence for either J1(u) or J2(u). It
follows that a constant C1 exists, such that ‖un‖L2 ≤ C1. Consequently un has a
weakly convergent subsequence un′ in L2(Ω) with limit u ∈ L2(Ω). By the weak
lower semicontinuity of the L2-norm and Lemma 5.1 u has to be a minimum for
(30) or (31), respectively. If u is a minimizer of J1 we can conclude directly from
Lemma 5.3 that u ∈ BV (Ω), as ‖u‖L1 ≤ C(Ω)‖u‖L2 ≤ C3 and NLBV(u) ≤ C
holds. For the case that u is a minimizer of J2, we take an arbitrary point
x0 ∈ Ω̄ and ρ ≤ τ

2 fixed. Consider the sets Zρ(x0) := Bρ(x0) ∩ Ω. If ∂Ω
is Lipschitz, then these sets are Sobolev extension domains and the Cartesian
product Zρ(x0)× Zρ(x0) is contained in {(x, y) ∈ Ω× Ω||x− y| ≤ τ}, hence

∫

Zρ(x0)×Zρ(x0)

|∇u(x)−∇u(y)|dxdy ≤ NLBVτ (u) ≤ C.

This estimate also holds for the weak definition (21) on the left hand side with
Ω = Zρ(x0). Moreover since ‖u‖L1(Zρ(x0)) ≤ C(τ)‖u‖L2(Zρ(x0)) ≤ C(τ)‖u‖L2(Ω)

Lemma 5.3 implies that |u|BV (Zρ(x0)) ≤ C(τ) for any x0 and ρ ≤ τ
2 . As Ω̄ is

compact, it can be covered by finitely many sets Ω =
⋃N(τ)

i=1 Zρi(xi). By means
of a partition of unity [14] we can decompose any function φ ∈ C∞0 (Ω) such
that φ =

∑N
i=1 φi(x) and φi is supported in Zρi(xi) and ‖φi‖∞ ≤ ‖φ‖∞. Hence

∫

Ω

u(x)∇.φ(x)dx =
N(τ)∑

i=1

∫

Zρi
(xi)

u(x)∇.φi(x)dx

≤ N(τ)max
i
|u|BV (Zρi

(xi)) ≤ C(τ),

with some constant C(τ) only depending on τ and Ω. This finally proves that
u ∈ BV (Ω). The uniqueness follows from the convexity of NLBV, and NLBVτ -
functionals and the strict convexity of ‖u− f‖2L2 .

For simplicity we proved Theorem 5.4 for Lipschitz domains, but it is also
true for extension domains for Sobolev spaces.

We may as well use the nonlocal BV-functional for solving ill-posed problems
such as deblurring. Let K be a blurring operator, and f a given blurred image.
The problem reduces to solving the operator equation

Ku = f.

One possibility to regularize this equation is to minimize the functional

T (u) = λ‖Ku− f‖2 + NLBV(u). (32)

The following theorem proves existence and uniqueness for (32):
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Theorem 5.5. Let Ω be a Lipschitz domain. Let K : L1(Ω) → L2(Ω) be a
linear and continuous operator. Moreover, suppose that the following conditions
hold:

K(ax + b) = 0 ⇔ (a, b) = (0, 0) ∀a, b ∈ R (33)

Then (32) has a unique minimum in BV(Ω).

Proof. A minimizing sequence un ∈ L1(Ω) is uniformly bounded in the sense
that constants C1, C2 exists with NLBV(un) ≤ C1 and ‖Kun‖L2 ≤ C2. From
(25), the Poincaré-inequality for BV, and the compact embedding of BV into
L1, a sequence of affine functions g′n(x) and a subsequence un′ of un exists
such that un′ − gn′ converges in L1. By continuity K(un′ − gn′) converges
in L2. From ‖Kun‖L2 ≤ C2 it follows that ‖Kgn′‖L2 is uniformly bounded.
Now the vector space of affine function can be identified with R2. In particular
all norms on this space are equivalent. From the nondegenerarcy condition
(33), (ax + b) → ‖K(ax + b)‖L2 and (ax + b) → ‖ax + b‖L1 define equivalent
norms on this finite dimensional space. Since Kgn′ is bounded and by the
finite dimensionality we find a subsequence gn′′ converging in L1 to some affine
function g. Hence also un′′ converges in L1 to some u ∈ L1 and by continuity
Kun′′ → Ku in L2. From the semicontinuity of the L2-norm and Lemma 5.1 u
is a minimizer, which is unique by strict convexity. u is in BV by Lemma 5.3
and Lemma 5.1.

The hypothesis (33) is a generalization of the analogue condition for BV-
regularization, where only Kb = 0 ⇔ b = 0 is needed (compare [9]). If we
restrict ourselves to dimensions n = 1 or n = 2, the condition K : L1(Ω) →
L2(Ω) can be replaced by K being linear and continuous beween L2 (similar
as in [9]). Instead of the compact embedding of BV → L1, the continuous
embedding BV → L2 and weak compactness can be used to prove existence of
a minimizer.

5.1 G-norm

As it was done for the BV-norm we can look at a corresponding dual G-norm.
Following [17] we can define a dual norm for the NLBV and NLBVτ functionals
(using their definition in weak form ). Since we are interested in the case of a
bounded domain, we have to include Neumann-boundary conditions as in [3]:
Denote by N the outward normal of Ω then for f(x) ∈ L2

‖f‖∗,nl := inf{‖φ‖L∞(Ω×Ω)n}, where (34)
f = ∇ψ,

ψ.N = 0 on ∂Ω and ψ =
∫

Ω

φ(x, y)− φ(y, x)dy.

And similarly for the NLBVτ , where the infimum is taken over L∞(X)n func-
tions as in (22).
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Just as in [17] a minimizer of (30) with f ∈ L2(Ω), can be characterized
in the following way: If ‖f‖∗,nl ≤ 1

2λ , then a minimizer u vanishes: u = 0. If
‖f‖∗,nl > 1

2λ , then a minimizer is characterized by f = u + v, where

‖v‖∗,nl =
1
2λ

∫

Ω

u(x)v(y) =
1
2λ

NLBV(u).

In view of the equivalence of the nonlocal functional to a quotient norm
(Lemma 5.2), this G-norm is equivalent to a corresponding one in a dual quotient
space. This leads to the definition

‖f‖∗ := inf{‖ξ‖L∞(Ω,R2) | f = divξ, ξ.N = 0 on ∂Ω,

∫

Ω

ξ(x)dx = 0} (35)

If follows if ‖f‖∗ < ∞, then
∫
Ω

f(x)dx = 0 and
∫
Ω

xf(x)dx = 0. The difference
to the definition in [3] is the additional condition

∫
Ω

ξ(x)dx = 0. If follows fairly
easily that this yields an equivalent norm to ‖f‖∗,nl: If ξ satisfies the conditions
in (35) then φ(x, y) := ξ(x)−ξ(y)

2 can be taken for (34). On the other hand, if ψ is
as in the definition of ‖f‖∗,nl, then it is in the set (35) and ‖ψ‖L∞ ≤ 2|Ω|‖φ‖L∞ .

5.2 Bregman iteration

In [18] a significant improvement of the bounded-variation regularization was
introduced. Instead of the BV-seminorm the so-called Bregman distance is used.
For a convex functional J(u) the corresponding Bregman distance is defined as

D(u, v) = J(u)− J(v)− 〈∂J(v), u− v〉.
Here ∂J(u) denotes the subgradient of J(u) at u. The idea behind the Bregman
regularization is to use an iterative procedure, where uk is defined as minimiza-
tion of

λ‖u− f‖2 + D(u, uk−1).

Compared to the BV-regularization, this approach shows better results as more
signal will remain in the cleared image. It has proven in [18] that the sequence
uk converges to f . For denoising, the iteration is stopped as soon as the residue
is of the order of the noise level. The Bregman iteration can be implemented
similar to BV-denoising but gives a better result. Moreover, it is a quite general
procedure that can be used for any convex functional.

Contrary to the case of neighborhood filters, the nonlocal BV functional is
convex and hence, the Bregman iteration can be defined. The idea is to replace
the BV-seminorm by the Bregman distance. This yields the following algorithm
(see [18]):

1. Set u0, v0 = 0

2. Define uk by

uk+1 = argminuλ‖u− f − vk‖2 + NLBV(u)
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3. vk+1 = vk + f − uk+1

The iteration is stopped, as soon as the residue ‖uk − f‖ ≤ δ. This procedure
is expected to give a more detailed image, with less structure in the remaining
noise uk − f . In the next section we present the numerical results.

6 Numerical Results

In this section we present some numerical results for the neighborhood filters
and nonlocal functionals. At first we consider the denoising problem in one
dimension. The exact solution shown in Figure 1 is a piecewise constant and
piecewise linear function. To this we added uniformly distributed random noise
with a signal to noise ratio SNR ∼ 8 (Fig. 2). We computed the result with a
discretization of 200 points in the unit interval [0, 1]. In Figure 3 and Figure 4
we show the denoised version for the ROF-method and the nonlocal tv-method.
The results were computed by an explicit Euler method for the steepest descent
flow of (1) with λ = 160 and (31) with λ = 120 and τ = 60 pixels. It can
be seen clearly, that the nonlocal-tv method does not suffer from staircasing
and performs better than BV. However, in the result for the NLBV-functional
(Fig. 4) the corner of the graph are cut, e.g. at the point x ∼ 0.6. To some
extent this can be expected as linear pieces in the graph are preferred due to
(25). On the other hand the discontinuity at x ∼ 0.4 is clearly preserved (in
contrast to a similar functional using second order derivatives).

In Figures 5-10 we present the results for an exact solution (Fig. 5) which
has a cusp, with the same parameters as in the first example. As it can be seen
from the picture the solution for the nonlocal BV regularization is smoother
compared to the BV-case. Figure 9 shows the result for the Bregman iteration
after 3 steps for the NLBV-functional and Figure 10 shows the result after 3
steps of the Bregman iteration for the BV-case. The Bregman iteration for
NLBV gives a better approximation to the exact solution, however, in this case
we observe difficulties to approximate the cusp. Compared to the analogous
result for BV, the nonlocal version appears to have fewer steps. The Bregman
iteration for the first problem with exact solution in Figure 1 essentially does
not improve from the result in Figure 4, since the residual is already in the range
of the noise level.

Let us now treat the two dimensional denoising problem: Figure 11 shows
the noisy image of pixel size 512×512 which was created by adding random noise
to the pixel value and which is uniformly distributed on the interval [-20,20].
This results in a signal to noise ratio of about 12.

Figure 12 shows the denoised version u and the residual f − u using the
Buades-Coll-Morel nonlocal mean filter (3). For this result we used h2 ∼ 120,
and a mollifier Gσ whose support has the size of 9 pixels. For the numerical
computation we restricted the integral in (2) to all pixel y within a 30 × 30
window of x. It can be seen, that the residual hardly contains any texture.

For Figure 13 we use the nonlocal BV method. We compute the image by
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Figure 1: Exact Solution
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Figure 2: Noisy Data
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Figure 3: Solution for BV
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Figure 4: Solution for nonlocal BV

solving the Euler-Lagrange equation for the functional

J(u) = λ‖u− f‖2 +
∫

Ω×Ω

√
(∇u(x)−∇u(y))2 + ε2dxdy

with λ = 0.1, ε = 1
512

It can be seen that the nonlocal BV version has no staircasing effect. How-
ever, comparing it to the nonlocal mean filter we observe that more texture
remains in the residual. This might come from the use of gradients for the
nonlocal BV-functionals.

In Figure 14 we show the first three iterations for the Bregman iteration
for the NLBV-functional. The image size was 256 × 256 in this case and we
choose λ = 0.01. In this case the procedure can be stopped after the second
iteration. It can be seen, that the Bregman step from the first to the second
image improves the quality, by adding more details to u.

In Figures 15–18 we show the result for denoising applied to a textured image.
The image size was 128× 128 pixel. Figure 15 displays the noisy image, which
was created by adding uniformly distributed noise resulting in a signal-to-noise
ration SNR∼ 9.

21



Fig. 16 shows the result for the Nonlocal Mean filter (3) with the same
parameter setting as for Fig. 12. Fig. 17 and Fig. 18 show the result for the
BV-functional (1) and the NLBVτ functional, where λ was chosen the same for
both functionals λ = 0.05, and τ = 9 pixels. It can be seen that the nonlocal
BV-version is better than pure bounded variation regularization. Compared to
the nonlocal mean filter both the BV and the NLBV functionals do smooth too
much.

The next results in Figures 19–22 are the analogous result for a noisy moon
image, with similar settings as before (image size 128× 128, SNR∼ 8, λ = 0.09
for BV and NLBV). There is very few difference between the results, but the
nonlocal BV gives smoother shadows than the BV-denoising. Still, the nonlocal
mean filter performs very well.

In the next figures (Fig. 23-28) we show the results for the deblurring prob-
lem. Figure 23 shows the data, which are computed by blurring the original
Lenna image with a polynomial smoothing kernel

Kf =
∫

k(x− y)f(y)dy k(s) =
1
α

{
1− x2

α x2 ≤ α
0 else

and α = 0.001. For all the deblurring problem the image size was 256 × 256.
Figure 24 compares the results of the nonlocal BV-method on the left with
the usual BV-regularization on the right. The computation was done by an
explicit Euler method for the steepest descent flow for the functional (32) (but
with the NLBVτ and the BV-functional instead of NLBV.) The regularization
parameter λ was λ = 50 for BV and λ = 5 for the nonlocal BV, with τ = 9.
It is obvious, that the nonlocal-BV method gives smoother result whereas BV
tends to blocky structures. Moreover the nonlocal variant does preserve edges
as well as BV does. However, there are some artefacts visible around the main
edges for the nonlocal version. In Figures 25-28 we present another result for
the deblurring problem. In this case λ = 10 was chosen the same for the BV
and NLBV case. The nonlocal result Fig. 28 appears to be slightly better with
more details, whereas in Fig. 27 these details are more blocky.

Considering the numerical complexity of the nonlocal method it can be
said that the NLBVτ -regularization does not differ much from the usual BV-
regularization if τ is small. One Euler step of the nonlocal method is about τ2

times a corresponding BV-step. In fact, choosing a large τ does not seem to
change the solution very much, for the NLBV-case τ can be chosen smaller than
the corresponding parameter ρ for the neighborhood filters.

Summing up, we observed that the nonlocal BV functional shows smoother
result than the BV and seems to be slightly better for textured images and small
details. However, it generally cannot improve the nonlocal mean filter for the
denoising case.
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Figure 5: Exact Solution
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Figure 6: Noisy Data
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Figure 7: Solution for NLBV
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Figure 8: Solution for BV
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Figure 9: Solution after 3 steps of Breg-
man iteration for NLBV
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Figure 10: Solution after 3 steps of
Bregman iteration for BV
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Figure 11: Noisy image

Figure 12: Nonlocal Mean Filter and the residual f − u

Figure 13: Result for Nonlocal BV and residual f − u
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Figure 14: Result Bregman iteration u0,u1,u2 and corresponding residual
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Figure 15: Noisy image Figure 16: Nonlocal mean Filter

Figure 17: Solution for BV Figure 18: Solution for nonlocal BV
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Figure 19: Noisy image Figure 20: Nonlocal mean Filter

Figure 21: Solution for BV Figure 22: Solution for nonlocal BV

Figure 23: Blurred Image
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Figure 24: Result deblurring: NLBV and BV

Figure 25: Original image Figure 26: Blurred image

Figure 27: Deblurring with BV Figure 28: Deblurring: nonlocal BV
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