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Abstract— The active contour/snake model is one of the most

aim is to find a partition of an image into a finite number

successful variational models in image segmentation. It consists of of semantically important regions. Various variational and

evolving a contour in images toward the boundaries of objects. Its

success is based on strong mathematical properties and efficient
numerical schemes based on the level set method. The only

partial differential equations (PDEs)-based methods have been
proposed to extract objects of interest in images such as

drawback of this model is the existence of local minima in the well-known and successful active contour/snake model,

the active contour energy, which makes the initial guess critical
to get satisfactory results. In this paper, we propose to solve
this problem by determining a global minimum of the active
contour model. Our approach is based on the unification of
image segmentation and image denoising tasks into a global min-
imization framework. More precisely, we propose to unify three
well-known image variational models, namely the snake model,
the Rudin-Osher-Fatemi denoising model and the Mumford-Shah
segmentation model. We will establish theorems with proofs
to determine the existence of a global minimum of the active
contour model. From a numerical point of view, we propose
a new practical way to solve the active contour propagation
problem toward object boundaries through a dual formulation
of the minimization problem. The dual formulation, easy to
implement, allows us a fast global minimization of the snake
energy. It avoids the usual drawback in the level set approach that
consists of initializing the active contour in a distance function
and re-initializing it periodically during the evolution, which

is time-consuming. We apply our segmentation algorithms on
synthetic and real-world images, such as texture images and
medical images, to emphasize the performances of our model
compared with other segmentation models.

Index Terms— Active contour, global minimization, weighted
total variation norm, ROF model, Mumford-Shah energy, dual
formulation of TV.

I. INTRODUCTION AND MOTIVATIONS

initially proposed by Kass, Witkin and Terzopoulos in [1]. The
number of applications of this method is numerous in various
image processing applications such as in medical imaging to
extract anatomical structures [2], [3], [4].

Following the first model of active contours, Caselles,
Kimmel and Sapiro in [5] and Kichenassamy, Kumar, Olver,
Tannenbaum and Yezzi in [6] proposed a new enhanced
version of the snake model called the geodesic/geometric
active contour (GAC) model. This new formulation is said
geometrically intrinsic because the proposed snake energy is
invariant with respect to (w.r.t.) the curve parametrization. The
model is defined by the following minimization problem:

L(C)
mCin{EGAc(C) =/O g(IVIo(C(s))]) dS}, 1)

whereds is the Euclidean element of length addC') is the
length of the curveC' defined byL(C) = fOL(C) ds. Hence,
the energy functional (1) is actually a new length obtained by
weighting the Euclidean element of length by the function

g which contains information concerning the boundaries of
objects [5]. The functiory is an edge indicator function that
vanishes at object boundaries suctyd§/1;|) = !

1
: S . 148V
where I, is the original image and is an arbitrary positive

~ The image segmentation problem is fundamental in tR@nstant. The calculus of variations provides us the Euler-
field of computer vision. It is a core component toward agrange equation of the functionslg4c and the gradient

e.g. automated vision systems and medical applications. df§scent method gives us the flow that minimizes as fast as
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possibleEq ¢ (see [5]):
9C = (kg — (Vg, N))N, 2

where 9,C := 0C/dt, t being an artificial time parameter,
and x, N are respectively the curvature and the normal
to the curveC. The evolution equation of active contours,
defined in Equation (2), is well-defined because a unique - : ez :
viscosity solution [5], [7] associated to the PDE (2) exists. (a) Initial Snake/GAC. (b) Final Snake/GAC.

O;hgr and Sethian introduced in [8]_the level set method IEP 1. The standard snake model, defined in Equations (1)-(3), fails to
efficiently solve the contour propagation problem and to deﬁ%mem the two objects.

with topological changes. Equation (2) can be written in the

level set form as follows:

Oy = (Fu_gJr (Vg, |Vz|>> Vo), ©) related image segmentation to image denoising in order to

find global minimizers of two denoising and segmentation

where is the level set function embedding the evolving activB'0dels. The first model is a binary image denoising model
contour C' such thatC(t) = {z € RN | ¢(z,¢) = 0}. The which removes_the geometric noise in a given shape and the
PDE (3) is implemented with numerical schemes based SRcONd model is thactive contours without edggACWE)
hyperbolic conservation laws, see Osher-Sethian [8], [9], [16]'0del of Chan and Vese [14].
which can be highly accurate [11], [12] to give very fine/sub- In this work, we develop three theoretical global minimiza-
pixel segmentations. tion models for the active contour model inspired by [13]. The

Despite the many good numerical results obtained WifHSt model is based on the standard snake/GAC segmentation
this segmentation model and strong theoretical properties, thedel [1], [5], [6] and the well-known image denoising model
snake/GAC model is highly sensitive to the initial conditiondf Rudin, Osher and Fatemi (ROF) defined in [15]. We
Actually, the quality of the segmentation result depends a lgtmind that image denoising aims at removing noise in images
on the choice of the initial contour, which means that a bathile keeping main features such as edges and textures. It
initial contour can give an unsatisfactory result. The probleffi interesting to notice that a unified approach of image
of a good initial condition is related to thron-convexity Segmentation and image denoising provides us with a global
of the energy functionajEGAC’ to be minimized and then minimization solution for the active contour model Subject to
the existence of local minima. This drawback is not specif@) intensity homogeneity constraint. Then the second model
to this variational model because it is a widespread issifebased on the standard active contour model [1], [5], [6]
when dealing with variational models in image processir@nd the piecewise-constant Mumford and Shah's model [16],
which also suffer from local minima. In the case of the GA@hich is related to the ACWE model of Chan and Vese [14].
model, the existence of local minima i 4 can prevent the Our model will “reconcile” the classical GAC model, based
segmentation of meaningful objects lying in images. A simpRn the detection of edges, and the ACWE model, based on the
example is given in Figure 1. The initial GAC (embedded in @etection of homogeneous regions, in a single framework to
level set function in order to allow natural topology changeg)obally minimize the active contour model subject to intensity
in Figure ]_(a) can not fu||y Segment the two objects, Figuﬁ@mogeneity constraints. Finally, the third model uses the
1(b), because it gets stuck in a bad local minimum. The bd¥gcewise-smooth approximation of the Mumford-Shah model
segmentation result should provide the two objects, whid@ find a global active contour subject to smooth intensity
corresponds to another local minimumg§: 4 obtained with constraints.
a different initial condition. Hence we wish to define an image This paper, besides developing new theoretical models to
segmentation model providing the correct result independentlgrry out the global minimization of the active contour model,
of the initial condition, which means that we look for aalso proposes new numerical schemes to perform the contour
global minimum of a convex functional. We notice that thevolution in an efficient and fast way. Thus, the traditional
global minimum for the GAC/snake model corresponds to @ntour propagation problem is solved with a dual formulation
point, which has no practical sense for the image segmentat@fnthe total variation (TV) norm introduced and developed
task. We thus propose in this paper to define new actire[17], [18], [19], [20], [21]. These original implementation
contour energies based on the GAC model and whose globehemes are easy to implement and very fast compared with
minimum corresponds to the expected segmentation resukual schemes, based on the level set approach such as
Hence, throughout the paper, "global minimum of the activequation (3). Indeed, standard contour tracking algorithms
contour model” will refer to the global minimization of newuse a distance function (DF), as a level set function, to
active contour models based partially on the GAC model bumplicitly and intrinsically represent the active contour. The
not to the global minimization of the GAC model, which hasnain problem is that the DF is not a solution of Equation (3),
no sense as we previously said. which means that the level set function does not remain a DF

In a recent work, Chan, Eseglo and Nikolova [13] pro- during the contour evolution process. This requires the user to
posed a new approach to deal with global minimum arnmkriodically re-initialize the level set function as a DF, which
overcome the limitation of local minima. In their paper, theys time-consuming, to ensure correct numerical computations



of the curvature and the normal to the contour. Finally, the The differences between Energy (5) and the ROF model (4)
initial active contour has also to be embedded in a DF in tlae the introduction of theveighted TV-normI'V,(u) with a
standard approach, which also requires special techniquesweight functiong(x) and the replacement of th?-norm by
Thus the main contributions of this paper are as follows: the L'-norm as a fidelity measure w.r.t. the given image
1) introduction of three theoretical models to carry out th&hese modifications have two important consequences. First,
global minimization of the active contour segmentatiothe L'-norm, which has been introduced and well studied
model based on the GAC model, the Rudin-Oshein [22], [23], [24], [25], [26], [27], [28], [29], outperforms
Fatemi denoising model and the Mumford-Shah moddhe standard ROF regularization model with th&norm for
2) definition of an enhanced segmentation model by urgome applications and presents important geometric properties
fying into a global minimization framework the com-concerning global minimizers of functionals, which will be
plementary approaches of the geodesic/geometric activged for the active contour global minimization problem.
contours model, based on the detection of edge poin§gcond, the introduction of a weight functiop, in the TV-
and the active contours without edges model, based norm gives us the link between the snake/GAC model and the
the detection of homogeneous regions, proposed functionalF;, because the snake energy, defined in
3) presentation of new numerical schemes, based on thguation (1), is equal to the weighted TV-norm wheis an
dual formulation of the TV-norm, to solve the globalkdge indicator function and the functienis a characteristic
minimization problem of the snake propagation in afunction, 1o, of a closed seflc C 2 which C' denotes the
efficient, easy and fast way. (non-connected) boundaries Qf::
The next section defines the global minimization model
based on the snake method and the ROF model, which TVy(u=1q.)= / 9(x)|V1g, |dx
provides a unified way to perform image segmentation and &
image denoising. Then Section Il introduces the second = / g(x)ds = Egac(C).
global minimization model based on the piecewise-constant c
approximation of the Mumford-Shah model, which is known Before establishing the global minimization theorem for
as the ACWE model of Chan-Vese. We show that our modgje active contour model, let us develop here the comparison
improves the performances of the ACWE. Section IV presemigtween the standard ROF model, the ROF model with the
the global minimization model based on the piecewise-smooth-norm and the proposed model in Equation (5). Chan and
approximation of the Mumford-Shah model. We compare thesedglu studied in [29] the differences between the ROF
proposed model in this paper to other works in Section Ynodel and the ROF model that uses fhlenorm as a fidelity
Finally, we conclude in Section VI and give in Appendix theneasure. They showed that the'-norm better preserves
proofs of the introduced theorems. the contrast than thé&.2-norm and the order in which the
features disappear, in the regularization process, is completely
determined in terms of the geometry (such as area and length)
of the features and not in terms of the contrast such as in
A. Theoretical Model the standard model. Figure 2 presents the difference between
In this section, we unify the snake segmentation model withe ROF model using thé'-norm and our model using the
the denoising Rudin, Osher and Fatemi model defined in [13]'-norm and the weight functioy. The parameter\ for
The ROF model is one of the most famous and influentiabth models in Figure 2(a) is chosen such that the four small
variational and PDE-based image denoising models in imagjecles are removed while keeping the larger one. We can
processing. This denoising technique removes the noise wiike that our model, using an edge indicator function, gives
preserving the edges in images. The minimization problens a better quality result because the edge function better

II. GLOBAL MINIMIZATION OF THE ACTIVE CONTOUR
MODEL BASED ON THEROF MODEL

associated with the ROF model is as follows: preserves the geometry of the original features such as the
g 5 corners and the largest disk.
min {EROF(U,)\) :/ \Vu|d:v+)\/ (u—f) dx}, 4)
&ﬂ ¢ Besides improving the regularization process of the ROF

=TV () model, Energy (5) provides a global minimization of the active

where2 ¢ R is an open set representing the image domaicontour model. The global minimization result is based on the
f is a given (possibly noisy) imagel'V(u) is the total following theorem:

variation norm of the function,, and A > 0 is an arbitrary Theorem 1: Suppose thay(z) € [0,1] and f(z), the given
parameter related to the scale of observation of the solutigmage, is the characteristic function of a bounded domain
Based on the approach of Chan, Esgldoand Nikolova in O, c Q, for any given\ > 0, if u(x) is any minimizer of
[13], we propose the followingnpnstrictly) convex energy E;(.,\), then for almost every, € [0,1] we have that the
defined for any given observed imagiec L'(€2), any function characteristic function

g : @ — R7T independent of. and any positive parameter

Ey(u, A) := / g(x)|Vu|dz +)\/ |u — fldx. (5)
Q Q where(' is the boundary of the sé&l¢, is aglobal minimizer
=:TVy(u) of El(., )\)

1Qc(u):{x:u(z)>,u} (.’L‘),



(a) Original Imagef € (b) Lével Set 0{z
[0, 1]. f(z) > 0.5},

(c) Finalu with TV — L. (d) Level Set o{z
u(z) > 0.5}.

(e) Final v with £1 = (f) Level Set o{z
TV, — L. u(x) > 0.5}.

Fig. 2. Comparison between the ROF model usiifgnorm as a fidelity

minimizing FE; is obviously not equivalent to globally
minimizing the GAC energy defined in Equation (1). As we
said in the Introduction, it has no sense to globally minimize
the GAC model because its global minimum corresponds to
a point. Here, we globally minimize a new active contour
energy, namelyF;, partially based on the GAC and whose
global minimum corresponds to the expected segmentation
result.

Finally, since Energy; is convex butnot strictly convex,
it does not possess local minima that are not global minima.
Hence any minimizer of EnergyFE; is a global minimizer.
Thus, according to Theorem 1, for any minimizerof Ej,
the contourC' of the set{z : u(x) > p} for any p € [0, 1] is
a global minimizer of the active contour energy for (possibly
noisy) binary imagessuch as the image in Figure 1.

The next two sections define two numerical schemes to
compute the global minimum of the active contour model.
Section 1I-B gives a PDE to find a global minimum and
Section 1I-C introduces a new algorithm, based on a dual
formulation of the TV-norm, to quickly compute a global
minimizer.

B. Standard Minimization based on a PDE

As we previously said, any minimizex of E; provides
a global minimum to the active contour model. Hence, the
standard calculus of variation model can be used to determine
a PDE which is guaranteed to find a global minimizer of the
segmentation model. The minimization flow of Functiofal

f . 4 IS:
measure, Figures (c-d), and our model using the weighted TV-norm and tﬁe

L'-norm, Figures (e-f). The difference between both models is clear. The . U u— f
result generated by our model better preserves the geometry of the original Ou = div|g V| + u— fla
features such as the corners and the largest circle.
Vu Vu u— f
= div|{ — | +(V + A 7
g Vu ( 97Wu‘> |u_ﬂ,()

Proof. See Appendix™

Theorem 1 states the relation between the global minimiz

where the first term of the right-hand side of (7) is the

curvature of the level sets of, div (%), multiplies by

tion of Energy E;, and the snake/GAC model. Indeed, whethe edge indicator functiog, the second term is a shock term

function w is a characteristic function of a sé€l-, whose
boundary is denoted’, the expression of Energ; is thus
equal to:

Ei(u= 190,)\):/ g9|V1ig,|dx + )\/ 1o, — fldz,
Q Q
z/ gds—i—)\/ 1o, — fldz. (6)
C Q
Hence, minimizing Energy (6) is equivalent to
minimize/ gds = Egac(C) (The snake/GAC energy (1))
C

while

approximating the given imagg (in the L' sense)
by a binary function of a set/regiofic.

which enhances the detection of edges and the third term of
the right-hand side is a data fidelity term w.r.t. the observed
image f. The evolution equation (7) can be discretized with
the following explicit numerical scheme:

un+1 u™

Can I
e = g (DL + (D)) - { DI NE
Dy Ny b+ (D3g)n - Nt + (DRg)y - N+ @®)

+ (DVg)y - N A /

where DSf = (fi,+14, — fio-14,)/2, Dfu =
Uigt414, — Ui,i, and Diu = w i — Ui,-1i,
are respectively the central, forward and backward
approximations of theispatial derivatives in thedirection,

Do u™

NE = is the approximation
z,€ \/(D%un)2+(D3:un)2+s PP

(Dyg)n - Ny .2»

Y€1

Hence minimizing Energy; corresponds to find an activeof the normal to the level sets of in the z-direction,
contour which minimizes the GAC energy while recoverinthe same approximations being held in thedirection,
the boundary of a binary image. We underline that globally), := max(-,0),(-)y := min(-,0), 0t being the



temporal step, andi,eo small positive constants. In all C. Fast Minimization based on a Dual Formulation of the TV-

our experiments, we choosé = 5.107°, ¢; = 107! and Norm

g2 =10"% Based on [17], [18], [19], [20] and more precisely on [21],
we use a convex regularization of the variational model:

The numerical scheme defined in Equation (8), deter-
mined from the classical Euler-Lagrange equations methot! Er(u,A) = /Qg(x)\Vu|dx+>\/Q ju— fldz o,
is actually a very slow segmentation method because of
the regularization process of the TV-norm. Indeed, Ener&?
E, is not directly minimized but the regularized version min {E{(u,v,)\ﬁ) :/g(x)|Vu\d:c+
Q

J9@)\/|Vul? +e1 + A [ /(u— f)?+e2 Whereeq, e, are v

very smallparameters to be faithful to the original energy and

follows:

useful to avoid numerical instabilities. The direct consequence 1 et 9)
of this regularization parameter is the obligation to use a — [ (u+v—f)da +>\/ 'U|da:}.

small temporal step to ensure a correct minimization process. 20 Jo Q

Thus a large number of iterations to reach the steady state luto—Fl12, [loll L1

minimization solution is necessary. In other words, although it .
: : ; . and the parametef > 0 is small so that we almost have
is correct, the segmentation process remains slow. For mstange

let us come back to the first image, Figure 1. This time = u -+ v where the function: represents the geometric in-

) o . armation, i.e. the piecewise-smooth regions, and the function
consider a more challenging initial active contour because

we choose a characteristic function of a small digkside ° captures the texture information lying in the given image.

. . . Since the functionalE] is convex, its minimizer can be
the two objects, see Figure 3(a). The two objects are now R .
- computed by minimizingz] w.r.t. w andv separately, and iter-
successfully segmented as we can see in Figure 3(b) thanks : : .
s ating until convergence as in the references mentioned above.
to the global minimization property of our model but th

. . . hus, the following minimization problems are considered:
segmentation process tak&sninutes. In the next section, we o i _
introduce a new numerical model based on a dual formulationl) v being fixed, we search far as a solution of:
of the TV-norm which gives a fast segmentation algorithm. . 1 9

min { TV (u) + 55 utv—f 3 1, (10)
u

2) u being fixed, we search far as a solution of:

B min { g lus o= ealolo b @D
o Proposition 1: The solution of (10) is given by:

u=f—v—~0divp,

i , ] AR j wherep = (p', p?) is given by
(@) Initial Active Contour. (b) Final Active Contour. g(m)V(@ divp — (f _ v)) _

|V(9divp7 (f fv))|p =0.
. The previous equation can be solved by a fixed point method:
p? =0 and

Al p”—l—(StV(divp” — (f—v)/@)

. 1+ 5[V (divpt — (f —v)/0)]

Proof: See Appendixd

12)

(c) Initial w. (d) Final w. . . . .
Proposition 2. The solution of (11) is given by:

Fig. 3. Despite having an initial contooutsidethe two objects, Figure (a),

our segmentation-denoising model successfully extracts the two meaningful J—u—0A if f—u>0X
objects, Figure (b), in the given noisy image. On Figures (a-b), the active v = f—u+0A if f—u< =06
contour is given by the boundary of the gt (u = 0.5) = {x : u(x) > 0 it [f—ul <OA

0.5} and the functionu on Figure (d) is the minimizer of Energg,
computed with the discretized flow (8). The parametes arbitrary chosen Proof: See AppendixE\
to 0.5, although any value betwedhand 1 can be used without changing ’

the segmentation result because the final functida very close to a binary The iteration scheme (12) is straightforward to implement.

function. Hence, our snake model, based on a global minimization approachu'ﬁ di di i is qi by [19]:
independent of the initial condition. This improves the standard active conto e discrete divergence operattiv Is given by [ ]

result obtained in Figure 1 where a good initial guess is necessary to get the 1 1 . .
same result. Diyiy, — Pin—1, if  1<i,<Ng,

(le p)imyiy = p%m"iy if Zm = 1,
Pl 14, if i, =N,,



2 2 i - o . o .
Piviy = Piai,—1 1T 1<y <Ny, which is distorted by a Gaussian additive noise. Our model

2 i C_ . . :
+9 P, ity =1, successfully extracts the meaningful part of the given image
A if iy =Ny, corresponding to the original text.
and the discrete gradient operator is as follows [19]:
1 2 !
(Vu)i, i, = ((vu)im,iy’ (vu)im,iy) . : .
with ) )
(Vu)! , = Uiy 41,4, — Wiy, !f la < Ny,
@y 0 if i, = N,,
2 Uiy iyt = Uigiy, 1Ty <N, .
(V )iz,iy = { Oz iy iy i Zz _ NZ: (a) Final Active Con- (b) Finalw. (c) Finalv.
tour.
Fma"y’ n 1a” eéperlments, initial values .are chosen to bl?lg. 4.  Global minimization of the active contour/snake model with a
up = vo = py = pp = 0, the temporal step is equal 8 = gyal formulation of the TV-norm proposed in Propositions 1 and 2. Our

1/8 and a stopping test isiax(|wu,+1 — un|, [vn+1 —vn|) < e.  segmentation successfully extracts the two meaningful objects, Figure (a),
in less than5 seconds! Figures (b)-(c) present the final functiangnd v
which minimize the regularized enerdy] defined in (9). The minimization of

D. Results Functional E] carries out the image decomposition task becausgpresents

. . e geometric information, i.e. the piecewise-smooth regionsvacaptures
The new active contour model, given by the gIObeme texture information lying in the given image. Of course, this model also

minimization of Energy (9), is applied to Picture 1. Th&mproves the standard active contour result obtained in Figure 1 where a
numerical energy minimization based on the dual formulatigieod initial guess is needed to get the same result. Here the initial condition

of the TV energy, and not on the classical technique Y% =vo =ro =pj = 0. We also have\ =0.1,6 = 1.
Euler-Lagrange equations such as in Section II-B, gives us
the same result, see Figure 4(a), in less thaseconds! We
remind the reader that minutes was necessary in the case
of the Euler-Lagrange equations method. Furthermore, the
implementation of the minimization is straightforward. Hence,
our new snake model provides not only a global minimum
independent of the initial contour position but also an easy : BT

and fast algorithm to carry out the segmentation process. . ) e
This new way to solve the active contour problem is also SZ\C',”'“E" Standard EE,{C_F'”""' Standard
numerically much faster than classical methods used in [5],
[6] that consists of embedding the snake in a distance functionZs=—=
and re-initializing it periodically to insure correct numerical *ﬁr
computations of the curvature and the normal to the level sets.—==

)

It is interesting to note that our segmentation framework ==
unifies image segmentation (snake model), image denoisingiEA_ ST ST
(ROF model) and now image decomposition using the energy (c) “Global’ Active (d) Final . (e) Finalv.
functional (9). Indeed, the introduction of the functian Contour.
in the minimization problem, naturally captures the texturglg. 5. The image decomposition used by the active contour/snake model
part lying in images. Image decomposition [30], [31], [20]improves the segmentation task. We mixed a black rectangle with a texture

; ; ; ; ; ttern. Figure (a) shows the segmentation obtained with a standard GAC
[21] consists of separating an image Into Iits structural par efined in Equations (1)-(3). The standard snake fails to segment the black

representing by the geometric/piecewise-smooth regioRstangle because it gets stuck in the textures. However, our model is able
and textural parts, containing textures and noise. Thus tiaeable to capture the black rectangle, Figure (c), thanks to the image
minimization of Energy (9), leading to the global minimumjecomposition which separates t_he geometric part, Figure (ld), an2d the texture
. . art, Figure (e), from the given image. We havg = vo = p5 = pj = 0
of the segmentation model, simultaneously performs gﬁd)\zghogl,gz(l%_
image decomposition which improves the segmentation
task. Indeed, consider Figure 5. The standard GAC fails to
segment the rectangle, Figure 5(b), because it gets stucikl- GLOBAL MINIMIZATION OF THE ACTIVE CONTOUR
in textures whereas our model, thanks to the separatiodODEL BASED ON THEMUMFORD-SHAH MODEL: THE
between geometric regions and textures, is able to capture PIECEWISE ConstantCASE
the black rectangle, Figure 5(c). Finally, performing image The previous section defined a new image segmentation
segmentation and image decomposition at the same time cagthod based on the ROF model to determine a global
be useful for other image processing tasks such as patterimimum of the standard geodesic/geometric active contour
recognition. model. This new model is thus independent of the initial
contour position. However, it is designed for (noiséi)ary
We also apply our model on a real-world image, Figurenagessuch as Pictures 1, 5 and 6. In this section, we propose
6(a), corrupted with a salt-and-pepper noise unlike Figuretd extend the previous technique geey-scale images
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(a) Original image corrupted
by a salt-and-paper noise.
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(b) Final Active Contour.

improves the model of Chan and Vese when the contrast
between meaningful objects and the background is low. Then,
we will propose a fast numerical model, easy to implement,
to carry out the image segmentation.

The variational model of ACWE, which corresponds to the
two-phase piecewise constant approximation of the Mumford
and Shah’s model, is as follows:

Qc,c1,c2

min {EACWE(QC7 c1,Co, )\) = Pel(Qc)Jr
(13)

rm is intended for original, previously L
company any such material in order tc

(c) Final u.

ALJqﬂmVM+ALmJ@ﬂwVM}

where f is the given image{)s is a closed subset of the
image domair2, PefQ¢) is the perimeter of the sélc, A

is an arbitrary positive parameter which controls the trade-off
Fig. 6.  Application of our segmentation model to a real-world imagdbetween the regularization process and the fidelity of the

The global minimization of the snake model extracts the text, Figure (b} ; PG ;
(c), initially corrupted by a salt-and-paper noise. The segmentation-denoi blgOIUtlon w.rt. the original imagef and c1,c; € R. The

sing . .. > L
model allows us to denoise the given image and recover the original text. 'IVfg”auonal model (13) determines the best approximation,
advantage of the proposed snake model compared with the standard adgtivéhe L2 sense of the imagg as a set of (non-connected)

contour model is obvious on this picture. We have= 0.0001,6 = 1. regions with only two different values;; and cs. If Q¢ is
fixed, the values ofc; and c; which minimize the energy
. Facwerg are the mean values inside and outsitie. Finally
A. Theoretical Model the term Peg{)¢) imposes a smoothness constraint on the
We consider the global minimization problem of the aCtngeometry of the set)c which separates the piecewise
contour/snake model [1], [5], [6] using the well-knownconstant regions.
Mumford and Shah’s (MS) functional [16] and the Chan
and Vese's model oéctive contours without edgg®CWE) The minimization problem (13) is non-convex since mini-
[14]. The MS model is one of the most influential variationahization is carried over functions that take only the valags
model to solve the image segmentation problem. This modgidc,, which is a non-convex collection. Hence, the optimiza-
determines the optimal piecewise smooth approximation oftian problem can have local minima, which implies solutions
given image, which is equivalent to partition an image int@ith wrong scales of details. Despite the non-convex nature
distinct homogeneous regions which boundaries are shaf(13), a natural way to determine a solutifc, ¢;, ¢2) is
and piecewise regular. The ACWE model is also an importagtwo-step algorithm where, andc, are first computed, then
segmentation model based on curve evolution techniques, the region()- is updated to decrease the enetBycw &.
level set approach and the MS model. This model detegthan and Vese proposed in [14] a solution to determine an
boundaries of objects based on the detection of homogenegysiution equation for the regiofl- based on a level set
regions, like in the MS model, and not on the detection @fased approach. They represent the regidpsand Q \ Q¢
large image gradients such as in the classical snake moggth the Heaviside function of a level set function (which
The efficiency of the ACWE model is presented in [14] omodels a characteristic function). Hence the endiigy-w &
various experimental results for which the classical snak@n be written according to a level set function
model, based on the image gradient, is not applicable. Chan
and Vese also noticed on experimental results that their mod&f, .y (¢, c1, c2, \) = / |\VH(¢)|+
has the tendency to compute a global minimizer. Finally, Q
Chan, Esedgiu and Nikolova proved in [13] that a global )\/ (H€(¢)(C1 — f(@))? + Ho(—=¢)(c2 — f(fﬂ))Q)de,
minimum to the ACWE model exists. Q
where (2 is the image domain andl, is a regularization of
In our approach, we propose to determine a glob#ie Heaviside function. The flow minimizing Energy (14) is
minimum of the snhake model by enhancing the standatide following one:
ACWE method. The enhancement is realized by unifying
the classical GAC model with the ACWE model in a global g, = H’(¢) < div (W) _
minimization framework to detect at the same time object IVl
edges, based on the detection of large image gradients
and homogeneous intensities regions. Hence, we unify the
complementary approaches of the geodesic/geometric active
contours model and the active contours without edges model
to create an improved segmentation model. We will show thatin [14], authors chose a non-compactly supported smooth
our model, besides being independent of the initial conditiostrictly monotone approximation of the Heaviside function. As

(d) Finalv.

(14)

(15)
Aaq—fm»%wq—fw»ﬁ}. °

=:r1(z,c1,c2)




a result, the steady state solution of the gradient flow (15) risinimization technique such as the Euler-Lagrange equations

the same as: method or another optimization method, the set of points in the
) Vo functionw such asu is larger to an arbitrary positive constant,
Oy = div <V¢|> —Ari(z, c1, e2), e.g.u = 0.5, defines a sef2 whose boundary’ represents

] o . ~a global minimum of the snake model subject to intensity
and this equation is the gradient descent flow of the fo”o"‘”%mogeneity constraints.

energy:

Elcwr(d,c1,c0,A) = /Q Vol +)\/Q7“1($>C1702)¢ dx. (16)

Like the energy of ACWE [13], Energ¥l, is homogeneous
of degree 1 irnu. This means that this evolution equation does
not have a stationary solution if the minimization tois
not restricted such a8 < u(xz) < 1. Thus, the constrained

Based on the previous development, we propose to minimiggnimization problem to carry out the segmentation task is in
the following energy functional, for any given observed imaggct as follows:

f € L*(Q) and any parametex > 0, to carry out the global

minimization of the segmentation task: min < Ey(u, ey, e, A) = TV, (u)+
0<u<1 9 9 ) g (19)
Es(u,c1,c2,A) =TV, (u) + /\/ ri(x, e, c0)u dr.  (17)
Q A ri(zer,e0)u da .
Q

The difference between Energy (17) and (16) is based on

the weightedtotal variation energyl'V, (u), of the function  The constrained problem (19) is changed into an uncon-

u with a weight functiong. This simple modification gives girained minimization problem according to the following
us the link between the ACWE model and the standard sngkgqrem [13]:

model when the functiog is an edge indicator function and
the functionu is a characteristic functiorq, . Indeed, Energy
(17) is in the case of characteristic functions equal to:

Theorem 3: Letri(z, c1,c2) € L>®(Q), for any giverncy, ¢y €
R and A € R,, then the following convex constrained
minimization problem

Es(u=1q,,c1,c2,A)

=TV,(1q.) +)\/ r1(z, 1, c2)lq, dx, 02221 {Tvg(u) + A [ ri(z,cr,e)u da:}
Q ==

Q

= / gds + has thesame set of minimizers as the following convex and
¢ unconstrained minimization problem:

/\/Q ((c1 — F@)? — (2 — f(;v))2>1gzc dz. (18)

S ) ) min {TVg(u)+/ Ary(z, 1, c0)u + av(u) da:}
Hence, minimizing Energy (18) is equivalent to u Q

minimize/ gds = Egac(C) (The snake/GAC energy (1)) where v(§) := max{0,2|¢ — 1| — 1} is an exact penalty
c function provided that the constantis chosen large enough
while compared toA such asa > 3 || 71(z) || 1= (q)-

Proof. The proof is in [13] with the weighted TV-norm

approximatin in the L% sense) by two regions
PP of ( ) by g replacing the TV-normQO

Qc andQ \ Q¢ with two valuesc; and cs.

) ) Like in Section II-A, EnergyEs given by:
The previous observation, about the enefgyand the char- 9yRs 9 y

acteristic functions of sets, emphasizes the link between theES(
standard active contour model [1], [5], [6] and the ACWE
model [14]. Moreover, Energy, also provides us a global / Ary(z, e1,e0)u + av(u) d,
minimum for the active contour model. The following theorem Q

states the existence of a global minimizer for Enefgy . . .
Theorem 2: Suppose thaff(z), g(x) € [0, 1], for any given is convex butnot strictly convex, which mean that; does
e, € Rand A € Ry hé u(x) is ’an,y minimizer of NOt possess local minima that are not global minima. Hence

E5(.,¢1,¢2, ), then for almost every, € [0,1] we have that any minimizer of Energy[s is a global minimizer, AS we
-~ ; did in Section II-B, we could compute a global minimizer
the characteristic function . . .
of E3 with the standard Euler-Lagrange equations technique
Lo (wy={a:u(z)>u} (T), and the explicit gradient descent based algorithm (see [32]
for numerical details). However, as we explained in II-B, this
numerical minimization method is very slow because of the
regularization of the TV-norm. Thus, we introduce in the next
section a new numerical model, based on a dual formulation of
The interpretation of Theorem 2 is as follows: fbrey,co  the TV-norm, which will define a fast segmentation algorithm,
being fixed, any minimizern, of E,, determined with any much faster than the standard snake model.

u, 1, c2, A, ) := TV (u)+

where( is the boundary of the sé€l., is aglobal minimizer
of EQ(., c1,Ca, )\)
Proof. See Appendix™



B. Fast Minimization based on a Dual Formulation of the TVE. Results
Norm

The variational problem: The new snake model, given by the global minimization of

Energy (20), is applied to the cameraman picture, Figure 7.
min {Eg(u,01,027>\,04) = TV, (u)+ The numerical minimization based on _the dual _formulation
u of the TV-norm, and not on the classical technique of the
Euler-Lagrange equations, gives us the same result, Figure
/Q)‘rl(x’cl’c2)“+a”(“) dm}' 7(a), in less thanl0 seconds! Furthermore, as we noticed
is regularized in the same way as in Section II-C based 4 S_ectlon I-D, the |mplgmentat|0n of the mlr_n_mlzatlon_ s
[17], [18], [19], [20], [21]: S ralghtforward, fast and independent of the_ |n|t|_al condition
’ ’ ’ ’ (we simply choseug = vy = p§ = p2 = 0 in Figure 7).
min {Eg(u, v, ety 09,0 0, 0) = TV, (u)+ Hence, th|s new way to solve thg active contoulr propagation
(20) problem is numerically more efficient than classical methods,
5 which consists of embedding the snake in a distance
a5 lw—v L +'/Q Ari(z, e, c2)v + av(v) dx}‘ function and re-initializing it periodically to insure correct
computations of the curvature and the normal to the level sets.

u,v

where the parametef > 0 is chosen to be small. Since

Functional E% is convex, its minimizer can be computed by . .
minimizing £} w.rt. w and v separately, and to iterate untii OUr Ségmentation model improves not only the GAC
convergence. Thus, the following minimization problems af80del but also the ACWE model when the contrast between

considered: meaningful objects and the background is low. Indeed, let us
1) v being fixed, we search far as a solution of: consider the synthetic image in Flgure 8(a). At the right edge
of the rectangular foreground object, the contrast changes
. 1 low even though there is still a clear discontinuit
TV 1 o 21y are very g y
et { o(u) + 26 lu—viz } (21) delineating the edge. The result obtained using the standard
2) u being fixed, we search far as a solution of: ACWE model is ShOYVI’I in Figure 8(b). No r_natter how large
the fidelity constan#\ is chosen, the model will always prefer

min { L= |2 + to _cut through the low contrast region of the fore_:ground
v 20 L object (does so exactly where the contradi.ig. There is no
(22) way to avoid this by varying the parameters in the model, the
Ary(z, 1, ¢2)v + av(v) da:}, active contour always misses the correct boundary at the right
Q edge of the rectangle by at least the amount shown. However,

the solution obtained using our segmentation algorithm,
shown in Figure 8(c), provides enough of edge sensitivity,
u=v—0divp, given by the edge indicator functian for the active contour

to stay faithful to the actual boundary of the foreground object.

Proposition 3: The solution of (21) is given by:

wherep = (p', p?) is given by

9(@)V (0 divp —v)— We show the advantage of our model over the standard
|V(9 divp — v)|p =0. ACWE model on a real-world image, Figure 9(a). Our model
ga_able to segment an important part of the liver, Figures 9(b)
and 9(d), despite of very low contrast changes, whereas the
standard ACWE model can not segment accurately the liver
(23) as we can see in Figure 10 where different values\ afas
tested.

The previous equation can be solved by a fixed point meth
p? =0 and
np1 . PU 6tV(diV(p") - v/@)
1+ 25|V (div(p®) — v/0)|
Proof: The proof is the same as Proposition 1 when v is
replaced byv. O

IV. GLOBAL MINIMIZATION OF THE ACTIVE CONTOUR
MODEL BASED ON THEMUMFORD-SHAH MODEL: THE

v = min { max {u(x) — OAry(z, c1,2), 0}, 1}. (24) PIECEWISE SmOOthCASE

Proposition 4: The solution of (22) is given hy:

Proof. See Appendix The previous section defined an image segmentation model

The iteration scheme (23) is straightforward to implemetvased on the two-phase piecewisgnstant approximation,
as in Section II-C. Thus Equations (23) and (24) are iteratatso known as the cartoon version, of the MS model to
in order to minimize Energy (20). Of course, the constantetermine a minimum of the snake model independently of
c1 andc, are updated periodically every iterations. In all the initial contour position. In the following section, we
experiments, initial values are, = vop = p} = p2 = 0, the extend the previous model to the two-phase piecegnseoth
temporal step is equal & = 1/8 and the stopping criteria is approximation of the MS model. The variational problem to
max (|41 — Unl, |[Vnt1 — vnl) <e. solve is given by Vese and Chan (VC) in [33] (see also [34]
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(a) Final Active Contour. (b) Final u.

Fig. 7. Global minimization of the active contour/snake model using the
Mumford-Shah model and the Chan-Vese’'s model. Our segmentation model
“reconciles” in a consistent framework the standard GAC model, based
on the detection of edge points defined by large image gradients, and the
ACWE model, based on the detection of homogeneous regions defined from
the Mumford-Shah energy. A minimization dfy realized with the Euler-
Lagrange equations technique takes abbutminutes. Here, the numerical
minimization of E2, given in Figure (b), is carried out with a dual formulation

of the TV-norm in less thamO seconds! As in Section Il, the active contour in
Figure (a) is given by the boundary of the $&t(u = 0.5) = {z : u(z) >

0.5}. The parameteg, is arbitrary chosen t0.5, even if any value betweeh

and1 can be used without changing the segmentation result because the final
functionu is very close to a binary function. We choose= 0.1,6 = 1.

Fig. 9.

(c) Final u. (d) Final Active Contour.

Our segmentation model is able to segment an important part

of the liver despite of very low contrast changes, Figures (b)-(d). The fine
segmentation result is obtained by unifying the ACWE model and the GAC
model which accurately detects boundaries thanks to the edge indicator
function g. The Standard ACWE can not segment as accurately as our model
as shown in Figure 10. We chooge= 0.5,0 = 0.1.

(a) Original image.

(b) Final Active Contour
given by the ACWE model.

(c) Final Active Contour
given by our model.

Fig. 8. Segmentation using the Active Contours Without Edges (ACWE)
model of Chan-Vese, Figure (b), and our model which unifies the ACWE
and the geodesic/geometric active contours (GAC), Figure (c). This synthetic
image illustrates one important advantage of our segmentation model over the
standard ACWE model. Indeed, whatever the value of the fidelity constant
the ACWE model can not fully segment the rectangular foreground object. It
will always prefer to cut through the low contrast region of the foreground
object, see Figure (b). However, our segmentation algorithm is able to fully
capture the boundary of the foreground object, Figure (c), even though the
contrast changes are very low at the right edge of the rectangular object,
because the model uses the edge indicator fungjiaefined in the GAC
model. We choosé = 0.01,60 = 1 for Figure (b) and\ = 0.0001,0 =1

for Figure (c).

for early work) by:

(b) Final ACWE with A =

0.0001. 0.0001.

3 e

(d) Final ACWE with A =
0.001.

0.001.

min
Qc,s1,82

A / ((s1(2) — F(2))? + 0| Vs (2)?) e
Q¢

{EVC(QC751a 52,1, A) = PelQc)+
(25)

2 2
A/Q\QC ((s2(x) — F(@))? + | Vsa(a) )dx}

where(2 is the image domainf is the given images; and
sy are two C*' functions defined or)c and onQ \ Q¢

(f) Final ACWE with A =
0.01.

(e) Final ACWE with\ =
0.01.

Fig. 10. Segmentation using the ACWE model. Whatever the fidelity constant
A, the ACWE can not produce the same result obtained in Figures 9(b) and
9(d) because it does not use an edge indicator fungjiofigures (a)-(f)
presents different results given by different values\of
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respectively,A > 0 controls the regularization of the length We point out that the two functions; and s, in the

of the boundary of smooth regions and > 0 controls formulation (26) need to be defined only on their respective
the regularization of the intensities of smooth regions. Th#omains (namely2c and 2 \ Q¢) because of the Heaviside
variational problem (25) determines the best approximatiofunction. However, in the relaxed formulation given in (30),
in the L? sense, of the given imag¢ as a set of smooth these functions need to be defined in the entire dorfafly

regions represented by the functiefx) such that a suitable extension).
; The difference between Energy (30) and (29) is based on
() = s1(z) if z € Qc, h iahted | A hen i
s(z so(2) if 2 € Q\ Qc, the weighted total variation energ¥;V,(u), which gives us

] the link between the GAC model and the MS model when the
andC' = Q¢ = 9(Q\ Qo) is the boundary between thefynction g is an edge indicator function and the functioris

smooth regions. Like (13), the minimization problem (25) ig characteristic functiori,q,.. Indeed, Energy (30) in the case
also non-convex, which implies the existence of local minimgf characteristic functions is equal to:

and possibly unsatisfactory segmentation results. As in Section
lI-A, the two regionsQc and Q \ Q¢ are represented by a Es(u=1ac, 51,52,1,A)

regularized Heaviside functiorf(.), of a level set function :/ v1 )\/ ny
¢. This leads to the following energy: Q9| Qcl + QTz(fE) Qc a4, a
2 2
B2y ©cssisan ) = [ IVH@)+ — [Lats e [ (=07~ a7
Q

)\/Q He(Qb)((Sl _ f)Q —|—77|VS1‘2)d$ (26) 77|VS1|2 - 77|VS2|2) ]_chl‘.

Hence, minimizing Energy (31) is equivalent to
3 [ H=0) (52 = 177 Vo) o

minimize ds=F C) (The snake/GAC ener
Minimizing EZ,, w.r.t. the functionss; and s» using the /cg aac(@) ( gy (1))

calculus of variations gives us: while
s1 — [ =nAsyin Qc, ; i ; 2
{ oo — f = nAsy in Q\ Q, 27) approximatingf (in the L* sense) by

two piecewise smooth regio andQ \ Qc.
with the Neumann boundary conditions: P giortsc \ Qe

%:Oonaﬁcuéﬂ,
g0 =00nad(Q\ Qc) U o,

The previous observation, about Enerfjy and characteristic
functions of sets, emphasizes the relation between the standard
active contour model [1], [5], [6] and the VC model [33].

And the flow minimizing the energy (26) is as follows: Besides, Energy#; also provides us a global minimum for
, A the active contour model. Indeed, the following theorem states
O = H€(¢){d|v <V¢) - the existence of a global minimizer for Enerdj:

Theorem 4: Suppose thaf (x), g(x) € [0,1], for any given

9 9 ) ) 51,80 € CY(Q) and \,n € R, if u(z) is any minimizer of

A <(81 — )" = (s2—= )" +nlVs1]” — n[Vsq| ) } (28)  Ey(.,51,50,1,)), then for almost every: € [0,1] we have
that the characteristic function

=:ra(x,81,82,m)
If a non-compactly supported smooth approximation of the Loc(uy={zu(@)>u} (T),

Heay|3|de functlon. is chosen, the- steady state solution of t\?v%erec is the boundary of the selc, is aglobal minimizer
gradient flow (28) is the same as:

of Eg(., S1,82,1, )\)
0,0 = div ( Vo ) Aol 51, 59,) Proof. The proof 'is similar to the proofs of Th'eorems 2 and
|V 3 when the function; is replaced by the function,. O

and this equation is the gradient descent flow of the energy: 1o interpretation of Theorem 4 is as follows: fc s2,7, A
3 being fixed, any minimizen, of E5, determined with any
Ecy(é,51,52,1m,4) = /Q Vol+ minimization technique such as the Euler-Lagrange equations
(29) method or another optimization method, the set of points in the
A /Q ra(x, 81,52,1)¢ d. functionw such asu is larger to an arbitrary positive constant,
9 K= 0.5, defines a sef)c whose boundary” represents
a global minimum of the snake model.

Finally, a minimizer of the energy; can be found using
the Euler-Lagrange equations technique like in Section II-
min {EB(U731»3277]>)\) _ / 9| Vul+ B (see [32] for _num_erical (_Jletails) or _the dual formulation
0<u<1 Q (30) of the TV-norm like in Section III-B. Figure 11(b) presents

As a result, the following constrained minimization proble
is proposed for any given imagée L!(Q2) and any positive
parameterx > 0:

\ d the segmentation of the cameraman picture carrying out by
Qm(m’sl’sbn)u T the minimization of energyZs and Theorem 4. Figure 11(d)
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shows the optimal two-phase piecewise smooth approximationThe first related approach is naturally the work of Chan,
of the original image given by the MS model. Notice thaEsedglu and Nikolova [13] because the global minimization
the two functionss;, so are initially chosen tof and updated of the snake/GAC model proposed in this paper is inspired by
every10 iterations according to Equation (27). Finally, Figureheir work. However, our approach is more general because
12 present the segmentation and the denoising of a smoath propose a unified framework to use the GAC model
foreground object. and the ACWE model. Experimental results in Section IlI-C
demonstrate the advantage of using the GAC model with the
ACWE model when the contrast changes between meaningful
objects and the background are very low. Finally, we propose
a fast numerical scheme to perform the global minimization
of our variational model, which is not the case in [13].

| The second related work is the paper [35] of Cohen and
Kimmel which also addresses the problem of determining
a global minimum for the GAC energy. Their approach is
different from ours since it is focused on finding a minimal
path between two given end points of apen curve. As
noticed in [36], object segmentation is not easy to carry out in

(a) Original Image. (b) Final Active Contour.

their approach because the method needs a number of points

‘ on the boundary of the object to be extracted. Furthermore
the model is naturally designed to capture open curves, such

as minimal paths on road images, but not directly closed
curves because it requires a complementary method based on

\ a topology-based saddle search routine.
(©) Finalu. (d) Smooth approximation Finally, i.n .[36], Appleton and Talbot propose to determine
of (a). a global minimum for the GAC model for closed curves under

i _ - del and th . ~ the restriction that the curve contains a specified internal point.
o b o o oyt b et fthors present very good object segmentation results in vari-
(b) presents the final active contour and Figure (d) the optimal two-pha@&lS medical images. However, the need of a specified internal
piecewise smooth approximation of the given image. point can limit the segmentation process because it means that
object with multiple closed curves can not be extracted without
a set of seed points. For example, the two objects presented
in Figure 1 can not be directly segmented with only one
internal point. Their model needs to detect two internal points,
which is not our case. Finally, the extension of their model to
higher-dimensional images is not straightforward whereas the
extension is natural in our approach.

rad cu g foanitien e

SR AEE VI. CONCLUSION
(a) Original Image. (b) Final Active Contour.

As we said at the beginning, the active contour/snake model
is a well-known image segmentation model which is more
el . and more used in various image processing applications such
> as in automated surveillance, graphics animation, robotics or
: medical imaging. Its success is based on strong theoretical
» properties and efficient numerical schemes. The only drawback
of this segmentation model is the existence of local minima in
- its functional energy, which makes critical the initial contour
to extract meaningful objects lying in images. Hence we
proposed in this paper a new approach to determine a global

Fig. 12. Segmentation using the GAC model and the two-phase piecewisgnimum of the snake energy in order to become independent

smooth approximation of the MS model defined by Vese-Chan in [33]. ng the initial position of the contour. We think that this
segmentation model also performs at the same time the image denoisin

because Figure (d) presents the regularized version of Figure (a). new approach can ha_V9 numerous applications in the image
processing tasks previously mentioned.

The core of our models was to express the energy function-
als in terms of level sets as observed by Strang in [37], [38]
and solve geometric problems as proposed by Chan-gaedo

In this section, we consider three works related with oWikolova [13]. Thus we defined three new variational models
approach. based on the unification of the classical snake/GAC model

(c) Initial w. (d) Denoised Image.

V. COMPARISON WITH RELATEDWORKS
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[1], [5], [6], the denoising Rudin-Osher-Fatemi model [15]where~, is the boundary of the sdf,, on whichu(x) > p.
the segmentation Mumford-Shah model [16] and the acti¥ence, the term PgtE,) = fw gds is the perimeter of the
contours without edges model [14]. In the case of the RQ¥et £, weighted by the functior.

model, we obtained a global minimization theorem for binary

images. It was interesting to notice that the computation of

the global minimum was done by decomposing an image APPENDIX |- PROOE OFTHEOREM 1

into a geometric part, i.e. smooth part, and a texture part

as in [20], [21]. Experimental results showed that the imag®&oof of Theorem 1. The proof is in [13], based on [37],
decomposition improves the segmentation task. In the cgsg], by replacing the TV-norm by theveighted TV-norm
of the ACWE model of Chan-Vese for grey-scale images, Watroduced in Definition 1. It basically consists of expressing
showed that our model improves classical segmentation res@isergy E;, defined in (5), in terms of the level sets ofand
at the location of smooth transitions between objects and theand solving a geometric problem point-wisein O
background thanks to the edge indicator function.

We established theorems to prove the existence of global
minimizers to our segmentation variational models. We deter-
mined not one but several global minima of the active contopioof of Proposition 1. The proof is based on [17], [19]. The
model, which looks to be a drawback. However, all globg].minimization in ET is
solutions are close to each other because the minimizars

APPENDIX Ill: PROOFS OFPROPOSITIONS] AND 2

very close to binary functions. ) 1 9
We also proposed efficient and fast numerical schemes td Qg(m)|Vu|da7 T 20 Q<u _\(f _ U),) dz . (32)
globally minimize the variational segmentation models. The =:f2

proposed algorithms, based on a dual formulation of the TV-yyq proceed exactly as in [17] and [19]. As shown in

norm proposed and developed in [17], [18], [19], [20], [21], &R 7] Equation (32) can be written with the dual variable
easy to implement. This new way to solve the standard cont%ur: (p1, p2):

propagation problem allows us to avoid the usual drawback

in the level set approach that consists of initializing the active min max / wdivp + i(u — f2)%da

contour in a distance function and re-initializing it periodically u |pl<g Jo 20

during the evolution to ensure a correct computation of th§,o can now switch thenin and themax to obtain the

curvature and the normal to the level sets, which is tim%‘quivalent

consuming. See [39] for more details and another approach

to solve the re-distancing problem. max min/ udivp + i(u — fo)?da (33)
Future works will investigate the extension of this global IplI<g v Jo 20

minimization approach to other image processing variationg}, inner minimization in (33) is point-wise in. Carrying it

models, which most of them suffers from the existence @f; gives:

local minima. One application of our work has been done in

[40] to unify image segmentation, image denoising and image gy + l(u —f))=0=u=f—v—0divp. (34)

inpainting. 0
Substituting the expression (34) for minimal into the
APPENDIXI max — min problem (33) gives
Definition 1: Let O c RY be an open set, € L'(Q2) andg )
a positive valued continuous and bounded functiofinThe max/ (f2 — Odivp)divp + Q(divp)2 dx
weighted total variation norm af with the weight functiory lpl<g Jo 2
is defined by Simplifying a bit:
1V, () = | gfa)|Vulds was [ v~ S @)
@ Ipl<g Jo 2
= suwp {/Qu(l') div p(z) dl‘} ) Variations of Energy in (35) with respect to the vector figld
» g R .
give:
where

/ (=V f2+6Vdivp) - dpdu.
D, = {gp cC*QR) : |o(z)| < g, forallzc Q} Q
Along with the point-wise constrairjp|? — ¢g> < 0, one gets

Strang in [38] defines theoarea formulafor the TV, -norm A .
the optimality condition:

as follows:

o =V (0divp — f2) + Max)p =0, (36)
/QIVUI = / / gds | dp,
JQ =00\ where the Lagrange multiplieA(z) > 0 for all z. As

s Per (E, = {z: u(z) > pu}) d Chambolle shows in [19], it can be determined and eliminated
g\ B T AT S UE) > [hy) Af as follows: If the constraint is not active at a pointi.e. if

— 00
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Ip(x)|* < g*(z), then\(z) = 0. Otherwise, if the constraint
is active at a pointz, i.e. if |p(z)|? = ¢*(z), then

IV (0divp — fo)|* — Mg%(x) =0,

(1]

[2]
which leads to the conclusion that in either case, the value of
A(z) is given by:

[3]

= —— [V (0divp — f2)|. (37)
g9(z)
Substituting (37) into (36) gives: [4]
SV (@divp— f2) + —— |V (0divp— f2)|p=0. (38)

9(x) [5]

We can use a semi-implicit gradient descent algorithm, a8

proposed by Chambolle in [19], to solve (38):
ntl _ p" 4 0tV (divp™ — f2/0)

1+ 225 |V (divp" — f2/0)]

Hence, the difference of the iteration process (and the whole

calculation) from the standard work of Chambolle is thel®
appearance of the factg(z) in the denominatord

(7]

[9]

Proof of Proposition 2. The proof is the same as the one
proposed in [41], [21]. It is a simple-D minimization [10]
problem, since all the equations are independent, and the
computation is straightforwardl [11]

APPENDIX |V: PROOF OFTHEOREM 2 (12]
Proof of Theorem 2. The proof is in [13], based on [37], [13]
[38], [29], by replacing the TV-norm by theveighted TV-
norm introduced in Definition 1. Like in the proof of Theorem
1, it basically consists of expressing Energy (17) in terms il
the level sets ofu and f and solving a geometric problemiis)
point-wise iny. O

[16]
APPENDIXV: PROOF OFPROPOSITION4

Proof of Proposition 4: Assume thaf: has been chosen largel17]
enough (compared to and ||f||.~) so that exact penalty

formulation works. We now consider theminimization: [18]

1 2
%(U —u)*dx

The following claim helps with this step:

Claim: If u(z) € [0,1] for all z, then so isv(x) after the
v-minimization. Conversely, ib(z) € [0, 1] for all z, then so 21
is u(x) after theu-minimization.

This claim allows us tagnore the v(v) term: Its presence [y
in the energy is equivalent to cutting off(z) at 0 and at

1 (similar to what happens in [21]). On the other hand, [£3]
v(x) € [0,1], then the point-wise optimal(z) is found as:

0)\7=1 -+ (U — u) =0= ’U(Jj‘) = U(x) — GArl(xa C1, 62)'

min/ Arq(z, c1, e0)v + av(v) + [19]
voJa

(20]

(24]

Thus, thev-minimization can be achieved through the followy,s)
ing update:

v :min{max {u(x) —9)\r1(x,cl,02),0},1}.lj =
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