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Abstract

We investigate how TV regularization naturally recognizes scale of individual features of an image�

and we show how this perception of scale depends on the amount of regularization applied to the image�

We give an automatic method driven by the geometry of the image for �nding the minimum value of the

regularization parameter needed to remove all features below a user�chosen threshold� We explain the

relation of Meyer�s G norm to the perception of scale� which provides a more intuitive understanding of

this norm� We consider other applications of this ability to recognize scale� including the multiscale e�ects

of TV regularization and the rate of loss of image features of various scales as a function of increasing

amounts of regularization� Several numerical results are given�

� Introduction

Consider the problem of denosing or �ltering a noise�contaminated or otherwise degraded �but not blurred�
image in Rn� given a measured image u���x�� �nd an approximation u��x� to the true image utrue��x�� where
u� � utrue 	 �� and where ���x� is the noise or other degradation in the image
 Typically our goal is to
recover the true image utrue as exactly as possible and�or to �nd a new image u in which the information of
interest is more obvious and�or more easily extracted


��� Total variation regularization in image processing

Rudin� Osher and Fatemi �ROF� proposed �
�� to modify a given image by decreasing the total variation

TV �u� �

Z
jru��x�j d�x ���

in the image while preserving some �t to the original data u�
 Equation ��� is typically referred to as the
total variation or bounded variation seminorm of u
 There are two common formulations of this problem as
solved by the ROF model� the unconstrained or Tikhonov formulation �����

min
u

�

�
ku� u�k

� 	 �TV �u� � �
�

and the noise�constrained problem�

min
u

TV �u� subject to ku� u�k
� � ��� ���

where the error or noise variance �� is assumed to be known �e
g
 Gaussian noise�
 As shown in ����� solving
�
� is equivalent to solving ���
 In this paper we consider primarily the unconstrained formulation �
�
 We
note that throughout this paper k � k � k � kL� � unless otherwise noted
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In �
�� larger values of � result in more regularization �and thus less total variation� and less goodness
of �t of u to the original data u�� as illustrated in Figure �
 Although TV regularization was originally
introduced for deblurring and denoising grayscale images� it has subsequently been employed in a variety of
other image processing tasks such as denoising color or other vector�valued images ����� blind deconvolution
����� segmentation ��
�� inpainting ����� image decomposition ��� 
��� and upsampling �
�


Figure �� Results of TV regularization of a simple noisy R� function �top row� and the standard Mandrill image �bottom
row� when using di�erent values of � in solving �
�� For the R� function� the �rst plot shows the true and noisy images� For
the Mandrill image� the �rst image is the original �noise�free� image� For both� the subsequent �gures are the results of solving
�
� using � � 	�			��	�		��	�	� and 	�� �and � � ��	 for the R� function�� respectively�

��� Scale recognition and choice of regularization parameter

Scale is important in both understanding and manipulating an image
 At present the e�ects of TV
regularization�in particular� how these e�ects relate to the scale of the various image features�are only
partially understood
 Additionally� how to choose the regularization parameter � when solving �
� is often
done haphazardly or experimentally
 In contrast� a variety of researchers have more thoroughly investigated
other aspects of TV regularization� such as existence and uniqueness of solutions� development and conver�
gence analysis of numerical schemes� and the basic e�ects of TV regularization on an image
 A representative
sampling of the literature includes ���� ���� ���� ����� ����� ����� ����� ����� �
��� �
��� �
�� and ����


If there is some regularity to the noise and if the noise level is known� then we might use ��� to solve
the TV regularization problem �and the choice of � in �
� would be inherent�
 Otherwise� we must in some
intelligent way choose a value for �
 In the past� this has been done more by trial and error rather than
by any well understood theory
 While this might result in �indeed� the choice of � is still often driven by�
an image which �looks nice�� it is generally unclear precisely how the image itself has been a�ected
 Even
in the case of known noise level and type� we may want to choose � based on criteria other than trying to
match a noise constraint
 Additionally� we may want to apply regularization to a noise�free image in order
to more easily extract the desired information from the image� e
g
 in segmentation


There are existing methods for estimating a �good� value of �� such as generalized cross validation and
the L�curve
 See Vogel�s survey of regularization parameter selection methods in ����� and further details in
the papers he references
 These methods for �nding � are typically based on minimizing a certain functional
or estimating the �corner� point of the L�curve
 That is� they are based on numerics
 In contrast� the
approach we propose in this paper is driven by the geometry of�in particular� the scales present in�the
image to regularize
 It is clear that it would be helpful to have a more automatic� reliable and geometry�
based approach for choosing �
 Also� applying TV regularization would be an even more mathematically
sound and predictable approach to image processing if we better understood how the original image has been
changed� particularly with respect to scale� in producing the regularized image







��� Assumptions

In this paper� we choose the image domain to be the unit square ��� �� x ��� �� as we prefer to have the
scale of image features be consistent� regardless of the discretization �resolution� of the image
 In the
Appendix we give a brief discussion on how the value of � is a�ected by the choice of domains
 Also� in our
numerical examples all images in R� are grayscale and� again for consistency� have been normalized so that
the minimum and maximum image intensity values �prior to addition of noise and�or regularization� are �
and �� respectively


��� Outline

In Section 
 we discuss how TV regularization naturally perceives scale in an image� including how this
perception changes with increasing amounts of regularization �larger values of � in solving �
�� applied to
the image
 The main contributions of this paper are given in Sections � � �
 In Section �� we motivate and
give an algorithm for determining the minimumvalue of � in �
� that will result in the removal of all features
of scale equal to or smaller than any given threshold
 Section � is devoted to relating Meyer�s G norm to
scale� to some degree a consequence of the algorithm given in Section �� which gives us new insight and a
more intuitive understanding of this norm
 In Section � we give several numerical results of this algorithm

Finally� in Section �� we begin to explore additional ways to employ TV regularization�s ability to recognize
scale� including to better understand both the multiscale e�ects of TV regularization and the rate at which
features of any given scale disappear from an image as a function of increasing �
 Conclusions and other
�nal remarks are given in Section �


� Scale� as perceived by TV regularization

In this section we further develop and discuss the notion of scale introduced in �
��
 We show how TV
regularization naturally recognizes scale and how perception of scale varies with �
 We denote by � the
domain of the image
 In general� we assume that � is a bounded connected open set
 In subsequent numerical
examples� � is the unit square


��� A geometric de�nition of scale

This paper relies on results from �
�� in which Strong and Chan analyzed the e�ects of TV regularization on
a discrete �e
g
 digital� image
 If u� is the original image� and u the image resulting from TV regularization�
then the intensity change � in the image due to regularization at position �x is de�ned as

���x� � ju��x�� u���x�j � ���

The intensity change will always be in the direction that reduces contrast between adjacent image features� as
seen in Figure �� for example
 As shown in �
��� there are two fundamental properties of TV regularization�

�
 Edge locations of image features tend to be preserved� and under certain conditions� as described in
�
��� are preserved exactly




 The intensity change � experienced by an individual constant�valued image feature E � � �i
e
 the
feature is a characteristic function on E� is inversely proportional to the scale of that feature�

���x� �
�

scale��x�
� ���

where we de�ne

scale��x� �
jEj

j	Ej
� ���

for �x � E


�



This results are exact for radially symmetric� piecewise constant image features �e
g
 constant�valued circles�

The validity of these results in the more general case are discussed in a bit more detail in �
��
 Also� in the
latter part of Section 

�� we further study �experimentally� a few more general cases in which this theory
no longer precisely describes the behavior of TV regularization


The notion of scale described above arises naturally in TV regularization� as described in �
��� in which
the authors consider primarily piecewise constant images
 This� of course� limits the generality of the
approach
 But it appears� in fact� that it is an approximation of a seemingly unrelated result by Strang
�
�� from over two decades ago in which the scale of an object is de�ned as basically the ratio of an area
divided by a perimeter
 We will brie�y discuss Strang�s result later in Section � with formula ���� after
we have introduced the necessary mathematical tools for our analysis
 It is both interesting and important
to note that the authors of �
�� derived their empirical laws ��� and ��� prior of learning of the results of
�
��
 One important advantage of using ��� and ��� for de�ning scale is that they are easily applicable and
implementable in practice� as we will show in this paper
 The reader should be aware� however� that the
theory developed in this paper implicitly deals with the case of piecewise constant images� and that for
general images it is an approximation of more general and abstract de�nitions of scale� which nevertheless
provides very interesting and useful results


The notion of scale de�ned in ��� may at �rst be unclear if new to the reader
 To make it easier to
understand� we explain it for two simple examples
 A circle of radius r would have scale � 
r� � 

r � r�
�
and similarly the scale of a sphere is scale � �

�
r
� � �
r� � r��
 Second� a rectangle of k� x k� pixels on an

n x n discretized grid of the unit square would have scale � k�k� � 
n�k�	k��
 Consequently� a k x k square
has the same scale as a rectangle of width k�
 and in�nite length �and therefore the scale of a k x k square
will always be larger than the scale of a rectangle with one side of k�
 or less�
 In general� large� blocky
features have relatively large scale� while thin features�even those that are very long�have relatively small
scale
 This fact is related to the main results of ����� in which Dobson and Santosa use Fourier analysis to
show that TV regularization is particularly suited to denoising images comprised of large� blocky features

Interestingly� a circle and square of equal diameter�width have the same scale
 This is also true in higher
dimensions


There is currently an on�going discussion about other� more general�and also more mathematically
abstract�ways of de�ning scale as perceived by TV regularization
 For instance� one may de�ne the scale of
an object as being the radius of the largest ball which can be contained in the object
 This is directly related
to ��� if the object is simply a ball
 In general� de�nition ��� is intuitively simpler and is practically �as
opposed to theoretically� more useful than other existing notions of scale� and ultimately it makes possible
the results that we give in this paper
 We will further discuss this point in Section � with formula ����


Property � above is quite signi�cant and is a primary reason TV regularization is used in a variety of
image processing applications� such as those listed at the end of Section �
�� not to mention its potential use
in applications other than image processing
 Property 
 explains in a very basic way how TV regularization
works� smaller�scaled features �including noise� experience large reduction in intensity relative to background
and surrounding features� thus removing or nearly removing them them by ��attening� them� i
e
 reducing
contrast with adjacent image features� while larger�scaled features experience relatively little intensity change
and are consequently left more intact
 This notion of ��attening� is especially reasonable for digital images
which are comprised of numerous piecewise constant features on the order of a single pixel or larger
 This
was seen in Figure �
 As Figure � also illustrates� a less than precise understanding of Property 
 can lead
to undesirable results when using TV regularization


Figure 
 is a juxtoposition of four simple but illustrative plots which show the results of TV regularization
on a very basic R� function using four di�erent values of � in solving �
�
 The plots illustrate the well known
fact that change in intensity of an image feature due to TV regularization depends only on its scale� not on
its original amplitude�intensity
 Of course the change in intensity relative to adjacent features cannot be
larger than the original intensity relative to those features� i
e
 the original contrast
 The plots also illustrate
that greater original relative intensity requires a larger value of � in order to completely remove that feature
by regularization
 Further basic behavior of TV regularization� including how the scales present in an image
evolve for increasing values of �� are subsequently discussed and illustrated� including in Figures � and �


For completeness� we note that as described in �
�� TV regularization can be viewed as an unbiased �where
biased means prefering high�contrast edges to low�constrast edges� or vice versa� as discussed in �
��� case
of anisotropic di�usion� and consequently Property 
 is also one way of explaining how anisotropic di�usion

�
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Figure 
� Change in intensity depends only on scale� In each plot� the dotted line is the original function and the solid line
is the regularized function using � � 	�		�

� 	�		

	� 	�		
		 and 	�	�			 in solving �
�� The width of each of the �rst two
features is 	�	� and of each of the last two features is 	�	
� so that the scale of the last two features is double the scale of the �rst
two� Consequently� the change in intensity for the �rst two features is double that of the second two� since change in intensity
is inversely proportional to scale� The �background� to the sides of the four �features� also changes in intensity proportionally
to its width� but in generally the change in the background is relatively negligible�

works
 We also note that Bellettini� Caselles and Novaga did a related analysis ��� of TV regularization as
it relates to anisotropic di�usion by considering the eigenvalue problem of �r � � rujruj� � u
 Finally� in �����

Brox and Weickert recently proposed to use the TV �ow to compute a local measure of scale in an image


��� Scale as a function of change in intensity

We further consider how ��� relates change in intensity to scale
 When rewritten as

scale��x� �
�

���x�
� ���

we see that scale can be viewed as a function of change in image intensity
 Although simple�in fact� in part
because it is so simple�this relationship is potentially very useful
 Essentially what it means is that we can
determine what the scales of the various image features are throughout the image by looking at how much
intensity change occurs as a result of applying TV regularization to the image


Rewriting ��� as ��� induces a slight change in the de�nition of scale
 While the more geometric de�nition
of scale ��� gives the scale at each location in terms of what image feature it is part of� the intensity change
de�nition ��� de�nes scale at each location� e
g
 at each pixel� without knowledge of surrounding features

�This simple notion can be complicated by the fact that a speci�c location in the image might be part of
di�erent image features of varying scales
� This is an advantage of the new formulation ��� of scale here
 The
de�nition ��� of �
�� was derived for piecewise constant images� in which case each pixel can be associated
with a feature of the image so that both de�ntions ��� and ��� are equivalent
 This is illustrated with the
�rst example given in Section 

�
 In the case of general images� they are no longer equivalent
 But since
TV regularization creates piecewise constant images� particularly when the image is discrete �e
g
 digital��
then even a small amount of regularization results in an image that is piecewise contant� and ��� and ���
are once again quite compatible
 We will return to the issue of how ��� and ��� are approximations of more
abstract de�nitions of scale in Section � with formula ����


Understanding how to measure scale as perceived by TV regularization has many potential uses� including
four that we investigate in this paper�

�
 For any given image� we can �nd the smallest � needed to remove all features whose scale is less than
any user�chosen scale threshold




 We give an intuitive explanation of Meyer�s G norm by relating it to the above notion of scale


�
 We develop a better understanding of how TV regularization can be used to produce multiscale repre�
sentations of images


�
 We better understand how rapidly various scales present image disappear with increasing values of �


In this paper we will investigate the �rst application in detail� and to a lesser extent� the second applica�
tion
 We will also consider the �nal two applications� but we expect that our results will be just the beginning

�



of more investigation of these ideas
 A �fth promising application is that once TV regularization has been
applied� we can determine the scales of the remaining features and using ��� and ��� we can determine how
much intensity was lost due to TV regularization� and add back this lost intensity to the regularized image
to get a more accurate approximation u of the true image utrue
 This �fth application turns out to be a bit
more complicated than it might �rst seem� and consequently it is being considered in a separate paper


��� Determining scale using the scale recognition probe

It turns out that TV regularization can be used for recognizing the scales present in an image� either the
original image or a regularized image
 This scale recognition is accomplished by using ��� in conjunction
with performing what we refer to as a scale recognition probe for determining scale��x� in a given image v�

Scale Recognition Probe Algorithm

�
 Choose �probe�



 Find uprobe � arg min
u

�

�
ku� vk� 	 �probe TV �u��

�
 Compute ���x� � juprobe��x� � v��x�j�

�
 Compute scale��x� �
�probe
���x�

�

To be clear� the purpose of the scale recognition probe is not to regularize an image� it is regularization
done in order to determine the scale� as perceived by TV regularization� present in the image
 The image to
probe� denoted by v� in order to determine scale might be the measured image u� itself� a regularized version
u of u�� or a noise�free image


To illustrate the scale recognition probe� we apply the above algorithm to the simple image shown in
Figure �
 Image �a� is the noise�free image in which to determine scale
 Image �b� is the image showing
scales as predicted by ���
 For example� since the domain is the unit square and the image is 
� x 
�� the
scale of the �rst object� a single pixel� is scale � ���
��� � ����
�� � ����
�� Image �c� is the image showing
scales computed using the scale recognition probe
 Since the scale of the background is quite large relative
to the scales of the rectangles� in order to more easily see the scales of the shapes relative to each other� in
both �b� and �c� we assign the background a value of �
 Since the image in �b� results from the geometric
de�nition of scale ��� and the image in �c� results from the intensity change de�nition of scale ���� then the
agreement between these two images illustrates the agreement between these two de�ntions of scales


�a� Original image�

0.02

0.04

�b� Theoretical scales�

0.02

0.04

�c� Computed scales�

Figure �� The scales of individual features as perceived by TV regularization� Image �a� is the noise�free image in which to
recognize the scales of various rectangular image features� Image �b� is the image showing the scale as theoretically predicted
by ���� The scales of all ten objects� from smallest to largest �top to bottom� left to right in the image� are 	�	�

� 	�	����
	�	���� 	�	
		� 	�	

	� 	�	�		� 	�	���� 	�	���� 	�	�
� and 	�	
		� Image �c� is the image showing computed scales found by
the scale recognition probe �using �probe � 	�			��the value of �probe should be relatively small� as discussed in Section 
����
which is based on �nding scale using ���� The computed scales in �c� found using ��� match nearly exactly the theoretically
predicted scales in �b� found using ���� In both �b� and �c�� we set the scale of the background to be 	 in order to better see
the scales of the rectangular objects�

�



As seen in the image in �c�� the corners of the squares and the corners and ends of the rectangles experience
a slightly greater change in intensity� and thus are interpreted as having smaller scale
 The de�nition of scale
and the change in intensity ��� is exact for radially symmetric features� for example� constant�valued circles

From this point of view� the corners of each square� for example� are like smaller�scaled features attached to a
larger one� like four small circles connected to each �corner� of a larger circle
 Of course for discrete images�
any notion of scale will be in�uenced by the resolution of the image� as well as the discretization strategies
incorporated into the numerical schemes used to solve the TV regularzation problem
 The interpretation of
the results of the Scale Recognition Probe supposes clustering of the residual �equivalently� of its inverse see
Steps � and � in the algorithm above�
 Essentially it relies on the trend of TV regularization to yield piecewise
constant images and signals� which has been repeatedly observed experimentally and shown analytically by
a number of researchers


Even in the simple example seen above� it is clear that the Scale Recognition Probe will encounter certain
di!culties when used on more general images
 The Scale Recognition Probe is precise only in the context
of the conditions under which ��� and ��� are exactly true� which� as described earlier� is when the image
features are radially symmetric and constant�valued
 �In the above example� the rectangular features are
constant�valued� but not radially symmetric
� We now brie�y consider other examples which illustrate other
cases where the results of the Scale Recognition Probe are less than precise or may even seem to begin to
break down altogether


In Figure � are six pairs of images� six test images and the corresponding images showing scales as
found using the scale recognition probe� which in short says that scale��x� � �� ���x�
 �Later in Section � we
employ the Scale Recognition Probe is working with several real images
� The �rst three test images deal
with other piecewise constant� but non�radially symmetric �and non�rectagular� features
 The next three
images compare and contrast the results of the Scale Recognition Probe on constant�valued features with its
results on smooth �gradual intensity change� features
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Figure �� Test images which illustrate some of the di�culties that arise when trying to determine scale using the Scale
Recognition Probe� The two main di�culties result from features comprised of various scales and of features having di�erent
�in particular� gradually changing� intensities� Both of these di�culties are ultimately inherent in the nebulous notion of scale
in general and as perceived by TV regularization in particular� rather than being a weakness particular to the approach used
in the Scale Recognition Probe in computing the scale�

Consider the �rst image� an �� x �� �on the unit square� checkerboard image
 As seem in the bottom image
of the image�s computed scales� the scales of each square in the checkered pattern are correctly determined
to be scale � ������� � ������� � ������ However� the scales image is not helpful in distinguishing one
square from another we simply know that the image is full mostly of features of scale �
���
 All of the black
squares surrounding the checkerboard have larger scales because they are also connected to the surrounding
black background� and in particular the scale of the two black squares at the top right and bottom left are
even larger because they are connected on two sides to the background
 This same basic analysis is also
true of the second image of black and white spirals or snakes
 For the third image� �TEST �
���� as seen
in the bottom scales image� the background �surrounding the writing� has uniform scale� as do the letters
and numbers� numbers and the separating bar� but the same ambiguity about feature boundaries is present
as was the case in the �rst two images
 Also� there are several distinct scales present in the patches of
background within individual letters or numbers as well as between di�erent letters and�or numbers
 While
this might be perceived as an inaccuracy or even a breakdown of the Scale Recognition Probe� perhaps
a more appropriate description would be that these di�erent patches of background simply have di�erent

�



scales� although because of the ambiguity of the notion of scale� for these patches of background we cannot
really measure the accuracy of the results produced by the Scale Recognition Probe


The �nal three test images are to compare and contrast the scale of piecewise constant and smooth
�gradually changing intensity� image features
 In the �rst image it is easy to compute the scale of this square
of width �
� �or equivalently the largest circle that would �t inside of this rectangle�� scale � ���� � ������ �
�����
 Similarly� since the image is on the unit square and we are using Neumann boundary conditions �so
that the boundary of the image domain is not included when computing the boundary size of an image feature
adjacent to the boundary� the scale of the surrounding background is scale � �� � ����� � ������ � ��
���
These two scales are clearly seen in the bottom scales image
 In the �fth image� with one square half the width
of the �rst on top of the �rst square� the scale of the larger square is identical to that found in the previous
image� while the scale of the smaller square is also correctly found to be scale � ���� � ������ � ������ and
the scale of the background is again correctly computed to be �

��
 Even in this image� we observe the
tendency of TV regularization to yield images with features that are both more piecewise constant and more
radially symmetric that the original image
 In the �nal image� we have a series of stacked squares� decreasing
in width� to nearly approximate a frustum with square cross�section
 The scale of the background is again
found to be �

��
 However� it is now not even clear how to best de�ne the scale of the frustum� as it is
essentially comprised of several squares of varying scales stacked on top of each other
 We still see that the
corners of each square experience more change in intensity than at the middle of each side of each square

Not surprisingly� even though each square corner is �attached� to a successively smaller square� the corners
themselves are all identical in scale
 Notice now� however� the computed scale near the middle of each side
of each square� as seen in the interesting pattern of scale in the �nal bottom image� which corresponds to
the view of the frustum as a series of squares decreasing in size stacked on top of each other
 �The level�set
view of TV regularization seems especially relevant in this case
� As shown in �
��� the change in intensity
of a radially symmetric with gradually increasing intensity is ��r� � �� r where r is the distance from the
center of the object
 Thus in this case� the scale will be computed as scale�r� � �� ��r�� then the scale as
measured by the Scale Recognition Probe will �nd that scale�r� � � � ��r � r
 While this theory does not
exactly match the given results� as seen in the bottom image� the basic relationship that scale is directly
proportional to distance from the center of the square is evident �except� of course� around the corners�


The above examples demonstrate some of the di!culties that arise when trying to determine scale of
various features in an image by using the Scale Recognition Probe
 However� these di!culties are not
necessarily a problem inherent in the Scale Recognition Probe itself� at the root of these problems is the
fact that most images are comprised of features that are really the composition of multiple smaller� and
larger�scaled features of various intensities
 Fortunately� what is most important in how we will use the Scale
Recognition Probe in the applications discussed later in this paper is that it does accurately measure the
smallest scales present in the image� which can be observed in all of the test images considered above


��� Perception of scale dependent on amount of regularization done

We next comment on how the di�erent scales present in a regularized image depend in large part on how
much regularization has been done to the image
 When using TV regularization� there are two natural ways
to recognize the various levels of scale in an image� �rst is� of course� by simple inspection� which can be
nebulous� second� and more interestingly and usefully� is how TV regularization will perceive scale
 It is well
known that for increasing values of � there is increasing loss of smaller scale ��ner detail� in the image
 We
consider how both perception and loss of scale are a�ected by the value of �


Consider the function labeled as �� extrema� in Figure ��a�
 Depending on how much regularization has
been done to this function� there are three levels of scale at which this function could be viewed� at the
�nest level is the actual function� at the next level is the �� extrema� function� and at the coursest level is
the �� extremum� function
 At successively courser levels� the value of the function in each region is simply
the mean of the values over the subregions in the �ner levels
 Let ���� be the value of � in applying TV
regularization by solving �
� at which the ��extrema function transitions into the ��extrema function� as seen
in �b�
 It turns out that for � � ����� TV regularization perceives the function as the ��extrema function

This is illustrated by the fact that the function produced by solving �
� using � � ������ in �b�� in which u�
was the �true� ��extrema function� is identical to the function produced by solving �
� using � � ������ in
�c�� when using the ��extrema version of u� in �a� to solve �
�
 Similarly� the function produced by solving

�
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Figure �� The smaller scales present throughout a function� as perceived by TV regularization� disappear as � increases� In
�a� is the original R� function� when perceived as having �� � or � extrema� For 	 � � � 	�		��� the function is perceived as
the original ��extrema function� as seen in �b�� For 	�		�� � � � 	�	

�� the function is perceived as the ��extrema function�
as seen in �b� and �c�� For 	�	

�� � � 	��
��� the function is perceived as the ��extrema function� as seen in �c� and �d�� For
	��
��� �� the function is perceived as the constant�valued function in �d�� Note that the background from 	 to ��� and 
��
to �� also changes in intensity proportionally to its scale and that its change is relatively small�

�
� using � � ����� in �c� in which u� was the ��extrema function in �a� �or equivalently� if the u� used were
the original ��extrema function itself in �a��� is identical to the function produced using � � ����� in �d��
when using the ��extremum version of u� to solve �
�
 This illustrates that for � � ����� TV regularization
perceives this function as the ��extremum function seen in �c�
 For � � ����� the resulting regularized
image will simply be the constant image shown in �d�


For this simple function� it is easy to analytically predict what these transitional values of � are� as well as
the exact results of TV regularization on this function for other values of �
 We found analytically the values
for ����� ���� and ���� given in Figure �
 For example� in Figure ��b�� the �� extrema� function evolves
into the �� extrema� function when the decreasing maxima meet the increasing minima as � increases
 For
each of these � extrema� scale � width�
 � ��
� � 
 � ����
 Consequently� the value ���� at which the
��extrema function transitions into the ��extrema function is the value of � for which � � �� ���� � ����
where � is the change in intensity needed for each extrema to complete this transition
 For the �rst and
third groups of three extrema� the maxima and minima are at �
� and �

� respectively� so each needs to
change by �

 for the decreasing maxima to meet the increasing minima� and similarly for the middle three
extrema
 Thus we need � � ��
 so that ���� � ��
��� � ������� as seen in �b�
 We found ���� and ����

similarly

The above example illustrates the well known fact that� in general� any image in Rn will gradually evolve

into an image with larger scales�that is� with less detail� as smaller�scaled features are lost�as � increases

Of course� in general these transitions do not occur at a few distinct values of �
 Indeed� in general these
transitions are more continuous� for most images� at various image locations and for various values of � this
transition is almost continually occuring as � increases
 Also� images are not comprised only of piecewise
constant features� although in the discrete case an n x n image has n� pixels� each with a particular value�
so in this sense the image could be thought of as being piecewise constant� albeit on a very �ne scale

Consequently� the notion of scale is more complicated� as discussed earlier in this section
 The analysis
in this paper helps �but does not exhaustively� develop a precise understanding of how TV regularization
perceives scale in an image and how TV regularization resolves an image into its various scales
 Also� the
relatively simple notion of scale we use in this paper is su!cient �and� indeed� necessary� to obtain the results
we give later


�



� Selection of regularization parameter

We now consider applications of our understanding of TV regularization�s recognization of scale in an image

The �rst application is the speci�c task of removing from an image all features whose scales are less than
or equal to a speci�c threshold� while leaving all other larger�scaled features as intact as possible
 That is�
we would like to �nd the value of � in solving �
� that is just large enough to result in removing all features
below a given scale threshold� scalethresh� but no larger
 We denote this particular � value as �thresh
 Where
scale��x� is the scale of u � arg min

u

�

�
ku� u�k

� 	 �TV �u�� we de�ne

�thresh � minf� � min
�x

scale��x� � scalethreshg� ���

��� An example of what we want to accomplish

As a simple example of what we want to accomplish� we apply TV regularization to the image shown in
Figure �
 This image contains checkboard �texture� of two distinct scales� �
���
� and �
��
�� �where scale
is as in ���� and constant�valued circles and rectangles of four distinct scales� �
���� �
���� �
�
� and �
���

The �rst image is the original image� while the following six are the images in which we have removed all
features at or below six scale thresholds� corresponding to the six di�erent scales present in the image
 The
values of �thresh corresponding to each of the six scale thresholds are given in the caption of Figure �


Figure �� Results of solving �
� using values of � that are just large enough to remove all features at or below speci�c scale
thresholds� The �rst image is the original image� comprised of textures and objects of six distinct scales� 	�		�

� 	�		

	�
	�		
		� 	�	�			� 	�	
			 and 	�	�			� The second image is the result of solving �
� using the minimum value of � that results
in removal of the smallest scale� the smaller of the two checkboard textures� �������� � minf� � min

�x
scale��x� � 	�		�

g �

	�			

� The subsequent images are regularized images found by solving �
� using �thresh values of 	�			
	� 	�		
��� 	�		��
�
	�		��	 and 	�	�

	� which correspond to the scale thresholds of the other texture and the circles and circles� 	�		

	� 	�		
		�
	�	�			� 	�	
			 and 	�	�			� These �thresh values were found automatically� using the �thresh Algorithm given later in
Section ���� The intensities of the objects are the actual intensities� no rescaling has been done to enhance contrast� In this
example� there is essentially no change in the intensity of the background� The initial background intensity was 	�
 and the
intensities of the features were 	 and �� thus the mean of the entire image was approximately 	�
� which is essentially the result
seen in the �nal image found using the relatively large value of � � 	�	�

	�

The values of �thresh and the corresponding images given in Figure � were not found experimentally� i
e

by choosing a sequence of � values and looking at the resulting images in order to see where the di�erent

��



features of varying scales are completely removed
 The algorithm to �nd the �thresh values is automatic and
is based on the ability of TV regularization to recognize scale
 We give this algorithm later in Section �
�


��� Basic strategy for �nding �thresh

The strategy we use to �nd �thresh is an iterative process based on the standard bisection method� where
the desired �root� is �thresh in ���
 With this approach� there are two questions
 First� how do we
choose the initial lower and upper bounds� �min and �max� on our estimate for �thresh to ensure that
�min � �thresh � �max
 The simplest and safest choice for �min is �� since by de�nition � � �
 Since
�thresh � �max� the choice of �max will depend on scalethresh and on the image itself
 We revisit how to
choose �max when we consider our �rst numerical example in Section �
�


As with the standard bisection method� given the current interval ��min� �max� in which our �root� lies�
we will move to either the lower half ��min� ��min 	 �max��
� or the upper half ���min 	 �max��
� �max�
of the interval� and thus we update either �min � ��min 	 �max��
 or �max � ��min 	 �max��
 with each
iteration
 The second question then is how to decide which subinterval to move to with each iteration

If �min and �max are the current lower and upper bounds on �thresh prior to iteration i� then where
�i � ��min 	 �max��
� we �nd ui � arg min

u

�

�
ku � u�k

� 	 �i TV �u�
 We need to determine if there

are any features or portions of features in ui with scale at or below scalethresh 
 To do this we perform a
scale recognition probe� as described in Section 

�� to �nd scale��x� for ui in order to determine whether
scale��x� � scalethresh anywhere �x in the image ui
 If so� then our choice �i is too small and we should move
to the upper half of the interval ��i� �max�
 If not� our choice was su!ciently large� and since �thresh is the
smallest of all such values of �� we know that �thresh � �i� in which case we move to the lower half of the
interval ��min� �i�


Conceptually� we want to compare scale��x� to scalethresh
 Unfortunately� if ���x� � � anywhere in
the image� we end up dividing by �
 We avoid this by instead simply comparing ���x� to �thresh where
�thresh � �probe�scalethresh
 Since scale��x� � scalethresh 	
 ���x� � �thresh� if ���x� � �thresh anywhere �x
in the image� then there are still features at or below scalethresh� in which case we need to increase the value
of � by moving to ��i� �max�� otherwise we move to ��min� �i�


In the end� as with the standard bisection method� our approach will give us an interval ��min� �max�
which contains the �root�� the true value of �thresh
 Convergence is guaranteed� since the estimate interval
is halved with each iteration
 As we are trying to �nding the smallest value of � that will remove all
features of scale at or below scalethresh � if we choose �thresh too small we don�t quite remove all unwanted
features
 In otherwords� underestimating �thresh is not acceptable
 Therefore� given that we know only that
�thresh � ��min� �max�� we necessarily choose for our estimate �thresh � �max


It turns out that we actually need to take �thresh � �max 	 �probe
 Related to this is the fact that we
need to choose �probe small relative to �max
 To avoid an excessively lengthy explanation of these two facts�
we give Figure � to demonstrate that if a particular feature is nearly gone �i
e
 contrast with its neighbors
is nearly ��� then that feature�s scale may not be accurately recognized� as seen in the �rst pair of plots

As demonstrated by the second pair of plots� for a given image� we could choose a smaller value of �probe
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Figure �� For each pair of plots� the �rst plot shows ui� the result of applying TV regularization �
� to the original function
�the dotted function� using �i� and uprobe � the result of applying TV regularization �
� to ui using �probe� For each pair� the
second plot shows the change in intensity � � jui � uscalej� due to the scale recognition probe� which is then used to determine
scale of remaining features� �thresh is the change in intensity threshold corresponding to a scale threshold just larger than the
feature at 	��� In the �rst pair of plots� the true scale of the feature at 	�� would not be recognized when using the current value
of �probe� as there is not su�cient contrast between that feature and neighboring features� In the second pair of plots we used
a value of �probe half that used in the �rst pair of images� and the the true scale of the feauture at 	�� would now recognized�

��



that would lead to accurate measurement of scales
 Ideally� then� we would like �probe to be as small as
possible
 However� the smaller it is� the more precise our solution in solving �
� must be� which requires more
iterations and thus potentially much higher computational expense
 There can be a wide range of values of
� that arise in trying to �nd �thresh
 This range of � values will depend on the image domain �as mentioned
in Section �
� and discussed in the Appendix�� the range of intensities in the image� and the desired scale
threhold
 Consequently� it is not obvious a priori how small is su!ciently small for �probe
 Therefore� we
use �max� our current upper bound on the estimate for �thresh� as a point of reference
 That is� we want
�probe to be small relative to �max
 �Choosing �probe small relative to �min could prove disastrous� as �min

could be very small itself� even �� as it generally is initially
� Still� since we must choose some �nitely small
value of �probe when performing the scale recognition probe� for any given value of �probe we could easily
�nd a simple function that would result in failure to recognize that all unwanted features �scale less than
the chosen scale threshold� are actually not removed� as seen in the �rst pair of plots
 For that pair of plots�
using the given value of �probe� it would appear that we have found a value of �thresh that has resulted in
removal of all features of scale below the given threshold� when in fact �thresh would actually need to be
slightly larger
 In the end we must choose as our estimate �thresh � �max 	 �probe
 Of course� since we
are trying to �nd the smallest value of � that results in the removal of all unwanted features� we want to
choose �probe to be relatively small� which we already established anyway
 Lemma 
 in Section �
� further
explains why we need �probe � �max
 In our subsequent numerical examples� we have arbitarily chosen
�probe � �max����


��� The �thresh Algorithm

We now give the complete algorithm for estimating �thresh� as de�ned in ���


�thresh Algorithm

�
 Set �min � �� choose �max� scalethresh�



 Initialize i � �� �� � ��min 	 �max��
� �probe � �max����� �thresh � �probe�scalethresh�

�
 Repeat steps a � d until error � error tolerance�

�a
 ui � arg min
u

�

�
ku� u�k

� 	 �i TV �u� �

uprobe � arg min
u

�

�
ku� uik

� 	 �probe TV �u� 


�b
 �max � max
�x
juprobe��x�� ui��x�j � � kuprobe��x� � ui��x�kL� � 


�c
 If �max � �thresh then �min � �i

else �max � �i 


�d
 Update� i � i	 �� �i � ��min 	 �max��
� �probe � �max����� �thresh � �probe�scalethresh�

�
 �thresh � �max 	 �probe �� �����max��

The stopping point is described at the top of Step �� where error can be either the maximum tolerable
absolute or relative error
 The absolute error after i iterations would be � ��max � �min� � 


i� given the
initial values of �min and �max� since we are halving this interval with each iteration� and similarly for the
maximum possible relative error
 We allow �probe to vary with �max� to ensure that �probe � �max� in the
above algorithm we update �probe at each step to be �probe � �max����
 Also� to account for numerical
imprecisions� to be more conversative one might choose �thresh to be slightly smaller than the theoretical
�thresh
 In subsequent numerical results we compare �max with ���� �thresh


Prior to giving numerical results for the �thresh Algorithm� in the following section we carry out a
mathematical study of the �thresh Algorithm


�




� Mathematical analysis of the �thresh Algorithm

In this section we analyze the �thresh Algorithm from the perspective of the G norm introduced by Meyer
in �

�
 Essentially� we show how our notion of scale helps give an intuitive interpretation of the G norm and
conversely how this norm gives some enlightening insight into the �thresh Algorithm


��� Meyer�s G norm

Recently� Meyer did an interesting mathematical analysis of the ROF model in �

�
 He introduced a new
space� the G space� to model oscillating patterns�

De�nition � G is the Banach space composed of the distributions f which can be written

f � 	�g� 	 	�g� � div �g� ���

with g� and g� in L�� On G� the following norm is de�ned�

kfkG � inf
n
kgkL� � f � div �g�� g � �g�� g��� g� � L�� g� � L�� kg��x�k �

p
jg�j� 	 jg�j���x�

o
����

See ��� for an analysis of G in a discrete setting and ��� for a generalization of Meyer�s de�nition to
bounded domains in a continuous setting
 We will use the following ball in G �� � ���

G� � ff � G � kfkG � �g � ����

We consider the discrete setting
 It is shown in ��� that G is then the set of functions with zero mean

Therefore what is important is not the space G itself� but the G norm� indeed� oscillating patterns such
as textures have a small G norm and are thus well captured when minimizing the G norm
 The following
Lemma will prove to be useful
 We note that ��n is the discretization step if our image is n x n on the unit
square


Lemma � If f belongs to G �i�e� if f is of zero mean�� then

�

�n
kfkL� � kfkG � �nkfkL� ��
�

Proof In ���� it is shown that there exists g such that f � div �g� and kfkG � kgkL� 
 It is easy to check
that kdivkL� � �n� which gives the right�hand side inequality in ��
�
 Since the identity I � div�� div � we
have � � kdiv��kL�kdiv kL� � from which we get the left�hand side of ��
�
 �

It is a standard result that in a �nite dimensional normed space� all of the norms are equivalent
 Lemma
� gives the equivalence constants explicitly
 It is clear that as n�
 the G norm and the L� norm are no
longer equivalent norms


��� Relating the G norm and ROF model

The following proposition is shown in ��
� �the proof is based on convex analysis��

Proposition � The solution to ��� is given by

u � u� � PG�
�u�� ����

where PG�
�u�� denotes the orthogonal projection �with respect to the L� scalar product� of u� on G�� de�ned

by �		��

One of the main results of �

� happens to be a straightforward corollary of Proposition �
 Where "u� is
the mean of u� over the image domain� we �rst de�ne

�G � ku� � "u�kG� ����

and then give the corollary


��



Corollary � Where u is the solution of ���� we have�

� If � � �G� then ku� u�kG � ��

� If � � �G� then u � "u��

It is well known that for any image there is a �nite value of � above which the solution to �
� is simply
the mean of the original image u�
 Thus we see from Corollary � that �G � ku� � "u�kG is precisely this
value of �
 As we can see� the behavior of the ROF model is closely related to the G norm of the initial data
u�
 Before now� there has been no easy or intuitive interpretation of the G norm


Let us again consider ��� and ���� which link scale to �
 When rewritten as

� � � scale ����

we see that the G norm is proportional to some �average� scale present in the image
 The G norm takes into
account all the features contained in the image� it therefore can be seen as a generalization of the notion of
scale �in the case when several scales are available in the image�
 Notice however that formula ���� is an
approximation� one of its main advantage is that it holds for each pixel� as opposed to the exact formula
���� presented in the next paragraph
 We give a rough explanation of Corollary ��

� If u� has features with scale larger than � scale� then u�u� contains all the features with scale smaller
than � scale


� If all the features in u� are of scale smaller than � scale� then u � "u�


This is another con�rmation that the analysis of the ROF model in �
�� based on scale

Another way to see the link between the G norm and the notion of scale is a result by Strang �
��
 If

f � G� then

kfkG � sup
E��

R
E
f

P �E���
����

where � is the domain of the image� and P �E��� stands for the perimeter of E in � �see ��� for the precise
de�nition of the perimeter of a set�
 The G norm is therefore equal to an area divided by a perimeter� i
e
 a
scale� and thus it is a further justi�cation of our de�nition of scale ���� since it appears that it is a simpli�ed
version of Strang�s result
 As noted earlier� the advantage of our de�nition of scale ��� is that we can easily
use it numerically
 As we have explained at the beginning of the paper� the de�nition of scale ��� is valid
for piecewise constant images� and is just an approximation for general images
 The exact de�nition of scale
would be with Meyer�e G norm and Strang�s formula ����
 Putting this result into practice should be the
subject of future studies
 In this paper� we do not claim to use the most theoretically general de�nition
of scale� the de�nition we use ��� is a good and quite implementable approximation of more general and
abstract de�nitions of scale


In this paper� we have presented the �thresh Algorithm to compute the parameter � in �
� to remove all
the features with scale equal to or smaller than a given threshold
 Thanks to ����� we see that this essentially
amounts to constraining the residual u � u� to be such that ku � u�kG � � scale
 However� as far as we
know� the only algorithm that has been proposed to compute the G norm of an image is the one introduced
in ���
 Interesting� this algorithm is also based on the bisection method� one compares u with PG�

�u�� that
is� one determines whether all the features in u are smaller than � scale


��� Mathematical study of the �thresh Algorithm

In this �nal subsection of our mathematical analysis� we give an interesting theoretical insight into the �thresh
Algorithm
 We take the same notations as in the description of the �thresh Algorithm


Proposition � If scalethresh 
 � � �n� then the �thresh Algorithm will return �thresh � ��

The aim of this proposition is simply to con�rm that the �thresh Algorithm does what we would expect
it to do in one extreme case
 Indeed� � � �n is the smallest available scale in the image� by ���� it is the scale
of a single pixel when the image is n x n and the domain is the unit square
 If we choose scalethresh 
 � � �n�
than we expect to keep all features of the original image� that is� we expect there to be no regularization
done� which is the case if � � �


��



Proof of Proposition � #From Step �a of the �thresh Algorithm and Proposition �� we have

uprobe � ui � PG�probe
�ui�� ����

We recall that �max � kuprobe � uikL� 
 #From ���� and Lemma �� we deduce that

�

�n
�max � kPG�probe

�ui�kG � �n �max� ����

But by de�nition we know that kPG�probe
�ui�kG � �probe
 We thus get

�max � �nkPG�probe
�ui�kG � �n�probe� ����

Using the fact that �probe � �thresh scalethresh� we deduce that

�max � scalethresh �thresh �n� �
��

Since we assume that scalethresh 
 � � �n� we then get �max 
 �thresh
 With each iteration of the �thresh
Algorithm� in Step �c we will always choose �max � �i � ��min	�max��
 � �max�
� since initially we take
�min � � in the �thresh Algorithm So given an initial �max� where �kmax is the value of �max at iteration
k� we will have �kmax � �max�
k� which of course � � as k � 

 Finally� since �probe � �����max in our
implementation of the �thresh Algorithm� so that �thresh � �����max� then �thresh � � as k �

 �

The following result helps to further explain why �probe needs to be small
 Let us �rst denote
�� � ju� � u�j� where u� � arg min

u

�

�
ku � u�k

� 	 �TV �u�� and for i � �� �Gi � kui � "u�kG� with

notations of the �thresh Algorithm


Lemma � If �probe � �Gi � then we have ��probe � ��Gi �

Proof #From Step 
a of the �thresh Algorithm and Proposition �� we have

ui � u� � PG�i
�u��� �
��

#From Corollary �� we know that exactly one of the following statements �i� or �ii� holds�

�i� If �probe � �Gi � then kuprobe � uikG � �probe


�ii� If �probe � �Gi � then uprobe � "u�


If �probe � �Gi � then we will have ��probe � ��Gi 
 �

As a direct consequence of Lemma 
� we see that if �probe � �Gi � then ��� cannot be used to compute
the scale anymore
 Therefore� if we want to check if features with a given scale are still present in ui� then
we need to have �probe � �Gi 
 Ideally we have �probe � �Gi 


The result of Lemma 
 is illustrated in Figure �� which illustrates why �probe needs to be small
 On the
other hand� the smaller �probe is� the more accurate we need to be when computing uprobe� which is more
expensive
 As previously mentioned� we arbitrarily choose �probe � �max���� in our implementation of the
�thresh Algorithm


This ends our mathematical analysis of the �thresh Algorithm
 In the following two sections we turn
our attention to numerical results of the �thresh Algorithm and to other ways in which to exploit our
understanding of how TV regularization recognizes scale in an image


��
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Figure �� Results of applying the �thresh Algorithm to the Mandrill image� where scalethresh � ���	
� is the scale of a
single pixel� First is a plot of the values of �min� �i and �max produced by the �thresh Algorithm� Next is the original image�
followed by the images corresponding to the �rst three values of �i found by the �thresh Algorithm� The �nal estimate is
����� � 	�			

�

� Numerical results of the �thresh Algorithm

We now give some examples of applying the �thresh Algorithm to both noise�free and noisy images


��� A detailed look at the �thresh Algorithm

We �rst apply the �thresh Algorithm to the Mandrill image shown in Figure �
 In this example we wish
to �nd the value of �thresh that will result in the removal of all features of scale less than or equal to
the scale of a single pixel
 Of course� larger features will also be a�ected by the regularization� and some
may even be removed� depending on their initial intensity levels and contrast with surrounding features

This image is 
�� x 
�� on the unit square� thus scalethresh � ���n�� � ��n � � � �n � ����
�
 So we are
trying to �nd �������
 The intensity of the image is normalized to be between � and �� thus we choose
�max to be large enough to completely change the intensity of a single pixel by �max � �
 Using ����
�max � �max scalethresh � � � ����
� � ��������


As this is the �rst time we have seen this algorithm in action� it is enlightening to see what each iteration
of the algorithm produces� both the value of �i� the midpoint of the estimate interval ��min� �max� for
�thresh for each iteration� and the corresponding regularized image
 The �rst plot in Figure � is �min�
�i � ��min 	 �max��
 and �max values for each iteration
 Next is the orginal �noise�free� image and the
images corresponding to the �rst few �i values found by the algorithm
 Subsequent images appear virtually
identical and are omitted
 As seen in the plot of � values and as observed in the images themselves� most
of the change occurs within the �rst few iterations� particularly if good initial values of �min and �max are
chosen


We can �nd as precise an estimate for �thresh as wanted
 In general� where �i is our estimate at iteration
i for �thresh� and where �min and �max are the initial lower and upper bounds for the �thresh Algorithm�
then after each iteration we have a bound on the absolute error of j�i � �threshj � � �

�
�i��max � �min��

and similarly for the relative error
 This additional precision comes at a numerical price and is normally
unnecessary� given the resulting insigni�cant amount of change in the image
 The �nal estimate where
scalethresh � ����
� is ������� � ������



��� Results of the �thresh Algorithm for noise	free images

We next give results� both the values found for �thresh and the corresponding images� of applying the �thresh
Algorithm to three standard �noise�free� images using scale thresholds of 
k�� x 
k�� pixels for k � � to �
�e
g
 for k � �� the scale threshold is a single pixel�
 For an n x n image on the unit square� these correspond
to scales of 
k�� � �n for k � � to �
 Of course� these scales given for square features correspond to a variety
of non�square features
 For example� the scale of an � x � pixels square is also the scale of both a circle
of diameter � pixels and a rectangle of � pixels width and in�nite length
 Results are given in Figure �
and Table �
 The Mandrill and Toys images are both 
�� x 
��� while the Canaletto image is ��
 x ��


Consequently� the scale thresholds for the Mandrill and Toys images range from ����
� to ���� while the
scales thresholds for the Canaletto image range from ��
��� to ���
� as seen in Table �


��



In all three cases� it seems that a signi�cant amount of regularization was necessary even for this small�
est possible scale threshold of a single pixel
 This is seen in comparing the �rst and second images� the
original and the result of using scalethresh of one pixel� in each of the three sets of images
 Later� in Sec�
tion �
�� in which we brie�y consider the multiscale e�ects of TV regularization� we look at the results of
TV regularization applied to the Mandrill image when using � � ����������� ��
�������� ���� ����������


The results seen in Figure � are not quite as obvious and perhaps not as dramatic as those seen in Figure �

This is expected� as for these images we have not attempted to choose scale thresholds corresponding to
speci�c scales present in the images� as we had done in obtaining the results of Figure �
 Still� for each of
the three images in Figure �� there are a number of speci�c features which are obviously present in a few of
the images in the sequence� but then disappear once a certain scale threshold is reached
 The conclusion is
that each feature �or portion of a feature� was larger than the scale threshold used to obtain the images in
which it was still present� but smaller than the scale threshold used in obtaining the image in which it �rst
was absent


It is not completely obvious from inspection that each of the images displayed has been regularized just
enough to remove all features at or below the given threshold
 What is more apparent is the similar levels
of scale present in the three di�erent images after applying the �thresh Algorithm using the same scale
threshold� as we now describe
 Recall that the Mandrill and Toys images are 
�� x 
��� while the Canaletto
image is ��
 x ��

 Then the �rst �the original� Mandrill and Toys images both have features with scale
up to and including ����
�� the scale of a single pixel in a 
�� x 
�� image
 The �rst �original� Canaletto
image has scale up to and including ��
���� the scale of a single pixel in a ��
 x ��
 image
 It is the
second Canaletto image� the result of the �thresh Algorithm using a scalethresh � ����
�� that should be
compared to the �rst Mandrill and Toys images
 Similarly� the second Mandrill and Toys images and the
third Canaletto image all contain features of scale up to and including ����
� as a resulting of applying
the �thresh Algorithm using scalethresh � ����
� while the third Mandrill and Toys images and the fourth
Canletto image all contain features of scale � ��
��� and so on
 Thus we compare Mandrill and Toys images
�� 
� 


� � along with Canaletto images 
� �� 


� �� respectively
 By comparing the appropriate images� we do
indeed see similar levels of scale� i
e
 degrees of detail� in all three of the images for any given scale threshold


��� Results of the �thresh Algorithm for noisy images

We next apply the �thresh Algorithm to three noisy images� using four di�erent noise levels� as shown in
Figure ��
 We consider the 
�� x 
�� Peppers image� the 
�� x 
�� Elaine image� and the ��� x ��� Blood
Vessels image
 Before adding noise� as usual the images are normalized to minimumand maximum intensities
of � and �� and the domain is the unit square
 The same Gaussian noise is added to all three images
 We
do this for four di�erent levels of noise� which found are by scaling the noise to have maximum magnitude
�both positive and negative� of �

�� �
��� �
�� and �
��
 Because each image has a di�erent signal level�
although exactly the same noise is added to each image� the resulting noisy images have di�erent signal�to�
noise ratios� as is seen in the second table of Table 

 The �thresh Algorithm is applied to each of the twelve
noisy images where in all cases the scale threshold is � � �n �where the image is n x n on the unit square��
which corresponds to a single pixel
 The resulting images are given in Figure ��
 The �thresh values found
and the old and new SNRs are given in Table 



The numerical results given for noisy images �before and after regularization� are not meant to demon�
strate the basic e�ects of TV regularization on a noisy image� which are of course well known by now
 What
is novel about these results is that they were obtained without any knowledge of noise level being explicity
incorporated into the process for �nding the optimal value of � and the corresponding regularized image

The only information used by the �thresh Algorithm was the scale threshold to use� we chose a scale of one
pixel in all twelve cases �three images� four noise levels for each�
 Of course� the amount of noise in the
image inherently in�uences the value of �thresh found by the �thresh Algorithm
 This relates to our earlier
discussion centered around Figure 

 As expected� applying the �thresh Algorithm to noisier images results
in larger �thresh values� as seen in Table 



Obviously it is quite useful to have an approach to denoising that does not depend an accurate measure
of noise present in the image� particularly since noise level often is unknown or is� at best� an estimate
 As
the �thresh Algorithm is not necessarily a denoising algorithm� and we leave to a separate paper further
investigation of it as a denoising technique


��



Figure �� Results of the �thresh Algorithm for scale thresholds of 
k�� x 
k�� pixels for k � � to �� The actual scale threshold
depends on the size �resolution� of the image� Values of �thresh found for each scale threshold for each image are given in Table
� and are plotted in Figure ��� In each set is the original image followed by the seven regularized images corresponding to the
seven �thresh values found by the �thresh Algorithm for the seven di�erent scale thresholds�

��



Figure ��� The �thresh Algorithm applied to three noisy images� with four levels �magnitudes� of noise� The �thresh values
found using the �thresh Algorithm� where the scale threshold was a single pixel� are given in the �rst table in Table 
� Noise
levels� before and after regularization� are given in the second table in Table 
� For each pair of images� the top image is the
noisy image and the bottom image is the regularized image from solving �
� using the �thresh value found using the �thresh
Algorithm�

��
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Table �� The �thresh values found for the scale thresholds used when applying the �thresh Algorithm to the �noise�free�
Mandrill� Toys and Canaletto Images in Figure �� These values are plotted in Figure ���a��
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Table 
� Data for the images in Figure �	� The �rst table gives the �thresh values found for the four noise levels that were
added to each image� The second table gives the corresponding signal�to�noise ratios for each image and noise level� both before
and after regularization using the �thresh value given in the �rst table� A scale threshold of one pixel was used in all cases�
The values in the �rst table are plotted in Figure ���b��
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Figure ��� Plots of �thresh values as a function of scalethresh in �a� and noise level in �b�� The data in the �rst plot are
the �thresh values from Table �� which were used to obtain the results for the noise�free images in Figure �� The data in the
second plot are the �thresh values from the �rst table of Table 
� which were used to obtain the results for the noisy images in
Figure �	�
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��� �thresh as a function of scalethresh and SNR

We conclude this section by examining how �thresh increases with scalethresh for the three noise�free images
considered and how �thresh increases with noise for the three noisy images just considered
 These �thresh
values were given in Tables � and Table 

 The plots of these data are given in Figure ��


The �rst plot in Figure �� shows the values of �thresh as a function of scalethresh for the Mandrill� Toy
and Canaletto images
 Although each of the noise�free images is quite di�erent from the other two� the
values of �thresh found for each scalethresh are quite similar
 Also� the resolution of the image does not seem
to greatly a�ect the relationship between �thresh and the chosen scale threshold� as illustrated by the similar
results of both of the 
�� x 
�� Mandrill and Toy images as compared to the ��
 x ��
 Canaletto image


The other plot in Figure �� shows the values of �thresh found as a function of noise level
 For all three
images and for all four noise levels� we found the �thresh corresponding to a scale threshold of � � �n� i
e
 a
single pixel
 For all three images� �thresh appears to increase as noise level increases at approximately the
same rate
 Quite interestingly� the relationship between �thresh and noise level is nearly exactly linear for
the given range of noise levels


The �thresh values for the Blood Vessels image are larger than those for the Peppers and Elaine images
because it is ��� x ��� as opposed to the Peppers and Elaine images being 
�� x 
��
 Since the domain for
all three images is the unit square� the scale a single pixel in the Peppers image is ����
�� the scale of a
single pixel in the Elaine and Blood Vessel images
 Not surprisingly� the ratios of the Peppers and Elaine
�thresh values to the Blood Vessels �thresh values are close to ����
��


� Other applications of scale recognition

In this �nal section� prior to our summary and conclusions� we brie�y consider other ways in which to exploit
our understanding of TV regularization�s natural ability to perceive scale in an image
 As already seen above�
we can measure the scale throughout the image in order to �nd the minimum value of � required to remove
all features at or below any given scale threshold
 We brie�y consider two other potential uses for this ability
to measure scale
 First� we can determine at exactly which locations there is a feature or a portion of a
feature of or below any given scale
 This leads to some insight on the multiscale e�ects of TV regularization�
which we brie�y examine in Section �
�
 Second� in Section �

 we use the ability to determine scale at each
discrete location throughout the image to examine the rate at which scale is lost as � increases



�� Multiscale and scalespace e�ects of TV regularization

The multiscale and scalespace�generating e�ects of TV regularization are well known and are the subject
of ongoing investigation
 See� for example� �
��� �
�� and ����
 Of course� a more accurate and complete
understanding of the multiscale and scalespace�generating nature of TV regularization is really only possible
if there exists a more precise and complete notion of scale as perceived by TV regularization
 Therefore� we
expect that the theory and discussion presented in the previous sections will lead to a better understanding
of the multiscale and scalespace�generating e�ects of TV regularization
 As mentioned earlier� as this is a
fairly complex issue� we do not attempt to treat it in detail in this paper
 We do give two examples that
lend some insight into the inherent ability of TV regularization to recognize scale� insight that we expect to
lead to further discussion and development of theory


We consider in more detail the Mandrill image shown earlier in Figures � and �
 In Section �
� we found
that for the Mandrill image� ������� � ������
 is the minimumvalue of � necessary to remove all features at
or below a scale threshold of ����
�� the scale of a single pixel
 We now examine the results when solving �
�
using a range of values between � and �������� in order to see in more detail the e�ects of the regularization

The resulting images are given in Figure �

 There are eleven sets of images� the �rst corresponding to
the original image� and the other ten corresponding to the results of solving �
� using the ten values of
� � ����������� ��
�������� ���� ����������


For each set �organized by columns�� the top image is the image itself
 The second image �second row of
the set� shows the locations throughout the image at which there are features at or below the scale threshold
of � � �n �where n � 
���� the scale of a single pixel
 Similarly� the third and fourth rows of images show
the locations in the image at which there are features at or below the scale thresholds of � � �n and � � 
n�


�



Figure �
� Results of applying TV regularization �
� to the Mandrill image� The eleven sets of images correspond to the
original image plus the ten images resulting from solving �
� using � � 	���thresh� 	�
�thresh� ��� � ��	�thresh� For each set
�column� of images� the top image is the image itself� while the second through fourth images show the locations of all �portions
of� features with scale at or below � ��n �� x � pixel�� �� �n �� x 
� and �� 
n �
 x 
�� respectively �n � 

���

Figure ��� A portion of the two top images from the eleven sets of images in Figure �
� The eleven sets of images correspond
to the original image plus the ten images resulting from solving �
� using � � 	��������� � 	�
������� � ��� � ��	������� � For
each pair of images� the top image is taken from the regularized image itself �the �rst row of images in Figure �
�� while bottom
image is taken from the image showing remaining features at or below scale ���	
� �the second row of images in Figure �
��







Mandrill Image Canaletto Image

�� as $ $ of scale remaining �� as $ $ of scale remaining

of ����n � � �n � � �n � � 
n of ����n � � �n � � �n � � 
n

� ���
�� ���
�� ���
�� � ���
�� ���
�� ���
��

�� ��
�� ��
�� ��
�� � ��
�� ��
�� ��
��


� ��
�� 
�
�� ��

� 
 ��
�� ��
�� ��
��

�� �
�� ��
�� 
�
�� � 
�

� ��
�� ��
�


�� �
�� �
�� ��
�� � 
�


 
�
�
 ��
��

�� �
�� �
�� �
�� � ��
�� 
�
�� ��
��

�� �
�� �
�� �
�� � ��
�� ��
�� ��
��

�� �
�� �
�� 

�� � �
�� ��
�� 
�
�


�� �
�� �


 �
�� �� �
�� �
�� ��
��

�� �
�� �
�� �
�� �
 

�� �
�� ��
��

��� �
�� �
�� �
�� �� �

� �
�� ��
��

�� �
�� �
�� �
��


� �
�� 

�� �
��


� �
�� �
�� �

�

�� �
�� �
�
 

��

�� �
�� �

� �
��

�� �
�� �
�� �
��

�� �
�� �
�� �




�� �
�� �
�� �
��

��� �
�� �
�� �
��

Table �� The percentage of features at or below three speci�ed scales remaining after applying TV regularization �
� to the
Mandrill image �shown in Figure �
� and the Canaletto image �not shown� for various values of �� The three scales considered
are �� �n� � ��n and � �
n� which correspond to scales of � x �� 
 x � and 
 x 
 pixel features� respectively� Each column shows
the percentage of the orginal pixel locations recognized as being at or below the speci�c scale for the given value of �� �thresh
was found using using the �thresh Algorithm� For the Mandrill image� we used ����n �notice the 	�		 in the �nal entry of the
� � �n column� while for the Canaletto image we used ����n �notice the 	�		 in the �nal entry of the � � 
n column��
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�a� Decay of features in Mandrill image�
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�b� Decay of features in Canaletto image�

Figure ��� A plot of the remaining percentages of scales listed in Table �� For each pair of images� the �rst plot is the linear
plot of the data� and the second plot is the log �in the y�axis� plot of the data� The nearly linear behavior seen in the log plots
illustrates the nearly exponential decay of the image features of the three scales considered� For each plot� the three curves�
from top to bottom� show the percentage of features at or below scale thresholds of �� �n� � ��n and �� 
n� respectively�


�



the scales corresponding to � x 
 pixel and 
 x 
 pixel features� respectively
 The remaining percentage of
features at or below each of the given scale thresholds for each value of � is given in the �rst table in Table �


In examining the images in Figure �
� it is apparent that most of the feature removal is relatively
immediate� i
e
 for the smaller values of �
 For example� the second row of images shows the location of
features whose scale corresponds to that of a single pixel
 Although a value of ������� � ������
 is needed to
completely remove all features of scale � ����
� from the image� even for � � ���������� or � � �����������
the image is almost entirely devoid of these one�pixel features
 We demonstrate this in more detail for a
portion of this image in Figure ��
 Notice� in particular� that the one feature that is still present until the
�nal image is the center of pupil of the Mandrill�s left eye �the right eye� from our perspective�
 So if the
goal is to remove all single�pixel features� perhaps a smaller value of � should be used� even if there are a few
single�pixel features still remaining� in order to better preserve the �wanted� larger features
 This decision
will depend on the image and the reason for applying regularization


In the images shown in Figure �
 and especially in the images shown in Figure ��� it is clear that once
scale at any given location is recognized as being at or above a certain thresold� it will never drop below
that threshold� and in fact� the scale at every location throughout the image will increase asymptotically
to a maximum scale as � increases
 The white �dots� in Figures �
 and �� are the locations at which
there are features at or below a given scale
 Notice that you see only the disappearance of the dots� but no
reappearance of dots or appearance of new dots anywhere



�� Rate of loss of features

We last brie�y examine the �decay� �rate of loss� of features of any given scale in an image
 In the previous
section we saw that we can recognize scale throughout the image
 It is illuminating to look at the rate of
decay of the remaining scale for increasing values of �
 For the images seen in Figure �
� Table � gives us
the percentage of all features at or below a given scale remaining for each value of �thresh
 These data are
plotted in Figure ���a�


As a second example we �nd the same information about remaining percentages at the same three scale
levels for the Canaletto image
 we �rst �nd ����n� the value of �thresh where scalethresh � � � 
n� e
g
 the
size of a 
 x 
 pixel square
 In this second case� since most of the features for each of the three scales in
the Mandrill image seemed to be removed rather quickly� we now use more values of �� particularly smaller
values� in order to observe more gradually the decrease in percentages
 These data are listed in the second
table in Table � and are plotted in Figure ���b�


For both images� in Figure ��� we �rst plot the standard �linear� plot of each scale percentage� and then
we give the log �in the y�axis� which corresponds to the remaining percentage of features at or below a certain
scale� plot of the same data
 #From these plots� we see that the rate of loss or decay of the features at or
below the three given scales seems nearly exponential for both images
 Of course we could easily contrive
an image for which scale decay is not exponential
 Still� it may be that for a variety of natural images� scale
decay would be exponential
 That is� most of the features at or below a given scale disappear rapidly� while
there are a few features that still remain for a while until � is too large
 This was especially evident in
Figures �
 and ��
 This decay of scale and our ability to measure it using TV regularization certainly merit
further investigation


� Summary and Conclusions

TV regularization naturally recognizes scale in an image
 This allows us great insight into how TV regular�
izations works� and it leads to a number of ways in which this ability to recognize scale can be exploited
 As
shown� we can automatically and precisely determine how much regularization is needed �i
e
 what value of
� to choose� to remove all features at or below a given scale threshold from an image
 We accomplish this
using the �thresh Algorithm� introduced in this paper� in which we �nd an optimal regularization parameter
value based on the geometry of the image
 There is a nice connection between Meyer�s G Norm and both
our notion of scale and our �thresh Algorithm
 This connection leads to a more intuitve explanation of the G
norm and how it relates to scale in an image
 The ability to recognize scale leads to a better understanding
of already known TV�based ideas and schemes� including scalespace� and it leads to a number of new and
potentially very useful tasks for manipulating and understanding images� including measuring the decay of


�



features of various scales in an image
 Using this ability to measure scale� for the examples we considered�
we have seen that most features at a given scale tend to disappear quickly� while a relatively small fraction
persists longer
 Some of the ideas investigated in this paper are essentially complete� and some of the work
was intended to show how more possible avenues of investigation have been opened due to this ability to
recognize scale
 In particular� as we have explained in the paper� the de�nition of scale that we use here
is valid for piecewise constant images� but is just an approximation in general
 Future studies should be
conducted on how to integrate Strang�s exact de�nition of scale in numerical algorithms
 Finally� although
this work is done for images in R�� the theory developed can be extended to any function in any dimension

Other work that naturally stems from the work done in this paper includes a spatially adaptive �thresh
Algorithm and more e!cient approaches to �nding �thresh� such as multigrid and domain decomposition
approaches to the �thresh Algorithm� which we are currently investigating


A Appendix

Because some readers may be more familiar with values of � in solving �
� for a discrete n x n image when
the domain is taken to be ��� n�� rather than ��� ���� we give the following lemma


Lemma � Let �����	 and u be the regularization parameter and resulting image� respectively� when solving ���

on ��� ��k� Similarly� let ����n	 and U be the regularization parameter and resulting image� respectively� when

solving ��� on ��� n�k� Then we will have u � U �de�ned on their respective domains� when ����n	 � n�����	�

Proof Let ��� ��k be the unit hypercube in Rk� and similarly for ��� n�k
 Let �t � n�x� that is� �t�� t�� ���� tk� �
n�x�� x�� ���� xk�
 Then d�t � nk d�x
 Let u� and U� be the original image� if de�ned on ��� ��k and ��� n�k�
respectively
 Similarly� let u and U be the regularized image �the solution to �
�� if de�ned on ��� ��k and
��� n�k� respectively
 That is� for �t � ��� n�k� U���t� � u��

�t
n
� � u���x� and U ��t� � u� �t

n
� � u��x�
 Since

�u
�x�
�xi

� �U
�t�
�xi

� �U
�t�
�ti

�ti
�xi

� n�U
�t�
�ti

� then

ru��x� � �
	u��x�

	x�
�
	u��x�

	x�
� ����

	u��x�

	xk
� � �n

	U ��t�

	t�
� n

	U ��t�

	t�
� ���� n

	U ��t�

	tk
� � nrU ��t��

Then �
� solved on domain ��� ��k can be related to �
� solved on domain ��� n�k as follows�

�

�
ku� u�k

� 	 �����	 TV �u� � �

�

Z
�x�����	k

�u��x� � u���x��
� d�x	 �����	

Z
�x�����	k

jru��x�j d�x

� �

�

Z
�t����n	k

�U ��t� � U���t��
� �

nk
d�t	 �����	

Z
�t����n	k

n jrU ��t�j �

nk
d�t

� �

nk

�
�

�
kU � U�k

� 	 n�����	 TV �U �
�

And� of course�

arg min
U

�

nk

�
�

�
kU � U�k

� 	 n�����	 TV �U �
�
� arg min

U

�

�
kU � U�k

� 	 n�����	 TV �U ��

�

The above shows that for any integer value of k� changing the domain from ��� ��k to ��� n�k requires us to
change � to n� in order to produce the same results
 For example� for a 
�� x 
�� image� if �����	 � �����

on the domain ��� ��k� then we would need ������
	 � ��
�� if our domain were instead ��� 
���k� in order to
produce the same regularized image in their respective domains
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