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Abstract

Determination of axonal pathways provides an invaluable means to study the con-
nectivity of the human brain and its functional network. Diffusion Tensor Imaging
(DTI) is unique in its ability to capture the restricted diffusion of water molecules
which can be used to infer the directionality of tissue components. In this paper,
we introduce a white matter tractography method based on anisotropic wavefront
propagation in diffusion tensor images. A front propagates in the white matter
with a speed governed by the profile of the diffusion tensor ellipsoid. By using the
ellipsoid, we avoid possible misclassification of the principal eigenvector in oblate
regions. The wavefront evolution is described by an anisotropic version of the static
Hamilton-Jacobi equation, which is solved by a sweeping method in order to obtain
correct arrival times. Pathways of connection are determined by tracing minimum-
cost trajectories using the characteristic vector field of the resulting partial differ-
ential equation. A validity index is described to rate the goodness of the resulting
pathways with respect to the directionality of the tensor field. Connectivity results
using normal human DTI brain images are illustrated and discussed. We also com-
pared our method with a similar levelset-based tractography technique, and found
that the anisotropic evolution increased the validity index of the obtained pathways
by 18%.

Key words: magnetic resonance imaging, image analysis, white matter, diffusion
tensor imaging, tractography



1 Introduction

Diffusion Tensor Imaging (DTI) has emerged as a noninvasive imaging modal-
ity capable of providing in vivo information of the white matter structure in
the human brain. Brain white matter, because of its long and fibrous nature,
exhibits higher hindrance to water diffusion across the fiber axes than along
them. This directional variation also known as anisotropy, is measured in dif-
fusivity rates and can be captured by diffusion-weighted images. Although the
true source of anisotropy in white matter still is not well understood, this wa-
ter restriction is mostly attributed to the cell membrane and has been shown
to be modulated by the myelin sheath [1,2].

In DTI, by acquiring diffusion-weighted images in at least six non-collinear
directions, it is possible to estimate a 3x3 symmetric matrix (i.e. diffusion
tensor) at each location that characterizes diffusion in anisotropic systems [3].
By diagonalizing this matrix, one can find its eigenvalues and eigenvectors
which are assumed to represent the main diffusion orientations within a voxel.
In the white matter, the eigenvector corresponding to the largest eigenvalue is
considered to point along the direction of a fiber bundle. Classical tractography
methods, known as line propagation methods or streamline-based techniques,
rely on the orientation of the largest eigenvector to determine the orientation
of axonal fiber pathways [4].

Numerous fiber tractography techniques have been described in the literature
[4–8]. They have enabled the reconstruction of large white matter structures
in the brain such as the corpus callosum and pyramidal tracts. Classical meth-
ods propagate from a seed voxel by locally adapting the curve orientation to
the vector field given by the major tensor eigenvector. They end at locations
with low anisotropy or at places where the trajectory takes a sharp turn. Sev-
eral problems, however, affect their reliability. First, the diffusion images are
subject to acquisition noise [9] which can impede the ability to track fibers.
Also, while it is true that the principal eigenvector provides an estimate of the
microscopic fiber direction [2], because of partial voluming when fiber tracts
cross, branch or merge, signal contributions from multiple tissues can affect
individual voxel measurements [10] resulting in a variation in the distribution
of fiber directions. Therefore, tracing smaller bundles becomes a significant
challenge to line integration methods at current resolution limits.

Methods derived from level-set theory [11] have been recently employed to
track axonal pathways [12–14]. These techniques model the evolution of an
advancing front through the white matter tracts by following the local di-
rectionality provided by the diffusion tensor field. Such methods have been
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shown to be more robust to noise and singularities (branches, crossings, etc.)
than classical streamlining methods [15]. Also, this framework not only allows
for track reconstruction but it automatically assigns a connectivity value for
every point in the tract.

A tractography technique based on Tsitsiklis’ fast marching method (FMM) [16]
was first used by Parker et al. [12]. A front was evolved with a speed propor-
tional to the colinearity between the front normal and the tensor principal
eigenvector. A discrete approximation of front direction was used to drive
the evolution through the eigenvector field, since the original FMM does not
correctly handle propagation in oriented domains. O’Donnell et al. [13] intro-
duced two different approaches. The first approach is an extension of earlier
methods that models the problem as a heat diffusion equation and then com-
putes the flux flow across a certain cross section at steady state. In their
second approach, the problem is posed in a Riemannian framework where lo-
cally the space is warped based on the three eigenvectors and the connectivity
corresponds to the path lengths of the underlying geodesic paths. A levelset
was evolved with a speed proportional to the length of the projected surface
normal from Riemannian into Euclidean space. Similarly, Lenglet et al. [14]
has considered the white matter as a Riemannian manifold. The problem of
finding a path between points in the white matter becomes one of finding min-
imal geodesics in the Riemannian space. Both methods employed the dynamic
perspective of level sets, in which a narrow band was employed to constrain
front propagation and reduce computation time. Campbell [17] has recently
described a level set approach for determining connectivity using high angu-
lar resolution diffusion acquisitions. There, a wavefront was propagated using
the fiber orientation distribution (ODF) derived from the spin displacement
probability function.

Our method also poses the connectivity problem in the setting of level set the-
ory. We extend our previous connectivity work made on synthetic tensor fields
and determine its applicability in real human diffusion tensor data [18,19]. In
contrast to other level set-based methods, we adopt an anisotropic distance
function for front evolution, in which the discrete approximation of front nor-
mal is not required. The speed by which the front propagates is given by the
diffusivity rate in the normal direction of the front. The solution to the result-
ing partial differential equation (PDE) is obtained by an iterative sweeping
approach, yielding correct arrival times. By using a static version of the level
set equation, we avoid the localization and recovery of each zero-level set at
different time steps, as is done by other methods. Furthermore, the entire ten-
sor is used to control the evolution, avoiding possible biasing of its principal
eigenvector in more isotropic regions.

Because the propagation equation is anisotropic, we backtrack along its char-
acteristics rather than its gradient in order to extract fiber pathways. In the
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following, we first model the white matter connectivity problem as one of
wavefront evolution. Then we proceed to describe our front evolution model
and the numerical algorithm to solve the respective partial differential equa-
tion (PDE). We also show that the minimum-cost pathway is determined by
the characteristic vector of the PDE and not its gradient direction [20]. Con-
nectivity results using a normal human dataset are presented and compared
to those obtained with the fast marching approach [21].

2 Methods

2.1 Minimum-Cost Pathways

The white matter connectivity problem can be viewed as an instance of the
minimum-cost path problem in an oriented weighted domain. Essentially, one
would like to find a fiber pathway P (s) : [0,∞) 7→ R3 that minimizes some
cumulative travel cost from a starting point A to some destination point B in
the diffusion tensor field.

In the case of simple scalar images, the cost function, given by τ or its recip-
rocal speed F = 1/τ , is only a function of position x, and it is called isotropic:

T (x) = min
P

L∫

0

τ(P (s)) ds (1)

where L is pathway length, and the starting and ending points are given by
P (0) = A and P (L) = x. A solution to (1) also satisfies the Eikonal equation
‖∇T‖ F (x) = 1, which describes a wavefront propagating with speed F where
T (x) is the time of arrival of the front at point x.

An efficient single-pass method to solve the Eikonal equation was originally de-
signed by Tsitsiklis [16] and rediscovered by Helmsen et al. [22] and Sethian [23]
and it is widely known as the fast marching method (FMM). The FMM pro-
vides a continuous solution to the shortest-path problem by employing upwind
differences and a causality condition.

In the case of DTI, however, we need to consider the embedded directionality
present in the tensor field, and thus the cost function τ will be a function
of both position P (s) as well as direction P ′(s). Because of this directional
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dependence, the cost function is called anisotropic and is given by:

T (x) = min
P

L∫

0

τ(P (s), P ′(s)) ds, (2)

where again L is pathway length, and the starting and ending points are given
by P (0) = A and P (L) = x. A solution to (2) satisfies the so-called anisotropic
wave propagation equation,

‖∇T‖ F (x,∇T ) = 1, (3)

which describes a wavefront propagating with speed F where T (x) is the time
of arrival of the front at point x. This type of equation typically arises in
problems where a preferred direction of travel exists.

Classical solutions for partial differential equations (PDE) are obtained by first
reducing it into an independent system of ordinary differential equations. This
can be accomplished by the method of characteristics [24,25]. With suitable
initial boundary conditions, the solution can then be constructed by solving
the ordinary differential equations and following the characteristics. Note that
solutions to (3) in continuous space are given by the Hamilton-Jacobi (HJ)
equations and a classical solution may not exist because they develop dis-
continuities. Hence the viscosity solution is commonly sought [11,26–28]. The
viscosity solution is obtained by adding a smoothing term to the right-hand
side of the PDE. This smoothing term is a function of the second derivatives of
the equation and prevents the developments of such discontinuities. Numerical
approximations of the viscosity solution have been studied [29–31].

Once the evolution equation (3) is solved for all points in the domain, one can
derive a solution for the minimum-cost path (2) by tracing the characteristics
of the wavefront using the resulting arrival times.

2.2 Connectivity Wavefront Model

In contrast with methods which rely on the principal eigenvector of the tensor
in order to trace connectivity, we employ the entire tensor in the propagation
model. This is similar to other approaches [32,14,13], however we properly
account for the anisotropy present in the resulting PDE. By using the entire
tensor, we avoid measurement errors of the principal eigenvector in oblate
tensor regions, which may lead to wrong assignment of front arrival times.
We design our wavefront to evolve from a given seed point A, T (A) = 0, at a
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speed governed by a function of the diffusivity magnitude in the front normal
direction ~n:

d(~n) = ~nTD ~n, ~n =
∇T

‖∇T‖ , (4)

where D is the diffusion tensor. The motivation behind equation (4) is to let
the speed vary locally according to the tensor profile, which is descriptive of
the underlying diffusion process. Thus, we can write the propagation equation
as follows:

‖∇T‖ α d(~n) = 1, (5)

where α weighs the final propagation speed. Since water diffusion measured in
the ventricles and in the gray matter is more random than in the white matter,
the resulting tensor profile tends to be spherical with eigenvalues λ1 ' λ2 ' λ3.
We want to prevent propagation into these areas, and thus we choose α to be
a measure of diffusion tensor anisotropy. For that, we use the well-known FA
index [33].

Propagation equation (5) belongs to a family of static Hamilton-Jacobi equa-
tions described by:





H(x,∇T ) = V (x), x ∈ Ω

T (x) = s(x)
(6)

where Ω is the domain in <3, V (x) = 1, and s(x) is a function prescribing
boundary condition values, T (A) = s(A) = 0. Therefore, we can rewrite (5)
as the following Hamiltonian, after discarding the dependence of x on H:

H = α
√

p2 + q2 + r2
(
p2d11+q2d22+r2d33+2pqd12+2prd13+2qrd23

p2+q2+r2

)
(7)

where p = ∂T
∂x

, q = ∂T
∂y

, r = ∂T
∂z

and dij are the tensor elements. While equa-

tion (5) can be reformulated as a time-dependent HJ equation and solved by
recovering each zero-level set, it is more convenient and less computationally
expensive to model it as a static problem and determine arrival times instead.
In the following section, we will describe an iterative method that solves our
static HJ equation (7) so that a viscosity solution can be obtained.
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2.3 Anisotropic Wavefront Evolution

Hamiltonians such as (7) cannot be correctly solved by isotropic propagation
methods, such as the Fast Marching Method. While numerical methods for
obtaining viscous solutions to static anisotropic propagation equations exist,
their implementation tends to be more involved than those used in isotropic
problems. Single-pass [31] and iterative methods [29,30] have been devised
to construct accurate solutions for such equations. Single-pass algorithms are
based on the monotonicity of the solution along the characteristic directions
in order to compute the arrival time T (x). Iterative methods, on the other
hand, compute arrival times in a number of pre-defined directions.

We use a Lax-Friedrichs (LF) discretization of our Hamiltonian and employ
a nonlinear Gauss-Seidel updating scheme [30] to solve the propagation equa-
tion. With the LF discretization, a solution at each grid point can be easily
obtained in terms of its neighbors. Also, no minimization is required when
updating an arrival time, and thus it is very easy to implement.

The Lax-Friedrichs Hamiltonian of equation (7) is defined as:

HLF =H
(
p++p−

2
, q++q−

2
, r++r−

2

)
− σx

2
(p+−p−)− σy

2
(q+−q−)− σz

2
(r+−r−) (8)

where p±, q± and r± are the forward and backward difference approximations
for ∇T , and σi are the artificial viscosities which depend on the second deriva-
tives of H with respect to p, q and r. This artificial dissipation smoothes out
possible discontinuities and therefore enforces the stability of the approxima-
tion [27].

2.3.1 Lax-Friedrichs Sweeping Algorithm

Consider the volumetric domain [xmin, xmax]× [ymin, zmin]× [zmin, zmax] with
points (xi, yj, zk), i ∈ [0, 1, . . . mx,mx +1], j ∈ [0, 1, . . . my,my +1] and k ∈
[0, 1, . . . mk,mk +1], where xi = (i − 1)∆x + xmin, yj = (j − 1)∆y + ymin,
zk = (k− 1)∆z + zmin and let ∆x = (xmax− xmin)/(mx− 1) and similarly for
∆y and ∆z.

(1) Initialization. Assign T (0)(x) ← s(x) for points where exact solution is
known. Freeze these grid values. For all other points, assign T (0)(x) ←∞.

(2) Sweeping. Let (sx, sy, sz) = (±1,±1,±1) be the alternating directions
in each dimension, and bx,y,z be the evaluation of (sx,y,z < 0 ? mx,y,z : 0).
Also let ex,y,z(i) be the evaluation of the expression (sx,y,z <0 ? i ≥ 0 : i <
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mx,y,z):

for(i = bx; ex(i); i+=sx)

for(j = by; ey(j); j+=sy)

for(k = bz; ez(k); k+=sz)

Update T
(m+1)
ijk

(3) Convergence. If ‖Tm+1 − Tm‖ ≤ ε, stop, otherwise go to step (2).

Update. Given iteration m+1, if point (i, j, k) is not frozen, let a = p++ p−,
b = q++ q− and c = r++ r− and compute:

T
(m+1)
i,j,k = w

(
1−H(x, a

2
, b

2
, c

2
)
)

+

w σx

2∆x
(Ti+1,j,k + Ti−1,j,k)+

w σy

2∆y
(Ti,j+1,k + Ti,j−1,k)+

w σz

2∆z
(Ti,j,k+1 + Ti,j,k−1)

where w =
(

σx

∆x
+ σy

∆y
+ σz

∆z

)−1
.

In order to get a numerical approximation for (7), we solve for HLF = 1 by
sweeping the domain in the alternating directions ±x, ±y and ±z. Values from
the previous sweeping step are used to make the approximation decreasing so
that it updates an arrival time only if Tm+1

i,j,k < Tm
i,j,k. By using the sweep-

ing approach, the method is able to follow a group of characteristics at each
iteration.

Because the 3D LF method yields a solution utilizing all 6 neighbors, values
for points outside the boundary of the domain are extrapolated in order to
guarantee the outflow of the solution at the computational boundary. Sweeping
is stopped when the convergence criterion ‖Tm+1

i,j,k − Tm
i,j,k‖ ≤ ε is met. The

accuracy of the LF method will depend on the grid size chosen as well as
the artificial viscosities. Large viscosity values will smear out the solution, so
it is important to select appropriate values for ı, such that σx ≥ max|∂T

∂p
|,

σy ≥ max|∂T
∂q
| and σz ≥ max|∂T

∂r
|. More details on the algorithm, accuracy and

convergence of the LF sweeping (LFS) scheme can be found in Kao et al. [30].

In the case of diffusion tensor images, we can speed up the wavefront evolution
process by masking out the background, focusing the calculations only on the
brain parenchyma. Thus we freeze values outside the mask, setting the arrival
times to infinity. Since frozen values are assumed to be given, they are never
updated, speeding up the sweeping process.
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2.4 Characteristic directions

It is important to realize that minimum-cost paths are determined by the
characteristic curves of the partial differential equation [24,25]. A generic first-
order PDE with m independent variables is described by:

H(xi, u, pi) = 0, where pi =
∂u

∂xi

, i = 1, ...,m (9)

where u is a function of the independent variables xi. In our case, u repre-
sents the arrival times of the wavefront. The characteristics for such a partial
differential equation can be obtained via Charpit’s equations [24]:

ẋi =
∂xi

∂t
=

∂H

∂pi

(10)

ṗi =
∂pi

∂t
= −∂H

∂xi

− pi
∂H

∂u
(11)

u̇ =
∂u

∂t
=

m∑

i=1

pi ẋi (12)

Together, they form a (2m + 1)-dimensional characteristic space which de-
scribes the solution of u. Given appropriate initial values for pi and u at t = 0,
one can construct the solution for the PDE, by integrating each one of these
equations along t. The characteristic vector ~̇x = (ẋ1, ..., ˙xm) of the solution
u given by (10) is a projection of the higher-order characteristic space. Its
integration with respect to t will yield the characteristic curves of the PDE.

In the case of isotropic equations such as the 3D Eikonal:

H =
√

p2
1 + p2

2 + p2
3 F (x1, x2, x3)− 1 = 0 (13)

it is easy to observe that the characteristic vector ~̇x will lie in the same direc-
tion as gradient, since:

ẋ1 =
p1 · F√

p2
1 + p2

2 + p2
3

, ẋ2 =
p2 · F√

p2
1 + p2

2 + p2
3

, ẋ3 =
p3 · F√

p2
1 + p2

2 + p2
3

(14)

and therefore the minimum-cost path X, between point A and an arbitrary
point B becomes a solution to dX

dt
= −∇u, given X(0) = B. This optimal path

can be constructed by integration starting from point B back to the seed point
A using standard numerical techniques. Figure 1a illustrates the evolution of
an isotropic wavefront in a two-phase environment. In the left half side of the
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(a) (b) (c)

Fig. 1. (a) Evolution of the front
√

p2
1 + p2

2 · F (x1, x2) = 1 in a two-phase environ-
ment, shown as orange curves. (b) Front normals ~n = ~̇x = ∇u/‖∇u‖, shown as
white lines. (c) Minimum-cost pathways traced from 9 different locations in cyan
color.

space F = 1 and in the right half side, F = 2. The front propagates faster
once it reaches the region with less viscosity. Both normals and characteristics
are the same and are depicted in Fig. 1b. Fig. 1c illustrates minimum-cost
pathways from different locations in the less viscous area.

Consider now the following anisotropic 3D Eikonal equation:

H =
√

ap2
1 + bp2

2 + cp2
3 F (x1, x2, x3)− 1 = 0 (15)

In the case where F = 1 everywhere, this equation describes a wave propa-
gating in an ellipsoidal fashion. Differentiating H with respect to p1, p2 and
p3 yields the following characteristic vector:

~̇x =


 a p1 F√

ap2
1 + bp2

2 + cp2
3

,
b p2 F√

ap2
1 + bp2

2 + cp2
3

,
c p3 F√

ap2
1 + bp2

2 + cp2
3




T

(16)

Note that, in this case, the characteristic ~̇x no longer coincides with the gra-
dient ~n = ∇u. Therefore, one must integrate dX

dt
= −~̇x instead to obtain the

minimum-cost path. Figure 2a shows the 2D propagation of an anisotropic
front (a = 1, b = 0.25) through a two-phase environment: left region with
F = 1, and F = 2 in the right. Fig. 2b shows the front normal vector field
which is clearly different from the characteristic vector field seen in Fig. 2d.
That is because the propagation equation depends not only on location but
also on the direction of the front, since it favors the x axis over y. Shortest-
paths are then characterized by integrating along the characteristics (Fig. 2e)
rather than normals (Fig. 2c).
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(a) (b) (c)

(d) (e)

Fig. 2. (a) Evolution of the front
√

p2
1 + 0.25p2

2 · F (x1, x2) = 1 in a two-phase
environment, shown as orange curves. (b) Front normal ~n = ∇u/‖∇u‖ depicted as
white arrows. (c) Minimum-cost pathways traced from 9 different locations using
~n. (d) Front characteristic vector ~̇x depicted as green arrows. (e) Minimum-cost
pathways using ~̇x = (ẋ1, ẋ2)T shown in yellow.

As we have seen above, when correctly designed, the speed function F may
also depend on the gradient information of the wavefront, and this will also
make the PDE anisotropic. Again, in such instances, the trivial integration
of ∇T will not yield the correct result for the minimum-cost path problem.
Furthermore, any geometrical information derived from such pathways, such as
curvature or directional coherence to the tensor field may become meaningless.

2.5 Validity Index

After tracing the fiber pathways by back-tracing on the characteristic vector
field, we must still assess how coherent these pathways are to the underlying
fiber directionality. This is necessary because we also allow movement in the
direction perpendicular to the direction of principal diffusivity, albeit to a
smaller degree. We define a validity index as the mean colinearity between the
tangent of the pathway P (s) and the principal tensor eigenvector ~ε1:

V (P (s)) =

∫ |~t(s) · ~ε1(s)| ds∫
ds

(17)
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The validity index will be maximum for a minimum-cost trajectory that closely
follows the principal eigenvector field. We anticipate that because of fiber
crossings and other partial volume effects, the validity index may be low in ar-
eas containing singularities. Nevertheless, the mean colinearity value provides
a reasonable index for assessing whether a minimum-cost pathway represents
a true trajectory in diffusion tensor images. The validity index is similar in
nature to what has been described as a connectivity metric in [21].

3 Results

Diffusion-weighted data of a normal subject was acquired using a Siemens 3T
Trio scanner with a standard head coil. A single-shot EPI image of matrix size
128x128x40, resolution 2x2x3 mm3, b-factors 0 and 600 s/mm−2, TR=5400
ms, TE=81 ms, and 32 gradient directions uniformly sampled on a sphere was
obtained. A twice-refocused spin echo pulse sequence was utilized to minimize
the distortions due to Eddy currents [34]. The diffusion tensor was calculated
from a total of 12 averages to maximize signal to noise ratio. The diffusion
tensor was diagonalized and the fractional anisotropy (FA) map calculated
using its eigenvalues.

3.1 Lax-Friedrichs Sweeping Method

In order to evaluate connectivity using LFS method, we fixed a seed point in
the splenium of the corpus callosum (Fig. 3a) and propagated our wavefront
throughout the tensor image (Fig. 3b). A total of 45 iterations were needed
for convergence with ε = 10−3. Figure 3c depicts the resulting arrival time
level sets between 0 and 1600. In order to trace connectivity pathways to the
splenium, we first obtained an approximate boundary of the white matter
according to the following procedure. The FA image was thresholded at 0.18,
in order to obtain all points belonging to the white matter. Next, by using a
morphological operator, we determined the inner boundary of the thresholded
region. Boundary points belonging to ventricles were removed. All pathways
between points on this boundary and the point in the splenium were traced
using the characteristic directions. A total of 14,952 fibers were successfully
traced from the boundary points. A 4th order Runge-Kutta method with an
integration step ∆t =

√
22 + 22 + 32 ≈ 4.12 mm was used.

Figure 3d shows the resulting fiber pathways. Individual points were colored
according to the colinearity between the tangent and the principal tensor
eigenvector, representing the validity index at each point. A continuous ramp
of colors varying from yellow to red was associated with the validity index.
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(a) (b) (c)

(d) (e)

Fig. 3. (a) FA map and seed point at the splenium of the corpus callosum (at
cross-hairs). (b) LFS propagation map in which darker regions reveal earlier ar-
rivals. (c) FA map overlaid with zero-level sets up to time 1600. (d) 14,952 resulting
pathways colored pointwise according to the validity index (from yellow=low to
red=high). (e) Pathways colored with fiber average validity index.

High validity values are shown in red while points with low validity are shown
in yellow. Figure 3e shows the fiber pathways colored with the mean validity
index computed on a fiber-by-fiber basis. Although sections of fibers located
far from the splenium had a strong validity value (such as those in the frontal
lobe), only fibers connecting closer regions yielded a high fiber mean validity
value.

In order to assess whether the validity index could be used to rate the good-
ness of the extracted pathways, fibers were thresholded based on their mean
validity scores. Figures 4a-e shows top 20%, 10%, 5%, 2.5% and 1.2% fibers,
respectively. Fibers are colored according the validity values on individual fiber
points. Table 1 shows minimum, mean and variance values of the validity in-
dex for each set of fibers. As we raise the threshold on the validity index, fewer
fibers are obtained and the group mean validity value increases as expected.
At 1.25%, although minimum group validity was 0.7901, there were still few
fiber sections with even lower validity (shown in yellow), very likely indicating
regions of singularities. For comparison, we show the same result for fibers
found using the Fast Marching Method, described next.
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(a) (b) (c)

(d) (e)

Fig. 4. (a) Top 20% fibers colored pointwise according to the validity index. (b) Top
10% fiber pathways. (c) Top 5% pathways. (d) Top 2.5% pathways (e) Top 1.25%
pathways.

Top LFS FMM

% Min Mean Variance Min Mean Variance

20% 0.6680 0.7178 0.0015 0.5500 0.5880 0.0009

10% 0.7071 0.7465 0.0010 0.5801 0.6121 0.0005

5% 0.7351 0.7700 0.0007 0.6075 0.6309 0.0003

2.5% 0.7661 0.7928 0.0004 0.6280 0.6450 0.0002

1.25% 0.7901 0.8082 0.0003 0.6450 0.6554 0.0001
Table 1
Fiber mean validity values for different top percent fiber groups for the LFS and
FMM methods. Maximum validity value for all fibers was 0.9342 using the LFS and
0.7451 using the FMM.
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(a) (b) (c) (d)

Fig. 5. (a) FMM propagation of
√

p2 + q2 + r2 (~n · ~ε)2, with ~ε = (1, 0, 0)T . (b)
Corresponding LFS propagation. (c) FMM propagation with ~ε = (1, 0.5, 0)T . (d)
Corresponding LFS propagation.

3.2 Fast Marching Method

Here we compare the differences between connectivity results obtained with
isotropic [21,12,32] methods versus the LFS anisotropic propagation method.
The Fast Marching Tractography (FMT) technique designed by Parker used
the fast marching method (FMM) to determine connection pathways between
points in the white matter. In their work, the wavefront traveled with a
speed according to the colinearity between principal tensor eigenvector ~ε1 and
front normal ~n. As we have pointed out earlier, the resulting PDE becomes
anisotropic. Since the FMM only handles speed functions that depend on
position[31], it is interesting to compare the two methods when measuring
connectivity.

Before comparing connectivity results, let us first investigate their propagation
in the case of uniform speed fields. Let ‖∇T‖ (~n · ~ε)2 = 1 be the propagation
equation. This equation models a wavefront that travels fastest when the nor-
mal has the same orientation as the underlying vector field ~ε. In the FMM, we
will approximate ~n during the fast marching process using the arrival times
of neighboring points. Fig 5a shows the resulting propagation using the FMM
with ~ε = (0, 1, 0)T . As one would expect the wavefront correctly moves faster
in the y direction. Fig. 5b shows the result of propagation by using the LFS
method. Except for a smoother result, the LFS does not show a drastic change.
Now let us tilt the vector field, such that ~ε = (1, 0.5, 0)T . Fig 5c shows the
corresponding result using the FMM. Note, in this case, the level surfaces do
not accurately depict the intended expansion. The LFS method, however, was
able to correctly solve the PDE (Fig. 5d). While a discrete approximation of ~n
in the FMM degrades the accuracy of the arrival times, the resulting solution
profile in Fig. 5c should still resemble an ellipsoidal shape. The answer to the
problem lies in failing to observe the causality condition in the fast marching
method, where it is assumed that the gradient of arrival times coincides with
the direction of the characteristic. In this example, they will only coincide
when ∇T = ±~ε.
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(a) (b) (c)

Fig. 6. (a) FA map showing the seed point in the right hemisphere. (b) Resulting
pathways using the FMM method with gradient backtracing. (c) Resulting pathways
using the LFS method and characteristics.

To investigate the differences in terms of connectivity between the LFS and the
FMM methods, we seeded a point in the frontal lobe of the right hemisphere
and probed for its frontal connections in left hemisphere. In these experiments,
the LFS method will use the characteristic vector for tracing pathways while
the FMM will use the gradient vector, unless otherwise stated. A subset of
the white matter boundary points (1,317) from the frontal area in the left
hemisphere was used to backtrace pathways to the origin of propagation. From
Fig. 6b and 6c it can be seen that pathways resulting from these two methods
differ substantially in their trajectories. The main reason for this difference is
the use of the gradient of the arrival times by the FMM to compute the
connectivity pathways. These pathways do not represent true minimum-cost
trajectories, however they tend to converge into branches which coincide with
high directional coherence. Fig. 6c shows true minimum-cost pathways which
follow the characteristic vector field of the PDE. The mean validity score for
all fibers recovered with the LFS method was 0.7466 while in the FMM the
score was 0.5497. The LFS results show a better resemblance to fiber bundles
as they are seen from dissection illustrations.

To further compare results between the FMM and the LFS, a second exper-
iment was performed, in which the validity index of the resulting fibers were
calculated. Using the seed point in the splenium of the corpus callosum as
before, we used the FMM method to propagate a surface throughout the ten-
sor image. Fig. 7a shows 35 uniformly-spaced zero-level sets of the front up to
time 1600. The resulting isocurves can be immediately observed as being more
irregularly shaped than the isocurves from Fig. 3b. Using the same number
of white matter boundary points as in the LFS method, pathways were back-
traced to the seed point (Fig. 7b). The mean overall validity value for all fibers
obtained with the FMM method (Fig. 7c) was 0.4926, compared to the 0.5696
from the LFS method. That shows an increase of 13.5%. We then thresholded
the fibers at different percentages and observed their validity scores. Table 1
shows the obtained statistic figures. Figures 7d-h depicts the resulting fiber
pathways colored by individual validity indices. A consistent average increase
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(d) (e) (f)

(g) (h)

Fig. 7. (a) FA map overlaid with FMM propagation showing zero-level sets up to
time 1600. (b) Resulting pathways colored pointwise according to the validity index.
(c) Resulting pathways colored fiberwise. (d) Resulting top 20% pathways. (e) Top
10% pathways. (f) Top 5% pathways. (g) Top 2.5% pathways. (h) Top 1.25% fiber
pathways.

of about 18% was observed in the mean validity scores in favor of the LFS
method. This shows that pathways obtained with the FMM method are less
coherent with directionality of the tensor field. Also, the FMM showed more
spurious fibers as can be seen in Fig. 7. Due to the intrinsic use of an artificial
viscosity in the LFS method, the resulting connections were smoother than
the ones obtained by the FMM.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) Resulting pathways from FMM using characteristics colored pointwise
according to the validity index. (b) Resulting pathways colored by the mean validity
scores in a fiberwise basis. (c) Top 10% fiber pathways. (d) Top 5% pathways. (e)
Top 2.5% pathways (f) Top 1.25% pathways.

3.3 Fast Marching Method using Characteristics

We also investigated whether the FMM method could be used to extract
pathway fibers by following the characteristic directions rather the gradient
directions. While the results were visually closer to those of the LFS method
(Fig. 8), a lot more false fibers were obtained with the same threshold levels. A
few fibers that could not be successfully traced back to the splenium can also
been seen. Those are probably due to errors in the resulting characteristic
field caused by the imperfections in the solution of the FMM. While this
hybrid implementation resulted in the highest global validity score (0.9782),
it has also yielded the most variation at lower validity thresholds than the two
previous techniques (Table 2). This technique showed an apparent increase
of about 8% in mean validity scores compared to the LFS method. Since
these results include scores from those fibers which did not successfully reach
the origin of propagation, this likely represents a false increase. If the FMM
method were able to produce the correct solution for the anisotropic PDE,
errors would only be due to the gradient approximation during the marching
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Top % Minimum Mean Variance

20% 0.7484 0.7905 0.0012

10% 0.7818 0.8171 0.0010

5% 0.8105 0.8413 0.0008

2.5% 0.8350 0.8630 0.0008

1.25% 0.8501 0.8807 0.0007
Table 2
Fiber mean validity values for different percent fiber groups for the FMM method
using characteristics. Maximum validity value for all fibers was 0.9782.

process. Thus, a hybrid approach would still give comparable results to the
LFS method. However, the FMM does not yield the correct arrival times
for the anisotropic PDE and the resulting characteristic vector will not be
correctly estimated.

4 Discussion

We believe that fiber pathways computed from DTI can be described as
minimum-cost pathways. Connections between cortical regions are kept opti-
mal as the brain develops [35]. Because of physical constraints, these connec-
tions should minimize length and perhaps curvature as well. Such constraints
can be effectively modeled by the propagation of interfaces or fronts. With
the LFS method and characteristic curve backtracking, we were able to suc-
cessfully trace optimum pathways that were more coherent with the principal
eigenvector field than FMM methods that rely on a gradient descent approach.
This is due to the proper anisotropic solution achieved using the LFS method
and the tracing of the characteristic curves of the PDE, which are the true
shortest pathways to the origin of propagation. The resulting pathways from
the LFS method showed to be more naturally distributed than the ones recov-
ered by gradient descent, as can be seen in synthetic fields (Figs. 2c and 2d)
as well as in human data (Figs. 6b and 6c). Pathways resulting from the gra-
dient descent approach present more spatial overlap, and seem to converge
prematurely into the fastest route of connection. Our validity scores indicated
that these routes are not the optimal ones, yielding a consistently lower mean
colinearity for corresponding pathways. Parker [21] used the minimum value
of the colinearity as the connectivity metric. Due to the presence of effects
such as crossings and branchings, this index can be highly conservative. Since
our goal is to recover pathways that can go across such singularities, we used
the mean colinearity between the tangent to the pathway and the principal
eigenvector as our metric. While the diffusion tensor data used in this work
was not spatially smoothed, we predict that the use of a tensor regularization
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method would be certainly improve the quality of the connectivity results.
Campbell [17] devised a levelset-based tractography method which employed
the spin displacement pdf as the speed profile. For high angular resolution
data, a high-order tensor formulation [36] could be used in the speed function
of the front propagation equation, despite the complexity of the higher terms.
Instead of using the ellipsoid, the diffusion profile depicted by the higher rank
tensors could be employed. This would allow one to trace pathways more
accurately when multiple populations of fibers are present in a voxel. In this
scenario, the validity index would rely on the maxima of the generalized tensor
profile. In our results, we obtained minimum-cost trajectories between points
in the boundary of the white matter and a point in the splenium. This was
performed to mimic similar experiments done by other investigators and to
provide a means to compare our results. While anatomically the great major-
ity of these pathways will not exist, one can use the validity scores to select
only the most likely ones. It is possible to reformulate the propagation equa-
tion to restrict evolution only to the direction of maximum diffusivity. In this
case, a validity index may not be necessary. However, this type of evolution
will not allow for alternate pathways to be found as it will only cross through
the branches, and not exploit them. A shortest pathway between any pair of
points may no longer exist in this configuration, since it may take an infi-
nite time for it to reach the origin of propagation. In future work, we plan to
investigate specific cortical connections by seeding appropriate white matter
boundary points, and then tracing optimum pathways to hypothesized target
regions. We also will study whether additional constraints such as pathway
curvature or prior information could be useful in devising a more robust va-
lidity metric. Ultimately, we would like to construct an automated system for
fiber tract reconstruction, which will allow the study of white matter both in
its normal and pathological states.

5 Conclusion

We have presented a technique for determining connection pathways from dif-
fusion tensor images using a novel level-set based approach. A wavefront is
evolved with a speed that depends on the local diffusivity in the front nor-
mal direction. This evolution is modeled by a static Hamilton-Jacobi equation
which can be solved efficiently by a Gauss-Seidel iteration technique com-
bined with a sweeping approach. The sweeping approach is able to follow
multiple characteristic directions at each iteration step. This results in the cor-
rect computation of arrival times for the front. Minimum-cost trajectories are
then determined by following the direction of the characteristics rather than
the gradient direction, as has been done previously in the literature. These
pathways represent plausible anatomical connections which are then checked
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against a validity index, representative of the main direction of diffusivity.
Pathways resulting from our method have shown a superior conformance to
the principal eigenvector field than other level-set based approaches.
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