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Abstract

Halftoning has been a significant topic in image processing due to numerous emerging applica-

tions, highly diversified approaches, and enormous challenges in theoretical analysis. Inspired by the

wealthy literature on halftoning, as well as the recent PDE (partial differential equations) approach

in image processing, the current work proposes a novel progressive halftoning algorithm. It is based

upon the celebrated anisotropic diffusion model of Perona and Malik (IEEE Trans. Pattern Anal.

Machine Intell., 12:629-639, 1990), and a properly designed stochastic strategy for binary flipping.

The halftone outputs from the proposed model are typical samples of some random fields, which

share many virtues of successful deterministic halftone algorithms, as well as reveal many interesting

features like the blue noise behavior.
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I. Introduction: Overview and Contributions

A. Brief Overview: Halftoning and Many Successful Models and Algorithms

Halftoning (for gray scales) refers to the process of converting a continuous-tone (or

contone) gray scale image u to a binary one b, so that bi-level printers or other display

devices can successfully output such an image. Thanks to enough resolutions and automatic

lowpass filtering by the human vision system (HVS), halftone images can well approximate

the original contone ones to human observers. We refer to the informative special issue of

the IEEE Signal Processing Magazine [1] for a comprehensive coverage of the halftoning

technology.

The three key ingredients to a typical halftoning process are:

(i) the contone-halftone (u → b) conversion model or algorithm;

(ii) the printer model, which specifies the physical layouts (i.e., the physical dimensions

of ink dots) of printed binary values and their superpositions (e.g., [1], [3], [43]);

(iii) the HVS model, which models how the human vision system perceives the distribution

of the printed dots (e.g., [1], [27], [32], [40], [49]).

The three are independent but also closely interlaced, often leading to jointly optimal

halftoning processes [3], [27], [32]. Algorithm-wise, many works have been mainly focused

on the first ingredient, i.e., the contone-halftone conversion algorithm. So will be the pri-

mary focus of the current work. Such model-independent study has also been inspired by

the profound implications of halftoning in the broader information technology, for instance,
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its intrinsic connections to the sigma-delta model for A/D conversions [12], [13], [22], [23],

and to information hiding and digital watermarking (e.g., [2], [19]).

In what follows, it shall be assumed that the contone image u has been normalized into

the canonical range of [0, 1]. For convenience, the symbols α, β, · · · shall also be employed to

denote general pixels which are commonly expressed by (i, j)’s with i = 1 : n and j = 1 : m

for an image of n by m. Thus for instance, uα denotes the gray value at a pixel α. Let Ω

denote the collection of all pixels.

The core tool in most classical halftoning algorithms is the thresholding operator T :

T (a | µ) =







1 if a ≥ µ

0 if a < µ
,

for any a ∈ [0, 1], and a given threshold µ ∈ (0, 1). For example, for µ = 1/2, bα = T (uα | µ)

at any pixel α ∈ Ω yields a naive halftoning algorithm which is however not quite useful

due to the artificial edges and blocks it generates.

There are three major classes of successful halftoning algorithms in the literature.

[a] Dot Dithering (or Screening). The blocky effect in the above naive algorithm can

be fixed by adopting spatially varying thresholds µ = µα for α ∈ Ω [4], [29], [42]. The

threshold field µ is typically made periodic by a suitable tiling of Ω using non-overlapping

blocks of a fixed size I × J (e.g., I = J = 8). Then µ is completely determined by its

IJ values and their spatial distribution on a template tile.

[b] Error Diffusion. In the celebrated error diffusion model of Floyd and Steinberg [18],

four important pieces of data determine the algorithm (see Fig. 1).

[b.1] The halftoning path. The path assigns an order α1, · · · , αnm to all the pixels,

following which the halftoning conversion will be performed from one pixel to the

next. The most common choice is the zigzag raster order.

[b.2] The threshold µ. Currently visiting a pixel αk, one defines the halftone value by

bαk
= T (uk

αk
| µ). Here uk

αk
is not the original contone value uαk

, but has been

iteratively updated as the path proceeds.

[b.3] The error propagation (or diffusion) front F (αk). For each pixel αk, the front

F (αk) is the collection of unvisited pixels nearby, into which the current halftone

error eαk
= uk

αk
− bαk

is to be diffused. For example, the following shift-invariant

front is a familiar choice:

F (α) = {(i, j + 1), (i + 1, j + 1), (i + 1, j), (i + 1, j − 1)},

provided that α = (i, j), and the path is in the raster order from (i− 1, j) to (i, j).

[b.4] The diffusion weights wαk ,β. These are a set of positive weights defined for each

frontal pixel β ∈ F (αk), according to which the current halftone error will be

diffused and uk updated to uk+1:

uk+1
β = uk

β + eαk
· wαk ,β.

The values at a non-frontal pixel β is not affected, i.e., wαk ,β = 0.
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In summary, Floyd and Steinberg’s error-diffusion algorithm relies upon

(visiting path, µ, F (α)’s, wα,β’s).

The original choices made by Floyd and Steiberg [18] have witnessed some well known

artifacts such as worms and limited cycles [17], [18], [28]. Many remarkable works

have since emerged to improve the halftone qualities by inventing and adopting better

paths [41], [47], spatially varying thresholds [14], [29], [40], proper frontal masks [29],

and adaptive weights [29], [41], [48], [49].

path

threshold
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Fig. 1. The four key ingredients of an abstract halftoning model based on error diffusion: the

ordered path visiting all the pixels, the thresholds µ’s, the error propagation fronts F (α)’s, and

the weights wαβ ’s by which the halftone errors are to be proportionally distributed.

[c] Dot Diffusion. Knuth’s dot diffusion algorithm [28] adopts both the tiling structure

in the dot dithering model and the diffusion mechanism in the error diffusion model.

By periodic tiling, error diffusion in the dot diffusion model is confined within each tile.

All the IJ pixels in a template tile T of I by J (e.g., I = J = 8) are properly ordered

or ranked by the class matrix [32] R = (ri,j)I×J = (rα)α∈T so that {rα : α ∈ T} =

1 : (IJ), and the pixels are ordered by {α1, · · · , αIJ} with rαk
= k. Within each tile,

the halftoning path then follows this specific order. Furthermore, the error at a current

pixel αk only diffuses to those surrounding pixels (out of 8) whose ranks rβ are higher

than k, and the weights are assigned according to some fixed rules.

In the work by Mese and Vaidyanathan [32], the class matrix is not chosen a priori, but

optimally designed subject to proper HVS models. Compared with error diffusion, dot

diffusion facilitates parallel implementations and gains both speed and performance.

Besides these models, there have also been in existence numerous other successful halfton-

ing techniques, e.g., via look-up tables, least square minimizations, Markovian random

fields, direct binary search (DBS), and fuzzy algorithms [3], [20], [27], [29], [33], [35], [40].

In addition, there are also numerous interesting post-halftoning works including resolution

increment [26] and inverse halftoning [1], [32].

Some notable features in all these successful models and algorithms are:

(a) spatial tiling, as in the old JPEG protocol;

(b) a priori diffusion patterns for the errors;

(c) the algorithms are sequential, or made periodically parallel by tiling;
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(d) single round or pass to complete the contone-halftone conversion;

(e) no straightforward continuum description as the grid sizes converge to zero.

In terms of the competing complexities among modeling, analysis, and computation (see,

e.g., [10]), these features are unnecessarily advantageous or disadvantageous. The many

interesting works mentioned above have been devoted to the better understanding of all

these ingredients.

B. Main Contributions of the Current Work

Inspired by all the above remarkable works, in the current paper we propose a new

halftoning model and algorithm, which is built upon the celebrated anisotropic diffusion

model of Perona and Malik [36] for adaptive image denoising and enhancement.

The new model is progressive and can be symbolically denoted by (see Fig. 2)

bn+1 = PMSF(bn | u, τ), n = 0, 1, · · · ,

where u is a given contone image to be halftoned to some binary image b, and τ a natural

positive parameter for the Perona-Malik diffusion. For each n, the model consists of two

steps - the PM step, followed by the SF step. The PM step is mainly achieved by the

Perona-Malik type of diffusion, while the SF step is a suitable rule for stochastic flipping.

PM (e | u,    )

SF(b    | e(  ),  f)

u (given contone image)

e(  )

e

b

b

f (reference random field)

(n)

(n+1)
(n)

τ

τ

τ

Fig. 2. The flow chart of the proposed new halftoning model.

The main characteristics of the current work can be highlighted as follows.

[1] For the first time, the two major noticeable literatures on diffusions, i.e., error diffusions

in halftoning processes and Perona-Malik’s celebrated anisotropic diffusions for adaptive

image enhancement, are connected and integrated.

[2] Error diffusion via Perona-Malik’s model is image adaptive, and does not significantly

exchange errors among different objects.

[3] There are no preassigned artificial tiling, error flow patterns, or distribution weights.

[4] The new algorithm improves halftoning qualities progressively, instead of only using a

single pass, and allows global parallel implementation.

[5] The core technique for making feasible Perona-Malik’s adaptive error diffusion is an

effective stochastic strategy for on-off flipping.

[6] There are no hard thresholds involved. At each stage it is the diffused error field that

offers the likelihood information for progressive flipping.
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The next section (Section II) first gives a bird view of the global structures of the new

halftoning algorithm that consists of two key steps. Section III explains in details the

PM step involving a modified version of Perona-Malik’s anisotropic diffusion. Section IV

explains the design and analysis of the SF step. Computational examples and their perfor-

mances are discussed in Section V. The paper ends with a brief conclusion of the current

work and a discussion on some future works.

II. Description of the Main Model and Algorithm

In this section, we outline and highlight the main structures of the proposed new halfton-

ing model. More details will be elaborated in the two forthcoming sections.

Let Ω denote the image domain, which could be a continuum like a rectangle, or a discrete

lattice. A general point in Ω will be called a pixel, and denoted by α, β, etc. Let u be a

given normalized contone image, so that at any pixel α, the image value uα belongs to [0, 1].

For convenience, for a halftone image b, bα=1 will be called an “on” pixel and bα = 0

“off.” It is also assumed that a printer deposits an ideal black ink dot at a pixel α if and

only if bα = 0, i.e., when the pixel is “off.”

The proposed new model, referred to as the PM-SF model or algorithm for short, is

progressive based upon the iterative procedure described by

bn+1 = PMSF(bn | u, τ), n = 1, 2, · · · , (1)

where,

(i) bn is the halftone estimation at a stage n,

(ii) u the original contone image to be halftoned, and

(iii) τ a natural parameter to be explained later.

Assuming that the halftone sequence (bn) converges in some suitable sense, we then define

b∞ = limn→∞ bn to be the ultimate halftone image of the given contone target u.

At each stage n, the PM-SF model as an operator is constituted of two parts - the PM

step and the SF step, i.e., edge-adaptive error diffusion of Perona and Malik’s type [36],

followed by a properly designed decision rule for stochastic flipping. The PM step takes the

form of

en(τ) = PM(en | u, τ), en = u − bn, (2)

whose output, the diffused error en(τ), is then fed into the SF step,

bn+1 = SF(bn | en(τ), f). (3)

In alternating iterations, they accomplish the progressive updating of the halftone image.

Here in the SF step, f = (fα) is random field consisting of independent and identically

distributed (i.i.d.) random samples which are uniformly distributed in [0, 1]. The PM step

is a deterministic process, while the SF step is stochastic since it reacts to a random reference

field f . The effective action of the SF step is in fact independent of f statistically speaking,

as long as f is genuinely random (or typical in the information-theoretic sense [11]).

In short, at each stage n, the proposed PM-SF halftone model bears the following form:

bn+1 = PMSF(bn | u, τ) = SF(bn | PM(u − bn | u, τ), f). (4)
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The next two sections elaborate in full details on these two main steps.

III. The PM Step: Perona-Malik Type of Error Diffusion

A. The Classical Perona-Malik Model

The celebrated anisotropic diffusion model of Perona and Malik [36] was introduced as a

new tool for adaptive image denoising and enhancement. The key characteristic compared

with traditional linear diffusion models or the linear scale-space theory [46] is that the dif-

fusive activity is automatically adapted to edges. Ever since David Marr’s pioneering works

on computer vision and artificial intelligence [30], [31], edges have been long recognized as

the most important type of visual cues in image perception.

A general Perona-Malik diffusion model bears the following form [36]:

∂u

∂t
= ∇ · [g(|∇u|)∇u] , (5)

for u = u(x, t) on a Lipschitz domain x = (x1, x2) ∈ Ω, and often with Neumann’s adiabatic

boundary condition. Here the diffusivity coefficient D = g(|∇u|) depends upon the image

u itself instead of being fixed, making the equation nonlinear and challenging for rigorous

mathematical investigation [5], [25]. For image denoising and enhancement, the initial

condition of (5) is the given noisy or degraded image u(x, 0) = u0(x).

Another important piece of information needed for achieving ideal image enhancement

is the stopping time T . Since diffusing processes are all anti-gradient random walks in the

microscopic scale, without being stopped in the middle, a diffusion process will invariably

converge to an uninteresting constant image (with zero gradients everywhere). There are

several ways in the literature dealing with the issue of stopping time, including for example,

optimal control or via the connection to the noise level in variational models [44], [45].

The desired action of the Perona-Malik diffusion is furnished by the image dependent

diffusivity coefficient D = g(p) with p = |∇u|. Qualitatively, D should behave like an edge

signature function so that

D = O(1), away from edges where p ' 0; and ' 0, near edges where p ' ∞. (6)

In this manner, the “flux” flow j = −D∇u can be effectively confined within each homo-

geneous patch, and the edge blurring effect is controlled and diminished. Following Perona

and Malik [36], some plausible candidates of g for achieving such desirable effects include,

the Gaussian

g(p) = A exp(−bp2), for some two positive constants A and b, and

the Cauchy function

g(p) =
A

1 + bp2
, for two positive constants A and b.

Another useful candidate is motivated by Rudin-Osher-Fatemi’s total variation Radon mea-

sure [37] as well as the mean curvature motion [16]:

g(p) =
1

p
, or its regularized version,

1
√

p2 + b2
,
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for some positive weight b.

We refer to [5], [25] for further mathematical explorations into the wellposedness of the

Perona-Malik diffusion and its regularized variants, as well as to the extensive contributions

made by Weickert and his colleagues for efficient numerical computations [44], [45]. Other

recent novel applications and extensions of Perona-Malik’s nonlinear diffusion mechanism

could be found, e.g., [6], [7], [8], [9], [24], [38], [39].

B. The PM-Step of Error Diffusion

In the proposed new halftoning model, the PM step has been closely inspired by the

Perona-Malik diffusion briefly covered above. Necessary modification also has to be made

to suit the specific application of error diffusion in halftoning.

At step n, if the halftone image bn already well approximates the given contone image u,

then the error field en = u − bn shall more or less look like homogenous oscillations. As a

result, the edge information in the original contone image u cannot be clearly read in en,

and it becomes less appropriate to directly apply the Perona-Malik diffusion for en:

∂e

∂t
(x, t) = ∇ · [g(|∇e|)∇e(x, t)] , with the initial condition e(x, 0) = en(x).

A natural way to dissolve the concern is to turn to the original contone image u, and solve

the following linear diffusion equation instead:

∂e

∂t
(x, t) = ∇ · [g(|∇u|)∇e(x, t)] , with e(x, 0) = en(x) = u(x) − bn(x), x ∈ Ω. (7)

The Neumann adiabatic boundary condition will be similarly imposed along ∂Ω. Thus to

e(x, t), the diffusivity coefficient D is actually provided by the given contone image u(x).

For any given stopping time T = τ , we shall then naturally define the diffused error at step

n by:

en(τ) = PM(en | u, τ) = e(x, τ), (8)

where e(x, τ) is the solution to (7) at stopping time τ . Recall that in the discrete setting a

pixel x is also denoted by α, and e(x, τ) by en
α(τ).

The key ideas behind this novel design of error diffusion can be highlighted as follows:

[a] Suppose u is a constant contone image, and b its ideal halftone version. Then the

error field e(x) = u(x) − b(x) shall be maximally homogeneous in space. Consequently,

diffusion as a lowpass filtering process shall be able to wipe out the error eventually with

sufficiently large τ . For a general contone image, therefore, the magnitude of e(x, τ) or

en
α(τ) signifies the degree of imperfectness of the current halftone field bn

α at α.

[b] Noticeable features remaining in the diffused error field en(τ) are often caused by blocky

or chunky halftoning, and can thus be employed to improve the halftone quality in the

next SF step.

[c] Both conceptually and perceptually in terms of image and vision analysis, it is desirable

to confine error diffusion within each homogeneous object in the original image u. This

is furnished by the Perona-Malik diffusivity D = g(|∇u|) adapted to the given contone

image u.
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For cartoonish or piecewise constant images, we can further quantify the statement [c]

on error confinement.

Theorem 1 Suppose u is piecewise constant with each piece occupying a Lipschitz domain.

Let B denote any of these generic patches (assumed to be an open domain). Then under

the PM error diffusion (7) and the assumptions that g(0) = A > 0 and g(∞) = 0, the net

total error on B: E(t) =

∫

B

e(x, t)dx does not change with time at each fixed step n.

Proof: The rigorous mathematical statement of the theorem and its proof will in-

evitably depend upon a mollification process on u (so that the classical derivative ∇u can

be well defined, as in [5]). Here we give a heuristic but more straightforward proof.

Since the image u is piecewise constant and B is a generic open patch, the size of the

gradient p = |∇u| is exactly zero on B, and infinity in the interior boundary of B (i.e.,

∂B ∩ Ω). Thus in terms of the diffusivity coefficient, one has

D = g(p) ≡ A, on B; while ≡ 0, along ∂B ∩ Ω. (9)

Therefore, by the divergence theorem on the Lipschitz patch B,

dE(t)

dt
=

d

dt

∫

B

e(x, t)dx =

∫

B

et(x, t)dx

=

∫

B

∇ · [D∇e]dx =

∫

∂B

D
∂e

∂~n
ds

=

∫

∂B∩Ω
D

∂e

∂~n
ds +

∫

∂B∩∂Ω
D

∂e

∂~n
ds = 0,

(10)

where ~n denotes the outer normal of ∂B and ds its arc length. The last equality follows

from (9) and the Neumann condition ∂e/∂~n = 0 along ∂Ω. This completes the proof.

As emphasized in the proof, a more rigorous argument should rely upon suitable molli-

fication techniques, and the above proof must be considered heuristic since the transition

from p = 0 to p = ∞ is in terms of Dirac’s delta function or the total variation Radon

measure [15], [21]. The above proof does have captured sufficiently well the essence of error

confinement at each individual step.

Next we discuss how to quantitatively employ the information hidden in en(τ) to polish

the halftone quality (in the SF step).

IV. The SF Step: Stochastic Flipping of On-Off’s

A. The Intuition Behind the SF-Step

We first explain qualitatively the ideas that have motivated the SF step.

At each stage n, after the PM diffusion, the halftone error en = u − bn is mollified to

en(τ). The SF step fully exploits the information contents in en(τ).

Suppose at a given pixel α, en
α(τ) is positive and noticeably large. It means that on

average near α, there are not enough “on” pixels (or too many black dots). One should

then employ this information to turn on more pixels near α.

Similarly, if at a given pixel α, en
α(τ) is negative with noticeably large magnitude, one

should then carry out the opposite, i.e., turning off more pixels near α since negativity

implies that on average there are too many “on” pixels.
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Accordingly, it seems natural to adopt the following decision rule. First copy bn+1 from

bn, and then,

if en
α(τ) > 0, turn on bn+1

α if bn
α was off; else

if en
α(τ) < 0, turn off bn+1

α if bn
α was on.

(11)

This updating is to be applied to each pixel α ∈ Ω.

A closer check shows a problem with such a deterministic decision rule. Consider for

example a constant contone image uα ≡ 0.5. Suppose one starts with an initial halftone

guess b0
α ≡ 0, i.e., with all pixels off. Then

e0
α = uα − b0

α ≡ 0.5, and e0
α(τ) ≡ 0.5 > 0.

Thus by the updating rule (11), all the pixels shall be turned on and the new halftone

image becomes b1
α ≡ 1. Repeating the processing, one ends up with a sequence of halftone

approximations (bn)∞n=0 which alternate between purely off-tone images and purely on-tone

images. In particular, they would never converge to any reasonable halftone estimation b∞.

This motivates the following stochastic flipping (SF) rule, which is the second important

ingredient of the proposed new halftone model.

B. The Algorithm of Stochastic Flipping (SF)

Instead of the deterministic binary decision rule in (11), the SF algorithm adopts the

stochastic (or fuzzy) approach, and strictly speaking outputs a random field instead of a

deterministic single halftone image.

As before, at step n, first copy bn+1 from bn. Then if en
α(τ) ≥ 0 at a pixel α (i.e.,

undershooting), one applies the following stochastic rule:

with probability en
α(τ), turn on bn

α to bn+1
α = 1 if it has been off; (12)

otherwise when en
α(τ) < 0 (i.e., overshooting), one then instead applies:

with probability 1 + en
α(τ), turn off bn

α to bn+1
α = 0 if it has been on. (13)

Since the decision is pixelwise decoupled, this stochastic rule clearly admits parallel imple-

mentation and computation.

To effectively carry out the flipping task, a convenient way is to first generate a reference

random field f on the image domain Ω, so that

(fα | α ∈ Ω) is a field of i.i.d. random variables uniformly distributed in [0, 1]. (14)

Then algorithmically, the SF step described by (12) and (13) is to be realized by

bn+1 = SF(bn | en(τ), f), as follows.

First copy bn+1 from bn. Then (12) is numerically computed by: if en
α(τ) ≥ 0,

turn on bn
α to bn+1

α = 1 if fα ≤ en
α(τ) (no action otherwise); (15)
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and similarly for (13), if en
α(τ) < 0,

turn off bn
α to bn+1

α = 0 if fα ≥ 1 + en
α(τ) (no action otherwise). (16)

Notice that if α is already on in the former case, or off in the latter, the above action does

not change the current on-off status.

Coupled with the PM step in the preceding section, this completes the description of the

entire new halftoning model. Next we develop some theoretical analysis for the SF step.

Theorem 2 (Equivalence) Indeed (15) is equivalent to (12), and (16) to (13).

Proof: When en
α(τ) ≥ 0, since fα is uniformly distributed in [0, 1], (15) implies that

Prob( bn+1
α = 1 | bn

α = 0 and en
α(τ) ≥ 0)

=Prob( fα ≤ en
α(τ) | bn

α = 0 and en
α(τ) ≥ 0)

=en
α(τ),

(17)

which is precisely (12). The equivalence of the other pair can be similarly established. Here

we have used the notation of conditional probability.

To help understand the convergence of the SF step, define at each step n the updating

profile d to be

dn
α = |bn+1

α − bn
α|, α ∈ Ω. (18)

Then dn is binary and dn
α = 1 if and only if the status of α is updated to the opposite. Thus

we further define

Rn =
1

|Ω|

∑

α∈Ω

dn
α to be the flipping rate per pixel (frpp) at step n, (19)

where |Ω| denotes the total number of pixels in Ω. For example, Rn = 5% would mean that

at each pixel α, the likelihood that bn+1
α differs from bn

α is less than 5%.

If the algorithm converges in certain sense, one should be able to expect very small frpp

Rn in the end. But unlike any deterministic algorithms, due to the stochastic nature of

the SF step, dn is also a random field and the frpp Rn a random number. We should thus

analyze the properties of both dn and Rn in the probabilistic framework. Let E[X] denote

the expectation or average of a given random variable X.

Theorem 3 At each step n, given bn and en(τ), the average frpp is given by

E[Rn] =
1

|Ω|

∑

α∈Ω

χ (bn
α + sign(en

α(τ))) |en
α(τ)|. (20)

Here sign is the standard sign function, and χ(w) denotes the indicator function of the

closed unit interval [0, 1]:

χ(w) = 1, w ∈ [0, 1]; 0, otherwise.

Proof: By definition, it suffices to show that at each pixel α,

E[dn
α] = χ(bn

α + sign(en
α(τ))) |en

α(τ)|. (21)
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We then consider separately two cases. First suppose bn
α = 0. When en

α(τ) < 0, no flip can

occur and bn+1
α = 0, which implies that dn

α ≡ 0 regardless of the random reference value fα

and E[dn
α] = 0. When en

α(τ) ≥ 0, one has

E[dn
α] = Prob(dn

α = 1)

= Prob(bn+1
α = 1 | bn

α = 0, en
α(τ) ≥ 0)

= en
α(τ), by (17).

(22)

Secondly, suppose bn
α = 1. Then no flip can occur when en

α(τ) ≥ 0, implying that dn
α ≡ 0

and E[dn
α] = 0. When en

α(τ) < 0, one then similarly has E[dn
α] = −en

α(τ). In combination,

we have established (21), and thus the theorem as well.

In particular, it is useful to have the following upper bound solely based on the diffused

error from the PM step.

Theorem 4 Given en(τ) after the PM diffusion at step n, the upper bound for the average

frpp is given by

E[Rn] ≤
1

|Ω|

∑

α∈Ω

|en
α(τ)| =

‖en
· (τ)‖l1

|Ω|
, (23)

where the vectorial l1-norm has been applied.

In the next section, we shall apply the results of both Theorems 3 and 4 to partially char-

acterize the computational performance of the PM-SF halftoning algorithm. For instance,

an average frpp with E[Rn] ≤ 2% would imply that on average there are only less than

2% of all pixels whose halftone values in bn are flipped to their opposites in bn+1. Thus

acceptable convergence has been reached both statistically and practically.

V. Computational Examples and Discussions

In this section, we demonstrate the numerical performance of the proposed PM-SF

halftoning algorithm through some generic examples. Since there have been no universal

objective criteria for fairly rating or comparing various halftoning models, we shall mainly

discuss the blue noise characteristics of the current model in the end [41], [42].

Fig. 3 shows the halftone ramp image by the PM-SF model (the bottom panel), and its

comparison with the output from Floyd-Steinberg’s (F.-S.) original error diffusion model [18]

(the top panel). The PM-SF model avoids all the structured artifacts (often called “worms”

or “tearing”) that emerge from the F.-S. model, and clearly shows the characteristics of an

isotropic random field. (Many remarkable works mentioned in the Introduction have also

improved the original F.-S. model by introducing more adaptivity, as explained earlier.)

Fig. 4 shows the halftone images of a stair ramp defined by:

u(x, y) = u(x) =







1 − x/2 x ∈ [0, 1/2)

1/2 − x/2 x ∈ [1/2, 1],

with a stair jump of 1/2 at x = 1/2. Due to the localized diffusion mask in the F.-S. model

(see Fig. 1), the perceived edge sharpness is automatically preserved in the halftone image

(the top panel). On the other hand, although the Perona-Malik diffusion has been run
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Halftone ramp image via Floyd−Steinberg

Halftone ramp image via the PM−SF algorithm

Fig. 3. The halftoned ramp image by the PM-SF algorithm. (Note: due to PDF compressions as

well as screen or printer distortions, the displayed or printed halftone images in this section may

not be the original MATLAB outputs. Proper zooming rates (like 100%, 150%, or 200% for

Acrobat Reader 5.0 or 7.0) should be accordingly adjusted.)

globally on the entire image domain, due to its built-in edge adaptivity, the halftone image

also remarkably preserves edge sharpness (the bottom panel).

Halftoned stair−ramp via Floyd−Steinberg

Halftoned stair−ramp via the PM−SF algorithm

Fig. 4. The halftoned images of a stair ramp via the F.-S. and PM-SF models.

In Fig. 5 and 6, we have shown the halftone images for two popular test images by the

PM-SF algorithm. In Fig. 6, in addition, we have also plotted the average frpp (flip rate

per pixel, defined in the preceding section) versus the progressive step number. It is evident

that statistical convergence has been reached when the average frpp drops down to about

only 2% and stabilizes.

Finally, we investigate the blue-noise characteristics of the halftone images by the pro-

posed PM-SF algorithm. Blue noises generally refer to signals or images whose power spec-
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PM−SF halftone image

Fig. 5. Halftoned Lenna by the PM-SF algorithm.

tra are only concentrated on the high-frequency end. For instance, a 1-D discrete signal is

a blue noise when its power spectrum is given by P (f) = 1[fp,1](|f |) for some fp > 0, where

f is the normalized frequency variable so that f ∈ [−1, 1]. It has been long acknowledged

that good halftoning algorithms should be able to generate blue-noise binary images [41],

[42].

In Fig. 7 and 8, we compare the power spectra of the halftoned constant images u ≡ c for

both the F.-S. error diffusion model and the proposed PM-SF model. The power spectra

have been estimated by the FFT and moving averages (see, e.g., [34]). When c = 0.35

(Fig. 7), the power spectra of both models demonstrate the blue-noise behavior. In addition,

the isolated bright lines in the left panel shows that the F.-S. halftoning model introduces

directional structures, while the rotational invariance in the right panel shows that the

PM-SF halftoning model does not. When c = 0.5 (Fig. 8), it is well known that the F.-S.

algorithm produces the regular check-board pattern, so that b(i, j) = cos(iπ) cos(jπ), and

the power spectrum is concentrated on the single component of the highest frequency (see

the arrow in the left panel). In the right panel, the power spectrum of the PM-SF halftone
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PM−SF halftone image
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Fig. 6. Left panel: the halftone pepper image from the PM-SF algorithm. Right panel: the average

frpp E[Rn] and its upper bound ‖en
•
(τ)‖1/|Ω| as halftoning progresses (see Theorems 3 and 4).

Notice that E[Rn] = 1% means that on average there is only one pixel to be flipped in every

10 by 10 patch at step n. Thus the two curves clearly demonstrate the stability as well as the

stochastic convergence of the PM-SF algorithm.

image does not differ much from the preceding case of c = 0.35, and shows its universality

in halftoning different continuous tones.

Power spectra of Floyd−Steinberg’s halftones: u≡ 0.35 Power spectra of the PM−SF halftones: u≡ 0.35

Fig. 7. Comparison of the blue-noise characteristic (I): u ≡ 0.35.

VI. Conclusion and Discussions

In this paper, we have introduced a novel progressive halftoning algorithm based on the

celebrated edge-adaptive diffusion model of Perona and Malik [36] (PM), and a properly

designed stochastic flipping (SF) strategy inspired by the probabilistic interpretation of

the diffused errors. Motivations and implementations of these two key models have been

explained in details. Generic computational examples further highlight the main character-

istics of the proposed PM-SF halftoning model: anti-worming and isotropicity on regions

with smoothly varying continuous tones, no significant error “leakage” across edges, and

outputing a binary random field instead of a single deterministic one.

Our new model has enriched the contemporary literature on halftoning. Together with

numerous other successful halftoning models, the current work contributes to the further

advancement of the exciting halftoning technology.
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Power spectra of Floyd−Steinberg’s halftones: u≡ 0.5 Power spectra of the PM−SF halftones: u≡ 0.5

Fig. 8. Comparison of the blue-noise characteristic (II): u ≡ 0.5.

Our future works will be focused on (1) combining the PM-SF halftoning model with given

printer models and/or HVS models, (2) generalizing the PM-SF model for color contone

images, and (3) further characterizing the mathematical properties of the PM-SF model.
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