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Abstract

The original fast sweeping method, which is an efficient iterative method for station-
ary Hamilton-Jacobi equations, relies on natural ordering provided by a rectangular
mesh. We propose novel ordering strategies so that the fast sweeping method can be
extended efficiently and easily to any unstructured mesh. To that end we introduce
multiple reference points and order all the nodes according to their lp distances to those
reference points. We show that these orderings satisfy the two most important proper-
ties underlying the fast sweeping method: (1) these orderings can cover all directions
of information propagation efficiently; (2) any characteristics can be decomposed into a
finite number of pieces and each piece can be covered by one of the orderings. We prove
that the new algorithm converges in a finite number of iterations independent of mesh
size and thus it is optimal. We show extensive numerical examples to demonstrate the
accuracy and efficiency of the new algorithm.

1 Introduction

The eikonal equation in its simplest form says that the magnitude of the gradient of the
eikonal is constant: |∇T | = 1, where T is the so-called eikonal (from the Greek meaning
image, since this equation first appears in optics describing image formed by light in
the straight line approximation.) In fact, such an equation appears in a variety of appli-
cations: geometrical optics approximation for wave propagation ranging from acoustic
to electromagnetic waves [3, 5, 11, 23], Hamilton-Jacobi theory for classical mechanics
[16], calculus of variations [15], differential games [21], semi-classical approximation in
quantum mechanics [26], optimal control [1], image processing and computer vision
[20, 39, 29], robotic path planning [41], and geophysical data processing [6]. Therefore,
it is essential to develop fast, efficient numerical methods to solve such an equation. In
this work, we design a class of fast sweeping methods on triangulated domains for the
eikonal equation of the following form:

{

|∇T (x)| = f(x), x ∈ Ω \ Γ,

T (x) = g(x), x ∈ Γ ⊂ Ω,
(1.1)
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where f(x) is a positive function, Ω is a bounded computational domain in Rd and Γ
is a subset of Ω.

The first method designed to tackle this equation directly in the given spatial do-
main may trace back to Dijkstra [13], in which Dijkstra designed an inconsistent but
unconditionally stable numerical method for the eikonal equation, and the resulting
solution corresponds to the so-called network minimum length; this method has been
further developed in [27, 28] for computing shortest ray paths in seismics. Although
the eikonal equation has a simple form, it is nonlinear and its solution may develop
singularities even with smooth boundary data; as such due to the lacking of theoretical
results on well-posedness, no much efforts had been made to design consistent, efficient
numerical methods for the equation until Crandall and Lions introduced the concept
of viscosity solution [9] and proved that monotone schemes can compute such a vis-
cosity solution in a stable, consistent fashion [10]. On the other hand, applications in
high resolution seismic imaging, computer vision and material sciences call for more
accuracy and speed in solving eikonal equations.

The two key points in designing an efficient numerical algorithm for solving such a
nonlinear boundary value problem of hyperbolic type are: (1) a numerical discretiza-
tion that is both consistent with the causality of the PDE and is able to deal with
singularities, (2) a fast algorithm to solve the resulting large nonlinear system of equa-
tions. There are usually two types of methods for solving the non-linear system, time
marching methods and direct methods. Time marching methods add a pseudo-time
variable which transforms the problem into a time dependent one and evolve the solu-
tion to steady state. Due to the finite speed of propagation and the CFL condition for
stability, many iterations are needed to reach the steady state solution. The last two
decades have witnessed a lot of efforts towards solving the eikonal equation directly:
starting from upwinding schemes [43, 42], dynamic programming sweeping methods
[38], Jacobi iterations [37], semi-Lagrangian schemes [14], fast marching type methods
[41, 19, 39, 25], down-n-out approaches [12, 24], wavefront expanding methods [34],
adaptive upwinding methods [32], fast sweeping methods [4, 46, 40, 45, 22, 44] and
the references therein. In terms of speed the fast marching method [41, 19, 39, 25] has
the complexity of O(MlogM), where M is the total number of mesh points and the
constant in O does not depend on M or the equation; the fast sweeping method has
the complexity of O(M) where the constant in O depends on the equation and this
was proved in [45] for rectangular grids. In terms of accuracy, fast sweeping methods
or fast marching methods use the same first order monotone scheme, hence they solve
the same system of nonlinear equations after discretization. In general only h1/2 con-
vergence can be shown [10] and h log h convergence is the optimal [45]. To solve the
seismic travel-time problem efficiently and accurately, the works presented in [24, 32]
were designed based on paraxial formulations [17] and higher order ENO schemes [30];
the resulting schemes enjoy O(M) complexity and higher order accuracy. On the other
hand, most of these methods are based on rectangular meshes. However, it is also
very important to design fast methods on triangulated meshes in practice as well. For
examples, in seismics a subsurface velocity model usually consists of several irregu-
lar interfaces; in robotic path planning an obstacle may have an irregular boundary.
Thus, for applications involving irregular boundaries or interfaces, it is much desired
to triangulate a computational domain into irregular meshes to fit with boundaries or
interfaces. Kimmel and Sethian [25] extended the fast marching method to triangu-

2



lated domains to compute geodesics on manifolds. In this work, we extend the fast
sweeping method to triangulated domains by introducing novel ordering processes into
the sweeping strategy. We show that the resulting methods preserve the original O(M)
complexity and are still very easy to implement.

An essential property of the eikonal equation is that it is hyperbolic, and a stable
scheme must look for information by following characteristics in an upwind fashion,
which is equivalent to the simple causality for the eikonal equation that its solution is
always increasing (or decreasing) along a characteristic. To satisfy such a property, it
is crucial for a scheme for computing viscosity solutions to be based on a monotone
numerical Hamiltonian [2, 30]. Once we have such a discretization for the eikonal
equation in place, the problem boils down to how to solve the resulting nonlinear system
efficiently; the fast sweeping method was exactly designed to do that. The original fast
sweeping method was inspired by the work [4]. The fast sweeping method uses Gauss-
Seidel iterations with alternate sweeping orderings to solve the nonlinear system. The
fact that the iterative algorithm for a nonlinear system can converge in a finite number
of iterations independent of mesh size is quite remarkable. Even for a linear system,
such as the discretized system for the Laplace equation, this is not true. The crucial idea
behind the fast sweeping method is the following [45]: all directions of characteristics
can be divided into a finite number of groups; any characteristic can be decomposed into
a finite number of pieces that belong to one of the above groups; there are systematic
orderings that can follow the causality of each group of directions simultaneously. On
a rectangular grid there are natural orderings of all grid points. For example, in the
2-dimensional case, all directions of the characteristics can be partitioned into four
groups, up-right, up-left, down-right, and down-left, and it is very natural to order all
the nodes according to their indices in ascent or descent orders [4, 46, 40, 45, 22, 44],
which yields four possible orderings to cover all those four directions of characteristics.
However, on an unstructured mesh, there is only local connection information of the
nodes available and there is no natural global ordering any more. So far no fast
sweeping method is proposed for unstructured meshes yet. In this work we propose
general ordering strategies by introducing multiple reference points and ordering all
the nodes according to their lp distances to those reference points. For examples,
information is propagated as plane waves in different directions when using l1 distance
or as spherical waves with different centers when using l2 distance. We show that these
orderings satisfy the key properties essential for the fast sweeping method to converge
and the fast sweeping method converges in a finite number of iterations independent
of mesh size. These methods are very efficient and extremely easy to implement in any
number of dimensions.

The rest of the paper is organized as follows. In Section 2, we give implementation
details of our algorithm, which includes local solvers at each node on a triangulated
mesh for the eikonal equation and the ordering strategies. In Section 3, we analyze
the new algorithm and prove convergence results. In Section 4, we present various
numerical examples to illustrate the efficiency and accuracy of the new method. We
conclude the paper in Section 5.
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Figure 2.1: Vertex C and all its triangles.

2 Fast sweeping methods on unstructured meshes

2.1 Local solvers

Due to the hyperbolic nature of the eikonal equation, we need to design a numerical
Hamiltonian that follows the causality of the PDE. It is relatively easy to achieve this
on rectangular grids; it is not so straightforward on triangulated meshes. For the sake
of clarity we consider the two dimensional case first.

Take d = 2 in equation (1.1):

{

√

T 2
x + T 2

y = f(x, y), (x, y) ∈ Ω ⊂ R2,

T (x, y) = g(x, y), (x, y) ∈ Γ ⊂ Ω.
(2.1)

We consider triangulation Γh of Ω into non-overlapping, nonempty, open triangles
T , with diameter hT , such that Ω=∪T ∈Γh

T . We assume that Γh satisfy the following
conditions:

• Intersecting triangles have either a common vertex or a common edge;

• No more than µ triangles have a common vertex;

• h=supT ∈Γh
hT < 1;

• Γh is regular: there exists a constant ω0 independent of h such that if ρT is the
diameter of the largest ball B ⊂ T , then for all T ∈ Γh, hT ≤ ω0ρT .

Therefore, equation (2.1) is solved in the domain Ω, which has a triangulation Γh

consisting of triangles. We consider every vertex and all triangles which are associated
with this vertex. See Figure 2.1 for a vertex C and its n triangles T1, T2, · · · , Tn.
During the Gauss-Seidel iterations the numerical solution at vertex C is calculated
using the current values of its neighbors in every triangle. The smallest one will be
taken as the possible new value. If this smallest new value is smaller than the old value
at C, then the numerical solution at C is updated to be the smallest new value.
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Now the task reduces to calculating the value at C at each triangle; see Figure
2.2. Given the values TA and TB at vertices A and B of triangle 4ABC, we want to
calculate the value TC at C.

To make the description specific, we introduce the definition of causality.

Definition 2.1 By the causality condition of the isotropic wave propagation for up-
dating the travel-time at the vertex C from travel-times TA and TB, we mean that the
ray which is orthogonal to the wavefront and passing through the vertex C must fall
inside the triangle 4ABC.

We notice that in the isotropic wave propagation the ray direction is the same as
the gradient direction of the travel-time field and thus it is the same as the outward
normal of the wavefront.

First assume that 4ABC is acute. To construct a first order scheme we determine
a planar wavefront from the known values TA and TB. Suppose that the angle between
the coming wavefront and the edge AB is θ. We denote ∠A = β, ∠B = α, and
∠C = γ; AB = c, AC = b, and BC = a are the lengths of the edges AB, AC and BC,
respectively.

Without loss of generality, we may assume that TB > TA. If TC is determined by
both TA and TB, then by the Huygens’ principle the wavefront must first pass through
the vertex A, then B and finally C. To guarantee this, the following conditions must
be satisfied:

• [TB − TA]/fC ≤ AB = c, i.e., it is possible for the wavefront to propagate from
A to B with the given speed, where fC is the value of f(C), which is the inverse
of the speed at C;

• θ ≤ α so that the wavefront passes through the vertex B first rather than the
vertex C;

• θ + β < π
2 ; otherwise the causality is violated since the vertical line from the

vertex C to the wavefront does not fall inside the triangle; see Figure 2.3.

If all n triangles T1, T2, · · · , Tn around the vertex C are acute, the wavefront can
be captured well in one of these triangles, no matter which direction the wave comes
from. However, if one of the triangles is obtuse and the wavefront comes in just from
this obtuse angle, then the situation is different and there are two possible cases: (i)
if the normal of the wavefront is contained between those two dotted lines in Figure
2.4, then the value at vertex C can be updated using values at A and B even though
the accuracy will be degraded; (ii) otherwise if the normal of the wavefront comes in
as shown in Figure 2.4, then the value at vertex C can not be updated by A and B
correctly [36]. These will be shown in numerical examples in Section 4.

In order to treat obtuse triangles, we adopted the strategy used in [36]. As illus-
trated in Figure 2.5: if ∠C is obtuse, we connect C to the vertex D of a neighboring
triangle to cut the obtuse angle into two smaller angles. If these two angles are both
acute, then we are done as shown in the left in Figure 2.5; otherwise if one of the
smaller angles is still obtuse, then we keep connecting C to the vertices of the neigh-
boring triangles of the next level, until all new angles at C are acute as shown in the
right in Figure 2.5. But all these added edges are “virtual”; i.e. they only exist when
the value at C is updated. Because such a treatment depends on the mesh only, we
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Figure 2.2: Update the value at vertex C in a triangle when causality is satisfied.
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Figure 2.3: Update the value at vertex C in a triangle where causality is not satisfied.
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only need to do that once before the iteration in the algorithm begins; the resulting
algorithm is simple with almost no extra computational cost as shown by numerical
examples in Section 4. This construction is different from the one used in [25].

We first give a geometric version of our local solvers. Without loss of generality, we
assume TA ≤ TB.

2-D local solver: (Version 1: given TA ≤ TB, determine TC = TC(TA, TB))

1. If [TB − TA] ≤ c fC , then

θ = arcsin

(

[TB − TA]

c fC

)

;

(a) If max (0, α − π
2 ) ≤ θ ≤ π

2 − β, then

h = CP = a sin(α − θ);

TC = min{TC , h fC + TB};
(b) else

TC = min{TC , TA + b fC , TB + a fC}.
2. else

TC = min{TC , TA + b fC , TB + a fC}.

The angle condition,

max (0, α − π

2
) ≤ θ ≤ π

2
− β,

can be obtained in the following way:

1. if β > π
2 , then the causality condition is not valid;

2. if β < π
2 , then we must have θ ≤ π

2 − β; otherwise, the causality is violated
since the vertical line from the vertex C to the wavefront does not fall inside the
triangle. Furthermore,

(a) from this condition we can directly deduce that α ≥ θ, since ∠C = γ < π
2 by

construction;

(b) if α ≥ π
2 , then we must have α−θ ≤ π

2 holds so that the ray from C reaching
the wavefront is located inside the triangle.

The following algorithm unifies all the cases in one.
2-D local solver: (Version 2, given TA and TB, determine TC = TC(TA, TB))

1. If |TB − TA| ≤ c fC , then

θ = arcsin

(

[TB − TA]

c fC

)

;

(a) If max (0, α − π
2 ) ≤ θ ≤ π

2 − β or α − π
2 ≤ θ ≤ min (0, π

2 − β), then

h = CP = BC sin(α − θ) = a sin(α − θ),

H = CQ = AC sin(β + θ) = b sin(β + θ);

TC = min{TC , 0.5 (h fC + TB) + 0.5 (H fC + TA)};
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(b) else
TC = min{TC , TA + b fC , TB + a fC}.

2. else
TC = min{TC , TA + b fC , TB + a fC}.

In the special case that the mesh is rectangular and α = β = π
4 , it is straightforward

to verify that the above local solver reduces to the one given in [45]. Therefore, the
local solver is consistent with the one on rectangular meshes.

If a triangle is acute, then the angle conditions in Version 2 reduce to one condition:

α − π

2
≤ θ ≤ π

2
− β;

otherwise, the two angle conditions can not be combined into one, since there are gaps
corresponding to one of the angles α or β being obtuse. See Figures 2.2 and 2.3 for
illustrations.

We emphasize that both updating algorithms require that ∠C = γ < π
2 , but one of

the other two angles may be obtuse.
A local solver in three dimensions can be derived similarly. Take d = 3 in (1.1):

{

√

T 2
x + T 2

y + T 2
z = f(x, y, z), (x, y, z) ∈ Ω ⊂ R3,

T (x, y, z) = g(x, y, z), (x, y, z) ∈ Γ ⊂ Ω.
(2.2)

The equation (2.2) is solved in the domain Ω, which has a triangulation Γh consisting of
tetrahedra. We consider every vertex and all tetrahedra which are associated with this
vertex. Similar to the two dimensional case, the numerical solution at every vertex is
calculated using the current values of its neighbors in every tetrahedron. The smallest
one will be taken as the possible new value. If this smallest new value is smaller than
the old value, then the numerical solution at this vertex is updated to be the smallest
new value. Again the question reduces to how to calculate the numerical solution at
the current central vertex at each tetrahedron; see Figure 2.6.

Given the values TA, TB and TC at vertices A, B and C of the tetrahedron ABCD,
we need to calculate the value TD at the current central vertex D. The key is to
determine the normal direction ~n of the wavefront and determine whether the causality
condition is satisfied or not. Analogous to Definition 2.1, the ray which has direction
~n and passes through the vertex D must fall inside the tetrahedron ABCD so as to
satisfy the causality condition. To check such a causality condition numerically, we
first compute the coordinates of the point E at which the ray passing through D with
direction ~n intersects the plane spanned by A, B and C, then we check to see whether
E is inside 4ABC or not.

Without loss of generality, assume TA = min{TA, TB, TC}.
3-D local solver: (given TA, TB and TC , determine TD = TD(TA, TB, TC))

1. If [TB − TA] ≤ AB · fD and [TC − TA] ≤ AC · fD, then we solve the quadratic
equation for the normal direction ~n of the wavefront:











−−→
AB · ~n = [TB − TA]/fD,
−→
AC · ~n = [TC − TA]/fD,

|~n| = 1;

(2.3)
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Figure 2.4: Vertex C and its obtuse triangle.

BA

C

D

BA

C

D

E

(a) (b)

Figure 2.5: A strategy to treat obtuse angles.

(a) If there exist solutions ~n(i), i = 1, 2 for the quadratic equations (2.3) and the
area | 4 EAB| + | 4 EAC| + | 4 EBC| = | 4 ABC| for an ~n(i), then

TD = min{TD, TA + (|−−→AD · ~n(i)|) · fD};

(b) else, apply the 2D local solver on surfaces 4ABD,4ACD and 4BCD and
take the minimal one.

2. else, apply the 2D local solver on surfaces 4ABD,4ACD and 4BCD and take
the minimal one.

2.2 Sweeping orders and a complete algorithm

An essential ingredient for making the fast sweeping method [45] successful is a system-
atic ordering that covers all directions of characteristics efficiently. With a causality
preserving discretization in place, information along characteristics of certain directions
is captured simultaneously in each sweeping ordering. Moreover, once the solution at
a node gets its correct value, i.e., the smallest possible value, it will not change in later
iterations. There are natural orderings on rectangular meshes. For example, in two
dimensional case [45], all directions can be divided into four groups: up-right, up-left,
down-left, and down-right, which can be covered by the orderings: i = 1 : I, j = 1 : J ;
i = 1 : I, j = J : 1; i = I : 1, j = 1 : J ; i = I : 1, j = J : 1, respectively, where i and
j are the running indices in x- and y- directions, respectively. However, such natural
orderings no longer exist on an unstructured mesh.
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Figure 2.6: A 3-D local solver.

To devise efficient fast sweeping methods on unstructured meshes, we propose sys-
tematic orderings by introducing multiple reference points and sorting all the nodes
according to their lp distances to each individual reference point. In this paper we will
focus on p = 1, 2, give explicit geometric interpretation and prove convergence. The
argument works for all other p’s.

The lp metric for a vector x = (x1, x2, . . . , ..., xn) ∈ Rn is defined as ‖x‖p =
(
∑n

j=1 |xj |p)1/p. For example, in two dimensions, we first fix a reference point xref ;
if we sweep all nodes according to ‖x − xref‖1 in the ascent (or descent) order, then
the sweeping wavefront is an outgoing (or incoming) plane wave since the unit ball
of l1 metric is an tilted square. If we use ‖x − xref‖2 to order all nodes, then the
sweeping wavefront is an outgoing (or incoming) spherical wave. We will now address
the following questions:

1. How many references points are needed in a systematic ordering that can cover
all directions of information propagation?

2. How many iterations are needed for the algorithm to converge?

To address the first question, we have to understand the directional relation between
a sweeping wavefront and a characteristic. In the continuous case a basic fact is: if the
propagation direction of the sweeping wavefront forms an acute angle with the direction
of the characteristic, then the causality along this characteristic can be captured in this
ordering. As is illustrated in Figure 2.7, if we use the l2 metric, i.e., with a spherical
sweeping wavefront, a straight characteristic in any direction can be partitioned into
two pieces by the tangent point to a particular spherical sweeping wavefront, and each
piece forms an acute angle to the outgoing or incoming sweeping wavefront. If all
characteristics are straight lines, which is the case when the righthand side of the
eikonal equation is constant, we almost cover all characteristics by sweeping all nodes
according to the l2 distance to a single reference point in both ascent and descent
orders alternately. However, for all characteristics at the tangent point, the normal of
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the sweeping wavefront is orthogonal to the direction of characteristics. So information
will not propagate across the tangent point from one piece to other pieces effectively.
To remedy this problem we introduce another reference point. Now all directions of
characteristics can be covered effectively by the four orderings except one direction
which is orthogonal to the line connecting these two reference points as is shown in
Figure 2.7. Therefore we need at least three non-collinear reference points and we
sweep according to their l2 distances to these reference points in ascent and descent
orderings; total six orderings cover all directions of information propagation along
characteristics. It can be easily seen that four non-coplanar reference points are needed
in three dimensions. If we use the l1 metric, the sweeping wavefront is a tilted square.
For each reference point, as is shown in Figure 2.8, the whole plane can be divided into
four quadrants, and each quadrant can be covered by one planar sweeping wavefront.
If we choose two reference points such that the computational domain lies in different
quadrants of these two reference points, all directions of characteristics can be covered
by the four orderings corresponding to the ascent and descent sorting according to the
l1- metric; see Figure 2.8.

characteristic

reference point reference point A reference point B

reference point C

characteristic

(a) one reference point (b) three reference points

Figure 2.7: Reference points and sweeping wavefronts for the l
2- metric.

When characteristics are not straight lines, any characteristic can be divided into
a finite number of pieces so that each piece can be covered effectively by one of the
orderings as is shown in [45]. The total number of sweepings is increased due to curved
characteristics, but it is still finite and independent of mesh size. The number of
iterations will be estimated in Section 3.

In terms of numerical implementation on a particular mesh we have some complica-
tions. For example, the domain of dependence for a node in the discrete case is a region
instead of only the characteristic that passes through the node in the continuous case.
On a triangular mesh, the propagation direction of a sweeping wavefront has to fall
into the triangle which satisfies the causality criterion in Definition 2.1 so that the two
neighbors that determine the current vertex have already been updated in the current
sweeping. Numerically this means that the normal of the sweeping wavefront has to
make an acute angle with the characteristic that passes through this vertex. When a
node has many associated edges on a triangular mesh, more reference points may be
needed to cover all directions efficiently; this is different from the case for a rectan-
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(a) one reference point (b) two reference points

Figure 2.8: Reference points and sweeping wavefronts for the l
1- metric.

gular mesh. On a two-dimensional rectangular mesh, each node has four associated
edges with fixed directions so that simple orderings can cover all directions efficiently
[45]. The criterion for an optimal choice of reference points and their locations on a
triangular mesh is: all directions of characteristics should be covered with minimal
redundancy. In practice it is best that these reference points are evenly spaced both
spatially and angularly with respect to the data set or boundary where the solution
is prescribed. In our numerical tests we use the corner points as reference points if
a computational domain is rectangular. Other points, such as the center point of the
domain or middle points of each edge can be used as well.

If we have only a point source as the boundary condition on a rectangular mesh and
we use that point as the single reference point, then the square wave sweeping accesses
nodes in the ascent order in the same way as the down-n-out model does [43, 12, 24],
and the spherical wave sweeping shares some similarities with the expanding wavefront
model proposed in [42, 34]. However, we are not aware of any work accessing the nodes
in the way similar to the plane-wave sweeping proposed here.

The above isotropic metrics are suitable for ordering nodes in solving the isotropic
eikonal equation. For general anisotropic eikonal equations considered in [35, 31, 33],
we may introduce anisotropic Riemannian metrics [8] to sort all the nodes, and we may
design fast sweeping methods accordingly; this constitutes an ongoing work.

Now we may summarize local solvers and sweeping orderings into a full algorithm.
The fast sweeping algorithm on a triangular mesh:

1. Initialization:

(a) Triangulate the computational domain Ω. Add virtual edges to cut obtuse
angles if there are any.

(b) Choose multiple reference points: xi
ref , i=1,· · · , M .

(c) Sort all nodes according to their lp distances to the reference points in ascent
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and descent orders, and put them into arrays:

S+
i : ascent order, i = 1, 2, · · · , M ;

S−

i : descent order, i = 1, 2, · · · , M. (2.4)

(d) Assign exact values or interpolated values T (0) at vertices on or near the given
boundary Γ, and these values are fixed during the iterations. At all other
vertices, assign large positive values N to T (0), where N should be larger
than the maximum of the true solution, and these values will be updated in
later iterations.

2. Gauss-Seidel iteration for k=0, 1, · · · :
(a) For i=1, · · · , M :

i. To every vertex C ∈ S+
i and every triangle associated with C, fC=f(C),

apply the local solver.

ii. To every vertex C ∈ S−

i and every triangle associated with C, fC=f(C),
apply the local solver.

(b) Convergence test: ‖T (k+1) − T (k)‖ ≤ ε for ε > 0 given.

3 Convergence results

In this section we prove convergence of the fast sweeping algorithm on triangular
meshes. In the following analysis, we consider a regular triangulation Γh of Ω with
the property that all the inner angles of the triangles in Γh satisfies ≤ π

2 .
Considering a given triangle 4ABC in which TA and TB are given, we update the

travel-time TC at the vertex C. Denote

p1 =
TC − TA

b
, p2 =

TC − TB

a
, p3 =

TB − TA

c
.

In the following theorem, we will adopt the framework given in [7] to show the
consistency and the monotonicity of the Godunov numerical Hamiltonian.

Theorem 3.1 (Godunov numerical Hamiltonian) Assuming that the causality con-
dition holds, the updating formula for the local solver is one of the solutions for the
following equations











(TC−TA)2

b2
− 2 (TC−TA)(TC−TB)

a b cos γ + (TC−TB)2

a2 = f2
C sin2 γ

if |p3| ≤ fC and α − π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (TC−TA

b , TC−TB

a ) = fC , otherwise.

(3.5)

Here γ = ∠C, ∠A = β, ∠B = α, fC = f(C). This discretization for the eikonal
equation is based on the Godunov numerical Hamiltonian:

ĤC

(

TC − TA

b
,
TC − TB

a

)

= fC , (3.6)

where

ĤC(p1, p2) =











1
sin γ

√

p2
1 − 2p1 p2 cos γ + p2

2

if |p3| ≤ fC and α − π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (p1, p2), otherwise.

(3.7)
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Proof. From Version 2 of the local solver, we have

TC =











1
2(TA + TB) + sin(α−β)

2 sin γ (TB − TA) + sin α sin β
sin γ

√

c2f2
C − (TB − TA)2

if |p3| ≤ fC and α − π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

min (TA + bfC , TB + afC), otherwise.

(3.8)

By solving equation (3.5), we have

TC =











1
2(TA + TB) + b2−a2

2c2
(TB − TA) ± a b sin γ

c2

√

c2f2
C − (TB − TA)2

if |p3| ≤ fC and α − π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

min (TA + bfC , TB + afC), otherwise;

(3.9)

one of the two roots corresponds to equation (3.8).
Next we derive the numerical Hamiltonian. Denote A : (xA, yA), B : (xB, yB) and

C : (xC , yC). Since the causality condition holds, we have

TC − TA

b
= ∇T (C) ·

(

xC − xA

b
,
yC − yA

b

)

+ o(h2), (3.10)

TC − TB

a
= ∇T (C) ·

(

xC − xB

a
,
yC − yB

a

)

+ o(h2); (3.11)

then we have
( TC−TA

b
TC−TB

a

)

= P · ∇T (C) + o(h2), (3.12)

where

P =

( xC−xA

b
yC−yA

b
xC−xB

a
yC−yB

a

)

.

Ignoring higher order terms and solving for ∇TC , we have

|∇T (C)| ≈















1
sin γ

√

(TC−TA)2

b2
− 2 (TC−TA)(TC−TB)

a b cos γ + (TC−TB)2

a2

if |p3| ≤ fC and α − π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max
(

TC−TA

b , TC−TB

a

)

, otherwise;

(3.13)

this is the Godunov numerical Hamiltonian for the eikonal equation. 2

Theorem 3.2 (Consistency and Causality) The above Godunov numerical Hamil-
tonian

ĤC(p1, p2) =











1
sin γ

√

p2
1 − 2p1 p2 cos γ + p2

2

if |p3| ≤ fC and α − π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (p1, p2), otherwise.

(3.14)

is consistent; namely,

ĤC

(

TC − TA

b
,
TC − TB

a

)

= |p| (3.15)

if ∇Th = p ∈ R2. It is monotone if the causality condition holds: 0 ≤ γ1 ≤ γ, where
γ1 is the angle from the edge CA to the ray (i.e., the vertical line to the wavefront) CQ
counterclockwise; see Figure 2.2.
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Proof. By ∇Th = p ∈ R2, we have

( TC−TA

b
TC−TB

a

)

= Pp. (3.16)

Inserting this into the numerical Hamiltonian, we have equation (3.15).
Differentiating ĤC(p1, p2) with respect to p1 and p2, the monotonicity of the Hamil-

tonian requires

∂ĤC

∂p1
≥ 0,

∂ĤC

∂p2
≥ 0; (3.17)

these can be satisfied if and only if cos γ ≤ p2

p1
≤ 1

cos γ . By

p1 =
TC − TA

b
= fC sin(β + θ), (3.18)

p2 =
TC − TB

a
= fC sin(α − θ), (3.19)

where θ = arcsin( p3

fC
), we have

cos γ ≤ sin(β + θ)

sin(α − θ)
≤ 1

cos γ
, (3.20)

which is equivalent to the causality condition: 0 ≤ γ1 ≤ γ, since γ1=
π
2 − (β + θ) and

γ1=(γ + α − θ) − π
2 . 2

Theorem 3.3 (Monotonicity) The fast sweeping algorithm is monotone and Lips-
chitz continuous, i.e.,

1 ≥ ∂TC

∂TB
≥ 0, 1 ≥ ∂TC

∂TA
≥ 0, (3.21)

and

∂TC

∂TB
+

∂TC

∂TA
= 1. (3.22)

Proof. Consider the case that TA ≤ TB. We need only verify that the above
inequalities hold when TC is updated by

TC = h fC + TB, (3.23)

which is the case that the causality condition is satisfied. From Version 1 of the local
solver we have

∂TC

∂TB
= 1 + afC cos(α − θ)

(

− ∂θ

∂TB

)

(3.24)

= 1 − a cos(α − θ)

c cos θ
; (3.25)
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∂TC

∂TA
= afC cos(α − θ)

(

− ∂θ

∂TA

)

(3.26)

=
a cos(α − θ)

c cos θ
. (3.27)

From Figure 2.2, we have a cos(α − θ)=PB, c cos(θ)=AR and PB ≤ AR; therefore,
1 ≥ ∂TC

∂TB
≥ 0, 1 ≥ ∂TC

∂TA
≥ 0 and ∂TC

∂TB
+ ∂TC

∂TA
= 1. 2

Theorem 3.4 (Maximum change principle) In the Gauss-Seidel iteration for the
fast sweeping algorithm, the maximum change of Th at any vertex is less than or equal
to the maximum change of Th at its neighboring points.

Proof. This follows from the above monotonicity property proved in Theorem 3.3.
2

Theorem 3.5 (Order preserving) The fast sweeping algorithm is monotone in the
initial data.

Proof. From the monotonicity property of the solution, if Th(C) ≤ Rh(C) at all
vertices initially, then Th(C) ≤ Rh(C) at all vertices after any number of Gauss-Seidel
iterations. 2

Theorem 3.6 (Non-increasing) The solution of the fast sweeping algorithm is non-
increasing with each Gauss-Seidel iteration.

Proof. This is evident from the updating formula which only updates the current
value if it is larger than newly computed value during the Gauss-Seidel iteration. 2

Theorem 3.7 (l∞ contraction) Let T (k) and R(k) be two numerical solutions at the
k− th iteration of the fast sweeping algorithm. Let ‖ ·‖∞ be the maximum norm. Then

‖T (k) − R(k)‖∞ ≤ ‖T (k−1) − R(k−1)‖∞; (3.28)

0 ≤ max
C

{

T
(k)
C − T

(k+1)
C

}

≤ max
C

{

T
(k−1)
C − T

(k)
C

}

. (3.29)

Proof. Assume that the first update at the k-th iteration is at point C,

T
(k)
C = min{T (k−1)

C , T̄},

where T̄ is the solution computed from its neighbors T
(k−1)
A and T

(k−1)
B . The same is

true for R
(k)
C . From the maximum change principle, we have

|T (k)
C − R

(k)
C | ≤ ‖T (k−1) − R(k−1)‖∞. (3.30)

For an update at any other vertex later in the iteration, the neighboring values used
for the update are either from the previous iteration or from an earlier update in the
current iteration, both of which satisfy the above bound. By induction, we have l∞

contraction (3.28). By the monotonicity of the fast sweeping algorithm and (3.28),
setting R(k)=T (k−1) we conclude (3.29). 2
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Theorem 3.8 (Convergence) The solution of the fast sweeping algorithm converges
monotonically to the solution of the discretized system.

Proof. Denote the numerical solution after the k-th iteration by T
(k)
C . Since

T
(k)
C is bounded below by 0 and is non-increasing with Gauss-Seidel iterations, T

(k)
C is

convergent for all C. After each sweep for each C at each triangle, we have by the
monotonicity of the numerical Hamiltonian,

(T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ +

(T
(k)
C − T

(k)
B )2

a2 sin2 γ
≥ f2

C , (3.31)

because any later update of neighbors of T
(k)
C in the same iteration is non-increasing.

Moreover, it is easy to see that after T
(k)
C is updated, the function

F (T
(k)
A , T

(k)
B ) =

(T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ

+
(T

(k)
C − T

(k)
B )2

a2 sin2 γ
− f2

C (3.32)

is Lipschitz continuous in T
(k)
A and T

(k)
B , and the Lipschitz constant is bounded by

2 max

{

|T (k)
C − T

(k)
A |

b2 sin2 γ
+

|T (k)
C − T

(k)
B |

a b sin2 γ
cos γ,

|T (k)
C − T

(k)
B |

a2 sin2 γ
+

|T (k)
C − T

(k)
A |

a b sin2 γ
cos γ

}

.(3.33)

Since T
(k)
C is monotonically convergent for all C, we can have an upper bound Z > 0

for the Lipschitz constant. Let δ(k)=max{T (k−1)
C − T

(k)
C } be the maximum change

at all grid points during the k-th iteration. By the l∞-contraction property and the

convergence property of T
(k)
C , δ(k) converges monotonically to zero. After the k-th

iteration, we have

0 ≤ (T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ +

(T
(k)
C − T

(k)
B )2

a2 sin2 γ
− f2

C

≤ Zδ(k). (3.34)

Thus T (k) converges to the solution to equation (3.5). 2

Note that the monotone convergence is very important during iterations. Once the
solution at a node reaches the minimal value that it can get, it is the correct value at
that node and that value will not change in later iterations.

Now we show the estimate for the total number of iterations that is needed for
convergence. As pointed out before, given a systematic ordering any characteristic can
be partitioned into a finite number of pieces and each piece will be covered correctly
by one of the sweeping orderings as shown in Figure 3.9(a). Since these pieces have to
be captured sequentially the total number of iterations needed is proportional to the
number of pieces. Finally the number of pieces needed to partition a characteristics is
proportional to the number of turns of the characteristic. We now give an estimate on
the total number of turns of any characteristic in a fixed domain Ω.
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Denote H(p,x) = |p| − f(x), where p = ∇T . The characteristic equation for the
eikonal equation is:







ẋ = ∇pH = ∇T
f(x) ,

ṗ = −∇xH = ∇f(x),

Ṫ = ∇T · ẋ = f(x).

As was shown in [45] the curvature bound along a characteristic is:

|ẍ| ≤
∣

∣

∣

∣

∇f(x)

f(x)

∣

∣

∣

∣

. (3.35)

Theorem 3.9 Assuming that f(x) is strictly positive and C1 in Ω, the maximal num-

ber of turns of a characteristic in Ω is bounded by
DK

2π

fM

fm
, where D is the diameter

of domain Ω and

K = sup
x∈Ω

∣

∣

∣

∣

∇f(x)

f(x)

∣

∣

∣

∣

, fM = sup
x∈Ω

f(x), fm = inf
x∈Ω

f(x).

Proof. The number of turns of a characteristic γ is

1

2π

∫

γ
ẍds ≤ 1

2π

∫

γ

|∇f(x)|
f(x)

ds ≤ K

2π

∫

γ
ds (3.36)

where s is the arc length. Let the characteristic γ join a point x0 ∈ Γ from the initial
front to a point x ∈ Ω in the domain; see Figure 3.9(b). The travel-time at x is
T (x) =

∫

γ f(s)ds. This travel-time, which is the first arrival time at x, is smaller than
the travel-time along the direct path from x0 to x. So we have

fm

∫

γ
ds ≤

∫

γ
f(s)ds = T (x) ≤

∫

x

x0

f(s)ds ≤ fM‖x − x0‖. (3.37)

Hence

length(γ) =

∫

γ
ds ≤ DfM

fm
. (3.38)

Together with (3.36) we finish the proof. 2

Hence the maximal number of sweeping needed to cover all characteristics is bounded

by C × DK

2π

fM

fm
, where the constant C may depend on the number of reference points

and orderings, but it is independent of the mesh size.

4 Numerical Examples

Now we show numerical examples in both two and three dimensions to illustrate the
efficiency and accuracy of our algorithm.

Our computational experience indicates that for an acute triangulation using four
corners in 2-D domains or eight corners in 3-D domains as the reference points are
sufficient for the algorithm to converge in a finite number of iterations. For a triangu-
lation with some obtuse triangles, more reference points may be needed. The number
of iterations is independent of mesh size for all the examples shown here. If we have
an irregular computational domain, we may also add more reference points to fit with
the irregular geometry; however, we will deal with this issue in the future work.

In all the examples, the convergence of iteration is measured as full convergence,
i.e., the iteration stops when the successive error reaches machine zero.
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Figure 3.9: Partitioning of a characteristic.

4.1 2-D acute triangulation

We first triangulate the computational domain. A typical acute triangulation is shown
in Figure 4.1, and the refinement of the mesh is uniform, i.e., cutting each triangle in
the coarse mesh into four smaller similar ones. We have chosen the four corners as the
reference points in Examples 1, 2 and 3, with both l1 and l2 based sortings. We have
also used two reference points in the case of l1- metric based sorting. First we describe
the examples.

Example 1 (two-circle problem). The eikonal equation (2.1) with f(x, y) = 1.
The computational domain is Ω = [−2, 2] × [−2, 2]; Γ consists of two circles of equal
radius 0.5 with centers located at (−1, 0) and (

√
1.5, 0), respectively. The exact solution

is the distance function to Γ. An acute triangulation is used in the computation. The
solution is shown in Figure 4.2.

Example 2 (shape-from-shading). This example is taken from [37]. The eikonal
equation (2.1) with

f(x, y) = 2π
√

[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2. (4.1)

Γ = {(1
4 , 1

4), (3
4 , 3

4), (1
4 , 3

4), (3
4 , 1

4), (1
2 , 1

2)}, consisting of five isolated points. The compu-
tational domain Ω = [0, 1]× [0, 1]. T (x, y) = 0 is prescribed at the boundary of the unit
square. The solution to this problem is the shape function, which has the brightness
I(x, y) = 1/

√

1 + f(x, y)2 under vertical lighting.
Case a.

g(
1

4
,
1

4
) = g(

3

4
,
3

4
) = 1, g(

1

4
,
3

4
) = g(

3

4
,
1

4
) = −1, g(

1

2
,
1

2
) = 0.

The exact solution for this case is

T (x, y) = sin(2πx) sin(2πy),

a smooth function.
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Table 4.1: Accuracy tests for Examples 1 and 2. Acute triangulation.

two-circle shape (case a) shape (case b)
Nodes Elements L

1 error order L
1 error order L

1 error order
1473 2816 7.71E-3 – 4.54E-2 – 2.83E-2 –
5716 11264 4.21E-3 0.87 2.54E-2 0.84 1.62E-2 0.81

22785 45056 2.18E-3 0.95 1.34E-2 0.92 8.76E-3 0.89
90625 180224 1.11E-3 0.97 6.90E-3 0.96 4.60E-3 0.93

Case b.

g(
1

4
,
1

4
) = g(

3

4
,
3

4
) = g(

1

4
,
3

4
) = g(

3

4
,
1

4
) = 1, g(

1

2
,
1

2
) = 2.

The exact solution for this case is

T (x, y) =











max(| sin(2πx) sin(2πy)|, 1 + cos(2πx) cos(2πy)),

if |x + y − 1| < 1
2 and |x − y| < 1

2 ;

| sin(2πx) sin(2πy)|, otherwise;

this solution is not smooth.
We have used acute triangulations for both cases. The solutions are shown in Figure

4.3.
Example 3 (five-ring problem) The eikonal equation (2.1). The computational

domain is Ω = [0, 1] × [0, 1]; Γ is the point source (0, 0), and five ring obstacles are
placed in the computational domain. This is an example borrowed from [18]. Here we
also use an acute triangulation. The solution is shown in Figure 4.4.

From Table 4.1, we can see that the accuracy of the algorithm for Examples 1 and
2 is first order. Although no matter which ordering metric is used, the same discretized
nonlinear system is solved. However, different ordering strategies may result in different
numbers of iterations, as shown in Table 4.2 and Table 4.3. Certainly, the two tables
also indicate that the iteration number does not depend on the mesh size as the mesh
is refined.

Table 4.4 shows the number of iterations needed using the l1 metric with only two
reference points. The two reference points are two corners that are not diagonal to
each other.

On the other hand, Table 4.5 shows that a simple extension of the ordering strategy
used for rectangular meshes, i.e., sorting all vertices according to the ascent and descent
orders of their x and y coordinates, may result in more iterations.

4.2 2-D obtuse triangulation

In this section, we test our strategy for treating a triangulation which has obtuse angles.
The obtuse triangulation is constructed by perturbing randomly the x coordinates of
vertices in a uniform triangulation. This uniform triangulation, in turn, is obtained by
connecting the diagonal line in every rectangle of a rectangular mesh and cutting every
rectangle into two equivalent isosceles triangles. The perturbation range is [−0.5h, 0.5h]
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Table 4.2: Iteration numbers for Examples 1, 2 and 3. Acute triangulation. Spherical
sweeping wavefront based on l

2 metric ordering.

Nodes Elements two-circle shape (case a) shape (case b) five-ring
1473 2816 6 9 9 19
5716 11264 6 13 13 20

22785 45056 8 11 13 21
90625 180224 8 11 13 21

Table 4.3: Iteration numbers for Examples 1, 2 and 3. Acute triangulation. Planar sweeping
wavefront based on l

1 metric ordering.

Nodes Elements two-circle shape (case a) shape (case b) five-ring
1473 2816 7 12 9 26
5716 11264 7 12 9 27

22785 45056 7 16 9 27
90625 180224 7 15 9 27

Table 4.4: Iteration numbers for Examples 1, 2 and 3. Acute triangulation. Planar sweeping
wavefront based on l

1 metric ordering using only two reference points.

Nodes Elements two-circle shape (case a) shape (case b) five-ring
1473 2816 6 12 8 16
5716 11264 6 12 9 25

22785 45056 7 17 9 29
90625 180224 7 14 10 29

Table 4.5: Iteration numbers for Examples 1, 2 and 3. Acute triangulation. Nodes are sorted
by x and y coordinates.

Nodes Elements two-circle shape (case a) shape (case b) five-ring
1473 2816 9 9 9 22
5716 11264 9 10 14 26

22785 45056 13 18 15 33
90625 180224 13 13 15 33
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Figure 4.1: An acute triangulation. (a): the whole mesh; (b): zoom in.
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Figure 4.2: Example 1: two-circle problem. Acute triangulation. 30 equally spaced contour
lines from T = 0.111755 to T = 1.6762.
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Figure 4.3: Example 2: shape-from-shading. Acute triangulation. Left: case (a); right: case
(b); top: three-dimensional view; bottom: contour lines, 30 equally spaced contour lines
from T = −1 to T = 1 for case (a), and from T = 0 to T = 2 for case (b).
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Figure 4.4: Example 3: five-ring problem. Acute triangulation. 100 equally spaced contour
lines from T = 0 to T = 2.89.

where h is the length of an isosceles triangle. We use Example 1 in Section 4.1 as a
test example and apply spherical-wave sweepings.

As a first test, we choose four corners of the computational domain as the reference
points and sweep through all the nodes according to both ascent and descent sortings.
The accuracy and iteration numbers for the algorithm without and with the treatment
are listed in Table 4.6.

As a second test, we use eight reference points which include both the four corners
and four middle points of the four edges of the computational domain, and we use
only ascent orders. The accuracy and iteration numbers for the algorithm without
and with the treatment are listed in Table 4.7. Comparing to Table 4.6, we can see
that more reference points may help us reduce the number of sweepings needed in the
algorithm. Roughly speaking, for different meshes the errors from the algorithm with
the obtuse-angle treatment are decreased 2 ∼ 4 times in comparison to the errors from
the algorithm without such a treatment. The first order accuracy with the treatment
is more regular than that without the treatment. Moreover, comparing the errors
in Table 4.6 with those in Table 4.7, without the obtuse-angel treatment different
sweeping ordering strategies yield slightly different numerical solutions; but with the
obtuse-angel treatment different sweeping ordering strategies yield the same solutions
up to machine zero. This indicates that the causality of PDEs may not be captured
accurately if obtuse angles are not treated.

4.3 A 3-D example

In this section we test our 3-D fast sweeping methods on tetrahedral meshes. We use
a two-sphere problem as an example: the eikonal equation (2.3) with f(x, y, z) = 1.

The computational domain is Ω = [0, 1]× [0, 1]× [0, 1]; Γ consists of two spheres of
equal radius 0.1 with centers located at (0.25, 0.25, 0.25) and (0.75, 0.75, 0.75), respec-
tively. The exact solution is the distance function to Γ.

We first partition the computational domain into identical rectangular cubes. Then
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Figure 4.5: An obtuse triangulation. (a): the whole mesh; (b): zoom in.

Table 4.6: Two-circle problem. Obtuse triangulation. Spherical wave sweepings: 4 reference
points (4 corners of computational domain). Both ascent and descent orderings.

before treatment after treatment
Elements Obtuse ele max obtu L

1 error order ite L
1 error order ite

200 78 120◦ 6.70E-2 – 6 4.26E-2 – 5
800 528 115◦ 2.49E-2 1.43 8 1.71E-2 1.32 6

3200 958 125◦ 2.90E-2 -0.22 15 9.71E-3 0.81 12
12800 5890 118◦ 1.98E-2 0.55 34 4.60E-3 1.08 18
51200 40558 116◦ 4.71E-3 2.07 44 2.31E-3 0.99 24

Table 4.7: Two-circle problem. Obtuse triangulation. Spherical wave sweepings: 8 reference
points (4 corners and 4 middle points of the 4 sides of computational domain). Only ascent
ordering.

before treatment after treatment
Elements Obtuse ele max obtu L

1 error order ite L
1 error order ite

200 78 120◦ 6.70E-2 – 4 4.26E-2 – 4
800 528 115◦ 2.49E-2 1.43 8 1.71E-2 1.32 6

3200 958 125◦ 2.91E-2 -0.22 8 9.71E-3 0.81 8
12800 5890 118◦ 1.98E-2 0.55 8 4.60E-3 1.08 9
51200 40558 116◦ 4.72E-3 2.07 13 2.31E-3 0.99 11
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Figure 4.6: A tetrahedral mesh. (a): surfaces of the mesh; (b): a part of the interior of the
mesh.

the tetrahedral mesh is obtained by cutting each cube into six tetrahedra.
Figure 4.6 shows a tetrahedral mesh obtained in this way from a 40 × 40 × 40

rectangular mesh. So the total tetrahedra in the mesh is 40 × 40 × 40 × 6 = 384000.
Figure 4.6(a) shows the surface of the mesh, and Figure 4.6(b) shows a part of the
interior of the tetrahedral mesh. We choose the eight corners of the computational
domain as the reference points. Both ascent and descent orderings are used, and the
ordering strategy is based on the l2- metric.

The results in Figure 4.7 are obtained by using the mesh in Figure 4.6. Figure
4.7(a) shows the contour plot of the solution on the surface of the domain, and Figure
4.7(b) shows 3-D plots of the contour T = 0.17.

In Table 4.8, we present the accuracy and numbers of iterations when the tetrahedral
mesh is refined. To calibrate the result, we apply the same sweeping ordering to the
rectangular mesh from which the tetrahedral mesh is obtained. For the rectangular
mesh we use the local solver for rectangular grid as in [45]. Although the nodes are
the same, the local solver at each node is different and hence the discretized nonlinear
systems of equations are different. The comparison results are also shown in Table 4.8.
It is obvious from the table that the local solver on unstructured meshes can achieve
better accuracy than that on structured meshes since the former uses more neighboring
points at each node and captures directions of characteristics more accurately than the
latter. Also we can see from Table 4.8 that if the l2 distance is used for ordering, the
iteration number on an unstructured mesh can be less than that on a structured one.
However the local solver at each node for the unstructured mesh is more expensive
than for the rectangular mesh. Most importantly we see that both iteration numbers
do not change as the mesh is refined. So our ordering strategy works for both cases.
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Figure 4.7: Two-sphere problem. Using the tetrahedral mesh shown in Figure 4.6. (a): the
surface contour, 30 equally spaced contour lines from T = 0 to T = 0.742402; (b): the
contour plot of T = 0.17 in the 3-D case.

Table 4.8: Two-sphere problem. Comparison between tetrahedral meshes and rectangular
meshes. Spherical wave sweepings: 8 corners as reference points. Both ascent and descent
orderings.

Unstructured mesh Structured mesh
Nodes Elements L

1 error order ite L
1 error order ite

9261 48000 1.25E-2 – 12 1.77E-2 – 15
68921 384000 7.17E-3 0.81 12 1.02E-2 0.80 15

531441 3072000 3.79E-3 0.92 12 5.41E-3 0.91 16
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5 Conclusion

We proposed novel ordering strategies to extend the fast sweeping method to unstruc-
tured meshes. To that end we introduced multiple reference points and ordered all
the nodes according to their lp distances to those reference points. Information propa-
gation along all characteristics can be covered efficiently by the systematic orderings.
The proved convergence results established the optimality of the methods. Extensive
numerical examples demonstrated accuracy and efficiency of the new fast sweeping
method.
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