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Abstract

This paper explores various aspects of the image de-
composition problem using modern variational tech-
niques. We aim at splitting an original image f into
two components u and v, where u holds the geometri-
cal information and v holds the textural information.
The focus of this paper is to study di�eren t energy
terms and functional spacesthat suit various types of
textures.

Our modeling usesthe total-variation energyfor ex-
tracting the structural part and one of four of the fol-
lowing norms for the textural part: L 2, G, L 1 and a
new tunable norm, suggestedhere for the �rst time,
basedon Gabor functions.

Apart from the broad perspective and our sugges-
tions when each model should be used, the paper con-
tains three speci�c novelties: �rst we show that the
correlation graph betweenu and v may serve as an ef-
�cien t tool to selectthe splitting parameter, secondwe
proposea new fast algorithm to solve the TV-L 1 min-
imization problem, and third we intro duce the theory
and designtools for the TV-Gabor model.

Key-w ords: Image decomposition, restoration, pa-
rameter selection, B V , G, L 1, Hilb ert space,projec-
tion, total-variation, Gabor functions.

1 In tro duction

1.1 Motiv ation

Decomposing an image into meaningful components is
an important and challenging inverse problem in im-
age processing. A �rst range of models are denoising
models: in such models, the image is assumedto have
beencorrupted by noise,and the processingpurposeis
to remove the noise. This task can be regarded as a

decomposition of the image into signal parts and noise
parts. Certain assumptionsare taken with respect to
the signal and noise,such as the piecewisesmooth na-
ture of the image, which enablesgood approximations
of the clean original image.

In modern image-processing, two main successful
approachesare usually consideredto solve the denois-
ing problem. The �rst oneis basedon manipulating the
wavelet coe�cien ts of the image[20, 35, 14, 34, 33, 37].
The secondone is basedon solving nonlinear partial-
di�eren tial equations(PDE's) associated with the min-
imization of an energy composedof somenorm of the
gradient [44, 13, 4, 37, 40, 41].

A related but di�eren t problem, which is the main
topic of this paper, is the decomposition of an image
into its structural and textural parts. The aim of this
type of decomposition is harder to formulate explicitly .
The generalconcept is that an image can be regarded
as composedof a structural part, corresponding to the
main large objects in the image, and a textural part,
containing �ne scale-details,usually with someperiod-
icit y and oscillatory nature. The de�nition of texture
is vague and highly depends on the image scale. A
\structure" in one scale,can be regardedas \texture"
in another scale. Nevertheless,we will attempt to use
various variational models, to decomposean imageinto
meaningful structural and textural parts. Moreover, we
will examine the abilit y to perform the task automat-
ically using the correlation criterion. This criterion is
very simple and does not assumeany information on
the nature or scale of the texture. It works well in
simple casesand can aid in �nding the right weight
between the structural and textural components. In
more complicated multi-scale images,more elaborated
mechanisms are needed,basedon additional informa-
tion. We will discussthe advantagesand drawbacks of
the correlation criterion and suggestpossibleways for
further research to solve this di�cult problem.
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In this paper, we will focus on imagedecomposition
models based on total variation regularization meth-
ods, as originally proposedin [44]. This approach has
recently beenanalyzedin [37], which is the inspiration
sourceof many works [50, 42, 5, 3, 45, 7, 11, 15, 19, 32,
51]. In Section 2 we review the decomposition models
that are consideredin this paper.

We aim at splitting an original image f into two
components u and v, u containing the geometrical in-
formation and v the textural information. Our model-
ing is basedon TV regularization approaches: we min-
imize a functional with two terms, a �rst one based
on the total variation and a secondone on a di�eren t
norm adapted to the texture component. One aim of
the paper is to analyze the di�eren t structure-texture
modelsand to point out the similarities and di�erences
between the decomposition techniques. In addition,
three main contributions are presented:

1. First, we show that the correlation graph between
u and v is an e�cien t tool to select the splitting
parameter.

2. Second,we proposea new fast algorithm to solve
the TV-L 1 minimization problem.

3. Third, we intro ducea newTV-Gabor model which
leadsus to adaptive frequencyand directional im-
agedecomposition.

All the algorithms we consider are inspired by the
ROF model [44], in the sensethat they are all of the
generic form TV-another norm.

1.2 Outline of the pap er

A main purpose of the paper is to know when one
should useeach model. The organization of the paper
is in
uenced by our �nal conclusions. The four mod-
els can be classi�ed to �t three main typesof textures:
general oscillating patterns (TV � L 2 and TV � G),
structural textures (TV � L 1) and smooth periodic,
possibly directional, textures (TV-Gabor).

The paper is organized as follows. In Section 2,
the four decomposition models are formulated. In Sec-
tion 3, we intro duce the notations that will be usedin
the rest of the paper. We brie
y review Chambolle's
projection algorithm, which is a recent and e�cien t
method to solve the ROF problem [12]. We recall how
Chambolle's algorithm can be usedto solve the A2B C
model [5]. We also recall the framework of the TV-
Hilb ert regularization of [8]. In Section 4, we propose
a method to compute the decomposition of an image
using a correlation criterion, inspired by the work of

[39]. In Section 5, we examine general type decompo-
sitions using the TV � L 2 and TV � G models and re-
late their parameters in the A2B C framework (which
well approximates TV � G). In Section 6, we intro-
duce a new fast and e�cien t algorithm to solve the
TV � L 1 minimization problem (5). We carry out the
completemathematical analysisof this new algorithm.
The advantagesand drawbacks of using the correlation
method for parameter tuning to this kind of regulariza-
tion are presented. In Section 7, we designa family of
Hilb ert spacesbasedon Gabor functions. This provides
us with a new TV-Gabor model in which one can take
advantage of knowledgeof both the frequencyand the
direction of the texture. It is alsoshown how the corre-
lation criterion can be usedto selectthe regularization
parameter. We then conclude the paper in Section 8
with some�nal remarks and future prospects. In Ap-
pendix A.1, we detail the proofs of the mathematical
results of Section 6.

2 Four Decomp osition Mo dels

From now on, we denote by f the original image to
decompose. It is reasonnableand classical to assume
that f is de�ned on a boundedand connectedLipschitz
open set 
 (t ypically 
 is a rectangle), and that f is
bounded. Therefore f belongs to L 1 (
). Since 
 is
bounded, f also belongsto L 2(
).

2.1 TV-L 2 (R OF)

Rudin, Osher and Fatemi proposed in [44] a popular
denoising algorithm which preserves well the edgesof
the original image, while removing most of the noise.
This algorithm decomposesan image f into a compo-
nent u belonging to B V and a component v in L 2. In
this approach the following functional is being mini-
mized:

inf
(u;v )2 B V � L 2 =f = u+ v

� Z
jDuj + � kvk2

L 2

�
(1)

where
R

jDuj is the total variation of u. For a detailed
mathematical study of (1) we refer the reader to [13].

2.2 TV-G (Mey er)

In [37], Meyer suggestsa new decomposition model.
He proposesthe following functional:

inf
(u;v )2 B V � G=f = u+ v

� Z
jDuj + � kvkG

�
(2)

where the Banach spaceG contains signals with large
oscillations, and thus in particular textures and noise.
We give here the de�nition of G.
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De�nition 1 G is the Banach space composed of dis-
tributions f which can be written as

f = @1g1 + @2g2 = div (g) (3)

with g1 and g2 in L 1 . The space G is endowed with
the following norm:

kvkG = inf fk gkL 1 =v = div (g); g = (g1; g2);

g1 2 L 1 ; g2 2 L 1 ;

jg(x)j =
p

(jg1j2 + jg2j2)(x)
o

(4)

A function belonging to G may have large oscilla-
tions and neverthelesshave a small norm. Thus the
norm on G is well-adapted to capture the oscillations
of a function in an energy minimization method. We
refer the readerto [7] for somenumerical computations
of typical image G norm. In [37], the author did not
proposeany numerical schemeto compute the decom-
position. Veseand Osher [50] were the �rst to propose
a numerical scheme to solve this model using Euler-
Lagrange equations based on L p norms. Aujol et al
[6, 5] suggesteda di�eren t method basedon projection
(A2B C) which will be explained in Section3.3. Notice
that an approach basedon secondorder coneprogram-
ming has recently beenproposedin [51].

2.3 TV-L 1

In [2] and [40] it was suggestedto replacethe L 2 norm
in the ROF model by a L 1 norm. The functional to
minimize in this caseis

inf
(u;v )2 B V � L 1 =f = u+ v

� Z
jDuj + � kvkL 1

�
(5)

Nikolova has showed that the L 1 norm is particularly
well suited to remove salt and pepper noise[40]. Com-
paring to the ROF model (1), this functional doesnot
erode structures, and presents other interesting prop-
erties.

This model has recently been studied mathemati-
cally in the continuouscasein [15]. The authors present
interesting quantitativ e properties of the model related
to scale-spaceand show that geometrical features are
better preserved. Numerically, one of the main draw-
backs of the model is that, until now, there wasno fast
algorithm to solve (5). An important contribution of
the paper is to addressthis problem and to proposea
fast and e�cien t algorithm to solve (5). We will study
problem (5) in Section 6. A di�eren t method based
on secondorder cone programming has recently been
proposedin [51].

2.4 TV-Hilb ert

Motiv ated by [44] and [42], the authors of [8] have pro-
poseda generalization of the ROF and OSV models:

inf
(u � v)2 B V �H =f = u+ v

� Z
jDuj + � kvk2

H

�
(6)

where H is some Hilb ert space. In the case when
H = L 2, then (6) is the ROF model [44], and when
H = H � 1 then (6) is the OSV model [42]. By choosing
suitably the Hilb ert spaceH, it is possibleto compute
a frequency and directional adaptive image decompo-
sition, as we will see in Section 7. One of the main
contributions of the paper is the designingof a family
of Hilb ert spacesbasedon Gabor wavelets for such a
purpose.

3 Settings and Previous Pro jec-
tion Algorithms

In this paper all our models are solved numerically by
projections algorithms, and not by using the more clas-
sical techniques based on Euler-Lagrange equations.
Notice that a method basedon convex analysisto solve
TV models was recently proposedin [18], and another
one based on Support Vector Regressionin [46] We
present Chambolle's projection algorithm, which is a
recent method to solve the ROF problem [12]. An im-
portant advantage of this algorithm is that there is no
need to regularize the TV energy. When using Euler-
Lagrange equations to minimize a TV term, one �rst
needsto regularize the functional and considerinsteadRp

jr uj2 + � 2. The small parameter � is necessaryto
prevent numerical instabilities. The main advantage
of Chambolle's projection method is that it does not
usethis additional arti�cial parameter, and is therefore
more faithful to the continuous formulation of the en-
ergy. Moreover, in this projection framework, we can
easily and rigourously show the convergenceof the al-
gorithms towards the minimizers of the functional.

We also recall how Chambolle's algorithm can be
usedto solve the A2B C model [5]. We then recall how
Chambolle's algorithm has been extended to a larger
class of TV -Hilb ert functionals in [8]. We begin by
intro ducing the notations that we will use in the rest
of the paper.

3.1 Discretization

From now on and through the rest of the paper, we
consider the discrete caseThe image is a two dimen-
sion vector of size N � N . We denote by X the Eu-
clidean spaceRN � N , and Y = X � X . The spaceX
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will be endowed with the L 2 inner product (u; v)L 2 =P
1� i;j � N ui;j vi;j and the norm kukL 2 =

p
(u; u)L 2 .

We also set kukL 1 =
P

1� i;j � N jui;j j. To de�ne a dis-
crete total variation, we intro ducea discrete version of
the gradient operator. If u 2 X , the gradient r u is
a vector in Y given by: (r u) i;j = (( r u)1

i;j ; (r u)2
i;j ),

with

(r u)1
i;j =

�
ui +1 ;j � ui;j if i < N
0 if i = N

and

(r u)2
i;j =

�
ui;j +1 � ui;j if j < N
0 if j = N

:

The discrete total variation of u is then de�ned by:

J (u) =
X

1� i;j � N

j(r u) i;j j (7)

We also intro duce a discrete version of the diver-
genceoperator. We de�ne it by analogy with the con-
tinuous setting by div = �r � where r � is the ad-
joint of r : that is, for every p 2 Y and u 2 X ,
(� div p;u)L 2 = (p; r u)Y . It is easyto check that:

(div (p)) i;j =

8
<

:

p1
i;j � p1

i � 1;j if 1 < i < N

p1
i;j if i=1

� p1
i � 1;j if i=N

(8)

+

8
<

:

p2
i;j � p2

i;j � 1 if 1 < j < N

p2
i;j if j=1

� p2
i;j � 1 if j=N

From now on, we will usethesediscrete operators. We
are now in position to intro duce the discreteversion of
Meyer's spaceG.

De�nition 2

G = f v 2 X = 9g 2 Y such that v = div (g)g (9)

and if v 2 G:

kvkG = inf fk gk1 = v = div (g); (10)

g = (g1; g2) 2 Y; jgi;j j =
q

(g1
i;j )2 + (g2

i;j )2
o

where kgk1 = maxi;j jgi;j j.
Moreover, we wil l denote:

G� = f v 2 G = kvkG � � g (11)

We recall that the Legendre-Fenchel transform of
F is given by F � (v) = supu (u; v)L 2 � F (u) (see[22]).
The following result is proved in [5]. We seethat J (:)
(resp.k:kG ) is the polar of k:kG (resp. J (:)).

Prop osition 1 The space G identi�es with the follow-
ing subspace:

X 0 = f v 2 X =
X

i;j

vi;j = 0g (12)

Notice that these results are in discrete. See[3] for
the de�nition of G in the continuouscase.Wealsorefer
the interestedreaderto [30] about the relation between
the discrete and the continuous Fenchel dual.

3.2 Cham bolle's pro jection algorithm

Since J de�ned by (7) is homogeneousof degreeone
(i.e. J (�u ) = �J (u) 8u and � > 0), it is then stan-
dard (see[22]) that J � is the indicator function of some
closedconvex set, which turns out to be the set G1 de-
�ned by (11):

J � (v) = � G1 (v) =
�

0 if v 2 G1

+ 1 otherwise
(13)

This can be checked out easily (see[12] for details).
In [12], the author proposesa nonlinear projection al-
gorithm to minimize the ROF model. The problem
is:

inf
u2 X

�
J (u) +

1
2�

kf � uk2
L 2

�
(14)

We have the following result, which comesfrom stan-
dard convex dualit y theory [22]:

Prop osition 2 ([12]): The solution of (14) is given
by: u = f � PG � (f ) where P is the orthogonal projector
on G� (de�ned by (11)).

We usethe following algorithm to compute PG � (f ).
It indeed amounts to �nding:

min
�

k� div (p) � f k2
L 2 : p = jpi;j j � 1 8i; j = 1; : : : ; N

	

(15)
This problem can be solved by a �xed point method:
p0 = 0 and

pn +1
i;j =

pn
i;j + � (r (div (pn ) � f =� )) i;j

1 + � j(r (div (pn ) � f =� )) i;j j
(16)

In [12] is given a su�cien t condition ensuring the con-
vergenceof the algorithm: it is shown that as long
as � � 1=8, then � div (pn ) converges to PG � (f ) as
n ! + 1 .

3.3 Aujol-Aub ert-Blanc-F �eraud-
Cham bolle mo del (A2BC)

Inspired from the work by A. Chambolle [12] and by
the numerical results of [50], the authors of [5, 6] pro-
posea relevant approach to solveMeyer problem. They
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consider the following problem

inf
(u;v )2 X � G �

�
J (u) +

1
2�

kf � u � vk2
L 2

�
(17)

where G� = f v 2 G=kvkG � � g , and kvkG is de�ned
by (10), and J (u) by (7)

The authors of [5] present their model in a discrete
framework. Seealso [3] for a study of this model in a
continuous setting, and [10] for an extension to color
images. In this paper, we will focus on the A2B C
model to solve Meyer's problem automatically in Sec-
tion 5. In [5, 6], the authors useChambolle's projection
algorithm [12] to solve (17). We describe their method
below.

Minimization: SinceJ � is the indicator function of
G1 (see(13)), we can rewrite (17) as

inf
(u;v )2 X � X

1
2�

kf � u � vk2
L 2 + J (u) + J �

�
v
�

�
(18)

With this formulation, we see the symmetric roles
played by u and v. To solve (18), we consider the two
following problems:

� v being �xed, we search for u as a solution of:

inf
u2 X

�
J (u) +

1
2�

kf � u � vk2
L 2

�
(19)

� u being �xed, we search for v as a solution of:

inf
v2 G �

kf � u � vk2
L 2 (20)

From Proposition 2, we know that the solution of
(19) is given by: û = f � v � PG � (f � v). And the
solution of (20) is simply given by: v̂ = PG � (f � u).

Algorithm:

1. Initialization:
u0 = v0 = 0 (21)

2. Iterations:

vn +1 = PG � (f � un ) (22)

un +1 = f � vn +1 � PG � (f � vn +1 ) (23)

3. Stopping test: we stop if

max(jun +1 � un j; jvn +1 � vn j) � � (24)

It is shown in [5] that the sequence(un ; vn ) given
by (21)-(22)-(23) convergesto the unique minimizer of
problem (17).

Parameters: Algorithm (21)-(22)-(23) needs thus
the two parameters� and � . The parameter � controls
the L 2-norm of the residual f � u � v. The smaller �
is, the smaller the L 2 norm of the residual f � u � v is.
The larger � is, the more v contains information, and
therefore the more u is averaged. In fact, the choice
of � is easy. One just needsto set it very small. For
instance, in all the examples presented hereafter, we
have chosen � = 1, and found out a maximum norm
for f � u � v of about 0.5 (for valuesranging from 0 to
255). But the � parameter is much harder to tune. It
controls the G norm of the oscillating component v. In
the caseof image denoising, a �rst method to tune �
with respect to the standard deviation of the noisehas
been proposedin [7]. We will present a way to select
� in the caseof image decomposition in Section 5.

3.4 H Hilb ert space

In [8], the authors have considered other spacesto
model oscillating patterns. They proposeto usea gen-
eral family of Hilb ert spacesthat we will consider in
Section 7. These Hilb ert spacesare de�ned thanks to
an operator K .

K a linear symmetric positive-de�nite operator from
A to L 2, whereA is either X 0 or L 2 (we recall that X 0

is de�ned by (12)). In the casewhen A = X 0, then we
extend K to the whole L 2 by setting K (x) = + 1 if
x 2 L 2nX 0. Notice that with theseassumptions,then
we can de�ne K � 1 on I mK = f z 2 L 2 such that 9x 2
A with z = K (x)g.

If f and g are in X 0, then let us de�ne:

hf ; gi H = hf ; K gi L 2 (25)

This de�nes a inner product on X 0 = f x 2
X =

P
i;j x i;j = 0g.

We note that since we only deal here with the dis-
crete case,all the spaceswe consider are of �nite di-
mensionand are therefore Euclidean spaces.

Examples:

1. When K = I d, then H = L 2.

2. When K = � �, then H = H = f f 2 L 2; r f 2
L 2g.

3. When K = � � � 1, then H = H � 1 = (H 1
0 ) � (see

[1] for the de�nition of H � 1).

Remark: In Section 7, we will assumeA = L 2, i.e.
that K is positive-de�nite on L 2.
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3.5 TV-Hilb ert regularization mo del

The model studied in [8] is the following:

inf
u

�
J (u) +

�
2

kf � uk2
H

�
(26)

In [8], the authors give somemathematical results
about this problem. In particular, they show the ex-
istence and uniquenessof a solution for (26). They
alsoproposea modi�cation of Chambolles'sprojection
algorithm [12] to compute the solution of problem (26):

p0 = 0 (27)

and

pn +1
i;j =

pn
i;j + � (r (K � 1div (pn ) � �f )) i;j

1 + � j(r (K � 1div (pn ) � �f )) i;j j
(28)

Theorem 1 If � � 1
8kK � 1 kL 2

, then 1
� K � 1div pn ! v̂

as n ! 1 , and f � 1
� K � 1div pn ! û as n ! 1 , where

û is the solution of problem(26) and v̂ = f � û.

In [8], the authors apply their framework to solve
the OSV model [42] (i.e. when H = H � 1), and they
study the problem of image denoising. In this paper,
we intend to use (26) to carry out frequency and di-
rectional adaptive image decomposition. Indeed, by
choosing the kernel K in a suitable way, we can em-
phasizethe weight of somefrequenciesand directions.
We will addressthis problem in Section 7.

Now that we have intro duced the notations and pre-
sented someof the previousworks, wepresent a general
criterion basedon correlation to select the regulariza-
tion parameter in the di�eren t modelsthat we will con-
sider.

4 The Correlation Tool for Se-
lecting the Balance between
the Energies

In this section, we propose a method to select the
weight parameter for a proper decomposition of an
image. The authors are not aware of any suggested
method on how to choosethe value of � for decompo-
sition. Therefore we �rst discussshortly the solutions
at present that are used for denoisingand explain the
di�culties that arise in decomposition.

For the denoising problem, one often assumesthat
the variance of the noise � 2 is known a-priori or can
be well estimated from the image. As the v part in

the denoisingcaseshould contain mostly noise,a nat-
ural condition is to select � such that the variance of
v is equal to that of the noise, that is var(v) = � 2.
Such a method wasusedin [44] in the constrainedROF
model, and this principle datesback to Morozov [38] in
regularization theory. A modern approach, suggested
recently in [27], is to try to optimize a criterion, such
as the Signal-to-NoiseRatio (SNR). It was shown that
this method can achieve better results than the con-
strained formulation, in terms of SNR and visually, for
a wide classof images. This method also relies on an
estimation of the noisevariance.

Both of the above approachescannot be applied for
�nding � in decomposition. Here we do not know of a
good way to estimate the texture variance, also there
is no performancecriterion like the SNR, which can be
optimized. Therefore we should resort to a di�eren t
approach.

Our approach follows the work of Mrazek-Navara
[39], used for �nding the stopping time for denoising
with nonlinear di�usions. The method relies on a cor-
relation criterion and assumesno knowledge of noise
variance. As shown in [27], its performanceis inferior
to the SNR-basedmethod of [27] and to an analogue
of the variance condition for di�usions. For decompo-
sition, however, the approach of [39], adopted for the
variational framework, may be a good basic way for
the selectionof � .

In this paper the generaldecomposition framework
is of the form:

EStr uctur e(u) + �E T extur e(v); f = u + v; (29)

where u and v minimize the above total energy. Our
goal is to �nd the right balance between the energy
terms, or the value of � , which producesa meaningful
structure-texture decomposition.

Let us de�ne �rst the (empirical) notions of mean,
varianceand covariancein the discretesetting of N � N
pixels image. The mean is

�q :=
1

N 2

X

1� i;j � N

qi;j ;

the variance is

V (q) :=
1

N 2

X

1� i;j � N

(qi;j � �q)2;

and the covariance is

cov(q; r ) :=
1

N 2

X

1� i;j � N

(qi;j � �q)( r i;j � �r ):

We would like to have a measurethat de�nes orthog-
onality between two signals and is not biased by the
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magnitude (or variance) of the signals. A standard
measurein statistics is the correlation, which is the co-
variancenormalized by the standard deviations of each
signal:

corr(q; r ) :=
cov(q; r )

p
V (q)V (r )

:

By the Cauchy-Schwarz inequality it is not hard
to see that cov(q; r ) �

p
V (q)V (r ) and therefore

j corr(q; r )j � 1. The upper bound 1 (completely cor-
related) is reached for signals which are the same,up
to an additiv e constant and up to a positive multi-
plicativ e constant. The lower bound � 1 (completely
anti-correlated) is reached for similar signalsbut with
a negative multiplicativ e constant relation. When the
correlation is 0 we refer to the two signals as not cor-
related. This is a necessarycondition (but not a su�-
cient one) for statistical independence.It often implies
that the signalscan be viewed asproducedby di�eren t
\generators" or models.

To guide the parameter selectionof a decomposition
we usethe following assumption:

Assumption: The texture and the structure compo-
nents of an image are not correlated.

This assumption can be relaxed by stating that the
correlation of the components is very low. Let us de-
�ne the pair (u� ; v� ) as the one minimizing (29) for a
speci�c � . As proved in [37] for the TV � L 2 model
(and in [24] for any convex structure energyterm with
L 2), we have cov(u� ; v� ) � 0 for any non-negative �
and therefore

0 � corr(u� ; v� ) � 1; 8� � 0: (30)

This meansthat one should not worry about negative
correlation values. Note that positive correlation is
guaranteed in the TV � L 2 case. As we will later see,
in the TV � L 1 casewe may have negative correlations,
and should therefore be more careful.

Following the above assumption and the fact that
the correlation is non-negative, to �nd the right param-
eter � , we are led to consider the following problem:

� � = argmin� (corr(u� ; v� )) : (31)

In practice, one generatesa scale-spaceusing the pa-
rameter � (in our formulation, smaller � meansmore
smoothing of u) and selectsthe parameter � � as the
�rst local minimum of the correlation function between
the structural part u and the oscillating part v. Seealso
[24, 25, 28, 26, 39, 8] for related approaches.

This selectionmethod canbevery e�ectiv e in simple
caseswith very clear distinction between texture and
structure. In these casescorr(u; v) behaves smoothly,

reaches a minimum approximately at the point where
the texture is completely smoothed out from u, and
then increases,as more of the structure gets into the v
part. SeeFigures 1 to 5 in the next section for some
numerical examples. The graphs of corr(u; v) in the
TV � L 2 casebehavequite asexpected,and the selected
parameter lead to a good decomposition. We will make
more comments about the numerical results in the next
section.

For morecomplicated images,there are textures and
structures of di�eren t scalesand the distinction be-
tween them is not obvious. In terms of correlation,
there is no more a single minimum and the function
may oscillate.

As a �rst approximation of a decomposition with a
single scalar parameter, we suggestto choose � after
the �rst local minimum of the correlation is reached.
In somecases,a sharp changein the correlation is also
a good indicator: after the correlation sharply drops
or before a sharp rise. At this stage we cannot claim
a fully automatic mechanism for the parameter selec-
tion that always works, but rather a highly relevant
measurement that should be taken into consideration
in future development of automatic decompositions.

5 TV � L2 and TV � G Regular-
izations

In this section, we �rst show how we can use the cor-
relation tool to select the parameter in the TV � L 2

regularization model. We then show how we can ex-
tend this method to the TV � G model.

5.1 Parameter selection for the TV � L 2

mo del

Let us �rst recall here the TV � L 2 problem [44]:

inf
u2 X

�
J (u) +

1
2�

kf � uk2
L 2

�
(32)

We denote by (u� ; v� ) the solution of (32). This
regularization model hasencountered a large successin
imagedenoising. Oneof the main reasonof this success
is that the total variation regularization preserve the
edgesof the restored image. It is straightforward to
apply the correlation criterion of Section 4 to select
the parameter in the TV � L 2 model.
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5.2 Parameter selection for the TV � G
mo del

We focus here on the A2B C model [5], which is a very
good approximation. We show how we can usethe cor-
relation criterion for the ROF model [44] to carry out
automatic imagedecomposition with the A2B C model.
A �rst approach would be to consider the correlation
betweenu and v computed with the A2B C algorithm.
Wehaverejectedthis approach becauseof computation
time: indeed, to compute an accurate solution with
the A2B C algorithm is about ten times slower than
the classicalTV � L 2 minimization approach. We have
decided instead to use the mathematical connections
between the ROF model and the A2B C algorithm to
select the parameter in a much faster way.

To this end, we �rst needto give somemathematical
properties of the A2B C model, (17), which is a way to
solve Meyer's problem. As we have said in Section 3,
the parameter � in (17) is set to a �xed small value
(� = 1 in our numerical examples). The di�cult y is
to tune the � parameter. We intend here to propose
a method to compute automatically the parameter � .
The idea is to use the method proposedfor the ROF
model in Section 5.1 (which is a straightforward appli-
cation of the general method presented in Section 4).
By choosing � as the �rst minimum of the function
� 7! corr(u� ; v� ) (where u� is the solution of the ROF
problem (32) and v� = f � u� ), we have an automatic
algorithm to compute the right parameter � for (32).
All we needto do then is to relate the parameter � in
(32) to � in the A2B C model (17).

5.2.1 Relating � to �

In [37], Meyer intro duced the G norm to analyze the
mathematical propertiesof the ROF model. As noticed
in [48], one of the main results of [37] happensto be a
straightforward corollary of Proposition 2:

Corollary 1 Let us denoteby u� the solution of (32),
by v� = f � u� , and by �f the mean of f .

� If kf � �f kG � � , then kv� kG = kf � u� kG = � .

� If kf � �f kG � � , then u� = �f .

As we can see, the behavior of the ROF model is
closely related to the G norm of the initial data f .

Lemma 1 The parameter � computed in Section 4 is
such that kv� kG = � .

Proof. Let us denote � max = kf � �f kG . It is easyto
show that if � 2 (0; � max ), then corr(u� ; v� ) remains
bounded. From Corollary 1, we get that if � � � max ,

then u� = �f and v� = f � �f . Therefore the �rst local
minimum of the correlation is such that � � � max . We
then concludethanks to Corollary 1. �

Thanks to Section 5.1, we know how to compute
automatically the decomposition of an original image
with the ROF model. And thanks to Lemma 1, we
also know the G norm of the v component we get with
the ROF model, i.e. kvkG = � . As we have explained
in the intro duction, Meyer's idea is to replace the L 2

norm in the ROF model (32) by the G norm. The
G norm is better suited to capture oscillating patterns,
such astextures, than the L 2 norm (as it is numerically
shown in [7]). Therefore,a possibleimprovement of the
algorithm of Section5.1 is to compute Meyer's decom-
position under the constraint that kvkG = � . Sincethe
G norm is a better choice to capture the texture part
of an image [37, 3, 7], this would indeed givesa better
decomposition result than the ROF model.

This naturally leadsus to considerthe A2B C model
(17) with

� = � (33)

Indeed, with such a parameter, the v component com-
puted with the A2B C model is such that kvkG � � .
And we prove in the following subsectionthat in fact
we have kvkG = � .

5.2.2 Some mathematical results about the
A2B C mo del

The functional to minimize in (17) is the following:

F (u; v) = J (u) + J �
�

v
�

�
+

1
2�

kf � u � vk2
L 2 (34)

The following Lemma is proved in [5]:

Lemma 2 There exists a unique couple (û; v̂) 2 X �
G� minimizing F on X � X .

From now on, let usdenoteby (û; v̂) the uniquesolution
of the A2B C problem (17). The next result will help to
seethe connectionbetweenthe parameter � in the ROF
model and the parameter � in the A2B C algorithm:

Prop osition 3 The following alternative holds:

� If kf � �f kG � � , then v̂ = f � �f .

� If kf � �f kG � � , then kv̂kG = � .

Proof. Let us �rst remark that F (u; v) � 0 for all
(u; v) in X � X . Moreover, if we assumethat kf �
�f kG � � , we have F ( �f ; f � �f ) = 0, which meansthat
( �f ; f � �f ) is a minimizer of F . We then get the �rst
point of Proposition 3 thanks to the uniquenessresult
of Lemma 2.
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We now turn our attention to the secondpoint of
Proposition 3. We thereforeassumethat kf � �f kG � � .
Let usconsiderthe following function de�ned on X � X :

H (u; v) = J (u) +
1

2�
kf � u � vk2

L 2 (35)

H is a proper convex continuous function de�ned on
X � X . There existstherefore(~u; ~v) in X � G� such that
(~u; ~v) is a minimizer of H on X � G� . Let us remark
that H ( �f ; f � �f ) = 0. We then consider the function
g : t 7! kt~v+ (1� t)( f � �f )kG . g is a continuousfunction
on [0; 1]. Moreover, we have g(0) = kf � �f kG � � and
g(1) = k~vkG � � . There exists thus �t in [0; 1] such
that g(�t) = k�t~v + (1 � �t)( f � �f )kG = � . Let us denote
by �v = �t~v + (1 � �t)( f � �f ) and �u = �t ~u + (1 � �t) �f .
Since H is a convex function, we get that H ( �u; �v) �
�tH (~u; ~v) + (1 � �t)H ( �f ; f � �f ) � H (~u; ~v). We therefore
deducethat ( �u; �v) is a minimizer of H on X � G� . Since
H and F coincide on X � G� , we get that ( �u; �v) is a
minimizer of F on X � X . From Lemma 2, we then
conclude that ( �u; �v) = (û; v̂) the unique minimizer of
F on X � X , and kv̂kG = k�vkG = � . �

From Lemma 1 and Corollary 1, we know that
kf � �f kG � � . And from (33), we have � = � . From
Proposition 3, we thus deduce that v̂, the v compo-
nent we get with the A2B C algorithm, is such that
kv̂kG = � . This new v component has therefore the
sameG norm as the oneof the v component (v� ) com-
puted with the ROF model in Section 5.1. But since
the G norm is better at capturing the oscillating pat-
terns then the L 2 norm, this newdecomposition is more
accurate than the previous one.

This analysis is con�rmed by the numerical results
we get in the next subsection.

5.3 Numerical results

Let us �rst summarizethe method we proposeto com-
pute the decomposition into geometryand texture with
the A2B C model.

Automatic algorithm for the A2B C mo del:

1. Set � = 1 in (17).

2. Compute � as the �rst minimum of the function
� 7! corr(u� ; v� ) (where u� is the solution of the
ROF problem (32) and v� = f � u� ).

3. Set � = � in (17).

4. Compute the decomposition with the algorithm
(21)-(22)-(23).

We show some numerical results in Figures 1-5 of
TV � L 2 and TV � G decompositions. As expected, the
results obtained with the A2B C algorithm are slightly
better than the ones obtained with the ROF model.
For instance,on Figure 1, onecancheck that the square
is lesseroded with Meyer's G norm (and in this case,
the squareis a geometricalfeatureand shouldremain in
the u component). On Figure 5, oneseesthat the legof
the table appearsmuch more in the v component with
the ROF model than with the A2B C algorithm. In
general, the ROF model already doesa good job, and
the A2B C algorithm seemsto bring a small improve-
ment. Notice that we do not claim that we compute
the best possibleresults (see[50, 42, 5, 7] for instance
where the parameters are tuned manually): what we
claim is that our parameter selectionmethod leads to
a visually good result (for both models).

Detailed explanation on the correlation graph:
In these experiments the correlation corr(u; v) of
50 values of � is plotted. We initially set � 0 = 1
and reduced each time the value by a factor of 0:9
such that � n +1 = 0:9� n . To solve the minimization
problem for � n +1 we initialized with the solution
obtained for � n , and therefore the convergence is
quite fast. Also note that in practice one needsnot
compute the whole graph and can stop when the
�rst local minimum is reached. One may also use
courser � resolutions to save some computational
e�orts. Note that the correlation graph �nds well
the right splitting parameter in Figs. 1,2 and even
in the more complex Barbara image, Figs. 3-5. In
these casesa fully automatic decomposition is possi-
ble. In all the correlation graphs the splitting point
chosenby our automatic algorithm is marked with \x".

Now that we have intro duceda method to automat-
ically compute the � parameter in (17), that is to au-
tomatically compute Meyer's decomposition, we turn
our attention to another interesting, more geometric,
decomposition model.

6 TV-L1 Regularization

Let us �rst recall the model studied in [40]:

inf
u

f J (u) + � kf � ukL 1 g (36)

9



Original image corr( u; v)
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Figure 1: A simple example

6.1 A fast algorithm for TV-L 1 regular-
ization

In this section, we intro duce a new fast and e�cien t
algorithm to solve the TV � L 1 minimization problem
(5). We carry out the complete mathematical analysis
of this new algorithm. We can then adapt the cor-
relation method for parameter tuning to this kind of
regularization.

As we have done previously for the ROF model, we
want to derive an automatic algorithm to compute the
parameter � automatically. Our idea is to usethe cor-
relation assumption as in Section 4. To this end, we
�rst needto proposea fast algorithm to minimize (36).
Indeed, the algorithm usedfor instancein [15] is a very
slow algorithm: the authors �rst regularize the func-
tional by consideringthe approximated problem:

inf
u

� Z q
jr uj2 + � 2

1 + �
Z q

(f � u)2 + � 2
2

�
(37)

They compute the solution of this newproblem by solv-
ing the associated Euler-Lagrangeequation.

Original image corr( u; v)

0 10 20 30 40 50
0.1

0.15

0.2

Iterations

C
or

r(
u,

v)

uR O F vR O F

uA 2 B C vA 2 B C

Figure 2: A synthetic image

In [40], the author solvesthe problem:

inf
u

� Z p
jr uj2 + � 2 + � kf � ukL 1

�
(38)

The author proposesa relaxation algorithm to compute
the solution, but this is also a slow algorithm. Notice
that in this casethere may beseveral possiblesolutions.

We mention alsothe very recent work [51] wherethe
authors minimize (38), for � = 0, with an algorithm
basedon secondorder coneprogramming.

6.1.1 A new functional

We remind the reader that in this paper we only con-
sider the discrete case.

We proposehere another possible regularization of
(36). We consider the functional:

inf
u;v

�
J (u) +

1
2�

kf � u � vk2
L 2 + � kvkL 1

�
(39)

The parameter � is small so that we almost have
f = u + v.
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Figure 3: Barbara image and TV � L 2 correlation
graph.

uR O F

uA 2 B C

Figure 4: u component of TV � L 2 and TV � G decom-
positions of the Barbara image (the TV � G decompo-
sition is approximated with the A2B C algorithm)

Prop osition 4 � being a positive parameter, the so-

vR O F

vA 2 B C

Figure 5: v component of TV � L 2 and TV � G decom-
positions of the Barbara image (the TV � G decompo-
sition is approximated with the A2B C algorithm).

lution v̂ of the problem

inf
v

�
1

2�
kg � vk2

L 2 + kvkL 1

�
(40)

is given by:

vi;j =

8
<

:

gi;j � � if gi;j � �
0 if jgi;j j � �
gi;j + � if gi;j � � �

(41)

We will write v = ST(g; � ), i.e. v is the Soft Thresh-
olding of g with level of threshold � .

Proof. The proof is the sameas the oneproposedin
[14] (page 323) in the caseof Wavelet Soft Threshold-
ing. It is just a simple 1D minimization problem, since
all the equationsare independent, and the computation
is straightforward. �

Let us now look at the minimization of (39). Since
the functional is convex, a natural way to compute the
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solution is to minimize with respect to each of the vari-
ablesseparately, and to iterate until convergenceas in
the A2B C model for instance. Seealso [16, 17] for a
general approach of such minimization problems. We
therefore consider the two following problems:

� v being �xed, we search for u as a solution of:

inf
u

�
J (u) +

1
2�

kf � u � vk2
L 2

�
(42)

� u being �xed, we search for v as a solution of:

inf
v

1
2�

kf � u � vk2
L 2 + � kvkL 1 (43)

From Proposition 2, we know that the solution of
(42) is given by: û = f � v � PG � (f � v). And from
Proposition 4, the solution of (43) is given by: v̂ =
ST(f � u; � � ).

It is possibleto show asin [5] (for the A2B C model)
that iterating thesetwo minimizations is a way to com-
pute the solution of problem (39). The main advantage
of this new algorithm is that instead of the two regu-
larization parameters � 1 and � 2 used in [15], here we
only have one regularization parameter � . Moreover,
this new algorithm seemsto be faster.

6.1.2 A thresholding algorithm

To increase the speed of the previous algorithm, we
proposea slight modi�cation of problem (39). We con-
sider the new functional:

inf
u;v

�
kuk _B 1

1; 1
+

1
2�

kf � u � vk2
L 2 + � kvkL 1

�
(44)

where _B 1
1;1 is the usual homogeneousBesov space[37,

14, 7].
Although we considerthe discretecase,we give here

the de�nition of _B 1
1;1 in the continuouscasefor the sake

of clarit y.

De�nition 3 Let  j ;k an orthonormal base composed
of smooth and compactly supported wavelets. _B 1

1;1 is a
subspace of L 2(R2), and a function f belongsto _B 1

1;1 if
and only if:

P
j 2 Z

P
k2 Z2 jcj ;k j < + 1 , where cj ;k are

the waveletcoe�cients of f .

In this paper, since we want to approximate J (u) by
kuk _B 1

1; 1
, we only considerthe caseof the Haar wavelet.

It is proved in [47] that in 1D, total variation minimiza-
tion is equivalent to wavelet soft thresholding (in the
caseof the Haar wavelet with one level of decomposi-
tion). However, the two regularization spaces(B V and

_B 1
1;1) are di�eren t. In particular, characteristic func-

tions of setswith �nite perimeter belongto B V but are
not in _B 1

1;1. This is the reasonwhy it can be expected
that the edgesof the original image f are better put
in the geometrical component u with model (39) than
with (44).

Let us now look at the minimization of (44). We
adopt the samestrategy as for solving (39), that is we
minimize with respect to each of the variables sepa-
rately. We therefore consider the two following prob-
lems:

� v being �xed, we search for u as a solution of:

inf
u

�
kuk _B 1

1; 1
+

1
2�

kf � u � vk2
L 2

�
(45)

� u being �xed, we search for v as a solution of:

inf
v

1
2�

kf � u � vk2
L 2 + � kvkL 1 (46)

From [14], we know that the solution of (45) is
given by: û = W ST(f � v; � ), where W ST(f � v; � )
stands for the Wavelet Soft Thresholding of f � v with
threshold � [37, 7]. And from Proposition 4, the so-
lution of (46) is given by: v̂ = ST(f � u; � � ), where
ST(f � u; � � ) standsfor the Soft Thresholding of f � u
with threshold � �

The advantage for having replacedJ (u) by kuk _B 1
1; 1

is that now, to minimize the new functional (44), we
just needto iterate thresholding schemes.This is why
the following algorithm is a very fast one (much faster
than the one usedin [15] for instance).

Algorithm:

1. Initialization:

u0 = v0 = 0 (47)

2. Iterations:

vn +1 = ST(f � un ; � � ) (48)

un +1 = W ST(f � vn +1 ; � ) (49)

3. Stopping test: we stop if

max(jun +1 � un j; jvn +1 � vn j) � � (50)
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6.1.3 Mathematical analysis

We now show some mathematical results about our
new model, and we prove the convergenceof the algo-
rithm. We will usethe notation:

M (u; v) = kuk _B 1
1; 1

+
1

2�
kf � u � vk2

L 2 + � kvkL 1 (51)

Theorem 2 Problem (44) admits a unique solution
(~u; ~v) in (X � X ).

Proof. SeeAppendix A.1. �
The next result is a consequenceof Theorem 2:

Prop osition 5 The sequence (un ; vn ) built in (47)-
(48)-(49) convergesto the uniqueminimizer of problem
(44).

Proof. SeeAppendix A.2. �
The next result shows that when � goes to 0, then

the solution of problem (44) goes to a solution of the
problem:

inf
u

�
kuk _B 1

1; 1
+ � kf � ukL 1

�
(52)

Prop osition 6 Let us �x � > 0 in (52). We consider
� n a decreasing sequence in R�

+ such that � n ! 0. Let
us denote by (u� n ; v� n ) the solution of problem (44).
Then the sequence (u� n ; v� n ) is bounded, and any clus-
ter point is of the form (u0; f � u0) with u0 solution of
problem(52).

Proof. SeeAppendix A.2.
�

Remark: It is easy to show that problem (52) has
a solution (the functional is convex and coercive). In
the casewhen problem (52) has a unique solution u0,
then the sequence(u� n ; v� n ) convergesto (u0; f � u0).

6.2 Numerical results

A main di�erence with the classicalTV � L 2 approach
[44] is that with the TV � L 1 model, the v compo-
nent is not constrained to be of zero mean (numerical
experiments show that indeed the mean value changes
for di�eren t valuesof � and is not necessarilycloseto
zero).

All the numerical results shown on Figures 6 to 8
have beenobtained with the algorithm (47)-(48)-(49),
the parameter � being computed automatically. The
parameter � is set to 1 in all our experiments. The
maximal absolute values of the computed residuals
f � u � v are always smaller than 1 (and the values
of the images rank from 0 to 255). This means that

the residual energy term, neededmainly for numerical
and theoretical reasons(uniqueness), does not a�ect
much the model and the decomposition results.

Remark about parameter selection: To choose
the parameter � , we consider the correlation graph as
in Section 4. The di�erence is that in this casewe are
not interested in a local minimum of the graph, but
in a large variation. This is related to the non-smooth
behavior of TV � L 1 regularization, as pointed out in
[15]. We should remark that the correlation can attain
alsonegative values,unlike the TV � L 2 case.If one is
interestedin decorrelation betweenu and v, oneshould
seekvaluescloseto zero and not minimal ones.

Figure 6 showsan exampleof removing salt and pep-
per noise. This relates decomposition to the denoising
problem, where in this casethe structural part is the
clean imageand the noisecan be regardedasa form of
texture. It has beenshown in [40] that the L 1 term is
particularly well suited to remove such a noise. This is
due to the closeconnectionsbetweenthe L 1 norm and
the median operator. In this simple case,the restora-
tion is almost perfect. In Figure 6, secondrow, the
decomposition at the 6th iteration is shown, right after
the signi�cant correlation change. Most of the noise
is already �ltered, but it is better to assumea steadier
correlation state, such asat the 10th iteration, depicted
in the bottom row. In Figures 7 a decomposition of
non-geometrictexture is shown. The result is relatively
good, though somewhatdi�eren t than the decomposi-
tion of the sameimage by TV � L 2 and TV � G (see
Fig. 2). The structural part is lesseroded and edges
are strong. However, the rounded top left part is not
recovered well, and tends to be blocky.

In the caseof Figure 8, the decomposition is exact
(in this case,the maximum of the absoluteof the resid-
ual f � u � v is equal to 0.001),and the result is perfect
(it is clearly better than the results of Figure 1). The
L 1 norm seemsto be particularly well suited to capture
non smooth textures. Notice however that this image
is particularly well suited for the Haar wavelet.

We present, in Figure 9, the decomposition results
obtained with the algorithm of [51], which exactly
solves (36) as a second-ordercone program. We see
that both algorithms give similar results for salt and
peper noise removal as well as for structure/texture
separation.

In this section, we have mainly considered non
smooth textures. On the contrary , we will consider
smooth textures in the next section.
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Figure 6: Removing salt and pepper noise (algorithm
(47)-(48)-(49)).

7 TV-Gab or Regularization

In this section, we design a family of Hilb ert spaces
basedon Gabor wavelets [36]. Gabor functions, pro-
posed by [23], have been found to be very useful in
texture processingapplications, e.g. [21, 31], and to
have closerelations with the human-visual system[43].
The Gabor wavelets were also de�ned by Zibulski and
Zeevi in the context of Multiwindo w Gabor frames[52].
We intro ducea new TV-Gabor model in which onecan
take advantage of a-priori knowledge of both the fre-
quencyand the direction of the textures of interest. We
show how the correlation criterion can be usedalso in
this caseto select the regularization parameter.

7.1 In tro duction

Let us �rst recall the model studied in [8]:

inf
u

�
J (u) +

�
2

kf � uk2
H

�
(53)
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Figure 7: Approximation of the TV-L1 decomposition
of non-geometric texture (algorithm (47)-(48)-(49))

.

In [8], the authors apply their framework to solve
the OSV model [42] (i.e. when H = H � 1), and they
study the problem of image denoising. Here, we in-
tend to use(53) to carry out frequencyand directional
adaptive image decomposition. Indeed, by choosing
the kernel K in a suitable way, we can emphasizethe
weight of some frequenciesand some directions. No-
tice that, even though K is a linear �lter, solving (53)
doesnot amount to linear �ltering due to the non linear
term J (u). It is well known in image processingthat
linear �ltering cannot preserve edgesin an image, but
thanks to the total variation term (53) doesnot su�er
from this drawback. To construct the \texture-norm"
we useGabor wavelets.

The projection algorithm proposed in [8] to solve
(53) is given by (27)-(28) (in Section 3). In fact, one
needsto use K � 1 and not K to solve (53) with this
algorithm. It is therefore easier to construct K � 1 (so
that K has some good properties, but without com-
puting K explicitly). K needsto be a non negative
symmetric linear operator. Here we even assumethat
K is positive-de�nite. This implies that K � 1 is also a
symmetric positive linear operator.

Remark on a possible alternativ e construction:
K being a positive-de�nite symmetric operator, there
exists a unique positive-de�nite symmetric linear oper-
ator, denoted by

p
K , such that

p
K

2
= K . In par-

ticular, we have kf � uk2
H = hf � u; K (f � u)i L 2 =

14



Original image Covariance graph

0 10 20 30 40
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

C
or

r(
u,

v)

u v

Figure 8: Approximation of the TV-L1 decomposi-
tion of non-geometrictexture (with non-invariant Haar
wavelet soft-thresholding)) with algorithm (47)-(48)-
(49))

k
p

K (f � u)k2
L 2 . We can then rewrite problem (53) as:

inf
u

�
J (u) +

�
2

k
p

K (f � u)k2
L 2

�
(54)

In fact, instead of K � 1, it also may be interesting to
construct

p
K

� 1
. In what follows, we only focus on

K � 1, but our construction can be applied to
p

K
� 1

as
well.

7.2 Texture-sp eci�c kernels

In [8] it wasshown that the di�erence betweenthe OSV
model [42] and ROF model [44] could be understood
as frequency weighting of the L 2 norm for the H � 1

�delit y term of OSV. The frequency weighting of the
squarenorm is proportional to 1

! 2 , which corresponds
to the � � 1 operator in the frequencydomain, seeFig.
10 . The low frequenciesare therefore highly penalized
in the �delit y term, considerably reducing the eroding
e�ect compared with ROF. This has proved to be an
e�cien t tool for image denoising [42, 7]. In [8] it was
suggestedthat other linear kernels could be used for
adaptive frequencyalgorithms.

In this section we addressthe problem of designing
a family of kernelsfor imagedecomposition. The oper-
ator K is a convolution operator, therefore K � 1 in the
Fourier domain is simply its inverse. Moreover, K � 1

u v

u v

Figure 9: TV-L1 decomposition with the algorithm of
[51]. First raw: restoration of the image of Figure 6;
secondraw: decomposition of the image of Figure 7.

is also a convolution operator. We denote by H the
associated �lter, and in the rest of the sectionwe focus
on the designingof this �lter.

In the u + v decomposition model K penalizesfre-
quenciesthat are not consideredas part of the texture
component. Therefore K � 1 could be interpreted as
the frequencieswhich should mainly be included in the
texture part. A generaland simple characterization of
textures could be done using Gabor functions. These
functions would typically describe the type of textures
we would like to extract. Naturally , they apply asgood
candidatesfor K � 1. As already mentioned, the inverse
kernel is actually the one neededin the numerical im-
plementation. Thus our proposeddesignstrategy is to
use Gabor functions for constructing the inverse ker-
nel. Notice that other design methods could be used.
We usethe function:

g(x) = cos(2� � x)
1

p
2� � 2

exp
�

� x2

2� 2

�
(55)

This gives the following valuesfor the �lter H :

hk = cos(2� � k)
1

p
2� � 2

exp
�

� k2

2� 2

�
(56)

� 2 (0; 0:5] is the frequency of the texture. � is
related to the width of the band-passaround this fre-
quency. A small � in the spatial domain meansa wide
band-passin the frequencydomain. If we know the fre-
quency of the texture we want to get, it is then inter-
esting to usea large � (which meansa small band-pass
in the frequencydomain). Note that somerestrictions
apply for choosing � , seeLemma 4. Actually , � cannot
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Figure 10: The kernel K and its inverseK � 1 for the
OSV, ROF and the proposedTV-Gab or model.

be very large, which may be interpreted as a from of
an uncertainty principle.

(55) is a onedimension�lter. There are many meth-
ods to then design a 2D �lter. One possibility is to
consider the product g(x)g(y). We will analyze this
possibility later. Another choice to construct our �lter
H is to userotationally invariant Gabor wavelets as:

g(x; y) = cos
�

2� �
p

x2 + y2
� 1

p
2� � 2

exp
�

� x2 � y2

2� 2

�

(57)
Such a choice will give better numerical results when
the texture is known to be rotationally invariant.

Directions: Many textures are not rotationally in-
variant. It is therefore interesting to add this direction
information in our �lter H . To do so, we just need to
usea 1D �lter as (55), and then rotate it so that it �ts
the direction of the texture. A possible improvement
is to usean ellipse (see[21] for instance).

7.3 1D and 2D �lters

In this subsection,we proposea way to construct a 2D
kernel K � 1 (in fact of the associated �lter H ) out of a

1D �lter:

H x =
�

h d � 1
2

; : : : ; h1; h0; h1; : : : ; h d � 1
2

�
(58)

where d is the dimension of the �lter H x , and hk is
given by (56). SinceK � 1 is symmetric, we also choose
H x to be symmetric. We then set H = H x � H y ,
where H stands for the �lter associated to K � 1, � de-
notes convolution, and H y = H T

x , where T stands for
transpose.

Remark: In all this section, for the convolution, we
considerperiodic boundary conditions.

7.4 Eigen values

In this subsection,we compute the eigenvaluesof K � 1,
and give a su�cien t condition sothat they are positive.

The �lter H associated with K � 1 shouldde�ne a lin-
ear symmetric positive operator. By construction, H
de�nes a linear symmetric operator. But aswe will see,
we have to imposesomeconditions on the valueshk of
the �lter so that it is positive. We recall that a linear
symmetric operator is positive if and only of its eigen-
valuesare positive (this can even be taken as a de�ni-
tion). To get the positivit y for H , we are therefore lead
to compute its associated eigenvalues (the onesof the
associated linear mapping). Sincewe have constructed
H out of two 1-D �lters, we are in fact interested in
the eigenvalues of these �lters (since they will give us
the eigenvaluesof K � 1). SinceK � 1 is positive, we also
imposethe constraint that H x is positive.

The �ltering of an image of sizeN � M by H x cor-
responds to a linear mapping from RN M to RN M (this
is the reason why we speak of the eigenvalues of the
�lter H , which are in fact the eigenvaluesof the corre-
sponding linear mapping). Let us denote by Ax (resp
Ay ) the matrix of size (N M )2 associated to H x (resp
H y ). An imageI is a matrix (I i;j ), with 1 � i � N and
1 � j � M . We rewrite it asa 1 Dimensionalvector I k ,
with 1 � k � N M , using I k = I i;j if k = M (i � 1) + j .

SinceAx and Ay have a very particular form (they
are both circulant matrices), we can compute the exact
values of their eigenvalues, as stated by the following
result:

Prop osition 7 The eigenvaluesof Ax are:
8
<

:
h0 + 2

d � 1
2X

k=1

hk cos
�

2� qk
M

�
; 0 � q �

M
2

9
=

;
(59)

and the onesof Ay are:
8
<

:
h0 + 2

d � 1
2X

k=1

hk cos
�

2� qk
N

�
; 0 � q �

N
2

9
=

;
(60)
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Proof. The proof is just a consequenceof the fact that
Ax and Ay arecirculant matrix. Werefer the interested
reader to [9] for the details. �

Now that we have computed the eigenvalues of Ax

and Ay , we can get the onesof K � 1. SinceAx and Ay

commute, the eigenvaluesof K � 1 are contained in the
set:

�
P1(! p

M )P2(! q
N ); 0 � q �

M
2

; 0 � q �
N
2

�
(61)

Sincethe eigenvaluesof Ax and Ay are positive, so are
the onesof K � 1. If we denote by 
 x

min (resp 
 y
min ) the

smallest eigenvalue of Ax (resp Ay ) and by 
 x
max (resp


 y
max ) the largest eigenvalue of Ax (resp Ay ), then, if 


is an eigenvalue of K � 1, we have:


 x
min 
 y

min � 
 � 
 x
max 
 y

max (62)

From this last point, we deducein particular that

kK � 1kL 2 � 
 x
max 
 y

max (63)

Lemma 3 If we choose � � 1
8
 x

max 
 y
max

in algorithm
(28), then the algorithm converges.

Proof. This a direct consequenceof (63) and of The-
orem 1 (in Section 3). �

Unfortunately, the eigenvalues of K � 1 can be neg-
ative. The next lemma gives a su�cien t condition for
the eigenvaluesof K � 1 to be positive.

Lemma 4 If

h0 � 2

d � 1
2X

k=1

jhk j (64)

then the eigenvaluesof Ax , Ay and K � 1 are positive.

Proof. This is a consequenceof Proposition 7 and
of (61). �

Notice that (64) is only a su�cien t condition. The
eigenvaluescan still be positive in lessrestrictiv e cases,
and can be computed explicitly for the designedkernel
(seeProposition 7).

By usingLemma4 and the explicit valuesof hk given
by (56), we can derive more explicit su�cien t condi-
tions about the positivit y of the eigenvalues of K � 1.
In particular, we show that if � is small enough, then
the eigenvalues of H are positive, seemore details in
[9].

7.5 Numerical results

We show somenumerical results obtained with the new
TV-Gabor model on Figures 11 to 16.

In Figure 11, the texture is a periodic signal of fre-
quency 1=� � 0:32. In this casewe use a rotation-
ally symmetric Gabor function of frequency 0:25 and
� = 1 (no directional knowledge is incorporated). As
expected, the decomposition in this caseis very good.
In the next two examples we focus on the abilit y of
the model to have directional selectivity of the textural
part, a main feature that clearly distinguishesthe TV-
Gabor model from the previous ones. In casethe tex-
tural directions are not known beforehand,we suggest
to select them by the dominant peaks in the Fourier
domain in medium and high frequencies.This can give
basic but su�cien t information for designing the ker-
nel (choosing frequency and preferred direction). The
Fourier transforms of the processedimagesare shown
in Figures 14 and 15. In Figures 12 and 13 the original
image is composedof two typesof textures and a syn-
thetic structural part. We would like to extract the pe-
riodic texture in the ellipses,and not the small squares
on the top right. This type of selectivity is quite hard,
but is achieved quite well, as seenin Fig. 12. Edges
of the structural part are kept sharp, and clearly out-
performs any linear kernel that would be designedto
achieve a similar goal. Compared to TV � L 2 (Fig. 13,
bottom) one observes that both textures are mostly
in the v part. Also there is somemore erosion of the
structure (seen in the brighter triangle in the v com-
ponent) and some\left-o vers" of the ellipses-texturein
the u part. The comparisonwas made such that both
v parts of TV-Gabor and TV � L 2 have the sameL 2

norm.
In Figures 15 and 16, we show another example of

directional decomposition of part of a Dollar note im-
age. In this case, we use the directional TV -Gabor
model in the y direction to capture the forehead tex-
tures. For comparison,we also display the result with
the standard TV � L 2 model. As the textures are quite
�ne with low contrast, we show in Fig. 16, bottom, a
contrast enhancedversion of v, by multiplying the v
part by 4. Again here, both v components have the
same L 2 norm. One clearly seesthe high directional
selectivity of the TV-Gabor model on the left, versus
the non-selectivenessof TV � L 2.

8 Conclusion

In this paper, wehavestudied the problem of imagede-
composition. Given an original imagef , we split it into
two components u and v, u containing the geometric
information and v the texture information. Our mod-
eling is focusedon TV regularization approaches: we
minimize a functional with two terms, the �rst one is
basedon the total variation semi-norm and the second
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Figure 11: Decomposition of a simple image by TV-
Gabor.

oneon a di�eren t norm adapted to the texture compo-
nent of the image. We have consideredfour di�eren t
decomposition models: TV � L 2, TV � G, TV � L 1

and TV-Gabor.
An interesting conclusionof this study is a form of

\recip e" we can derive to carry out image decomposi-
tion:

1. If the texture part is known to be very structured,
then the TV � L 1 approach seemsto be the best
choice.

2. In the caseof directional texture or if an estima-
tion of the frequencyof the texture is known, and if
the texture is rather smooth, then the TV-Gabor
model is the more appropriate approach.

3. In a general case,when no a-priori knowledge of
the texture is at hand, we advocate the TV � L 2

approach, or its improvement with the TV � G
regularization.

This provides us with a sort of image decomposition
toolbox for a wide class of synthetic and natural im-
ages.

Apart from the broad perspective and our sugges-
tions wheneach model shouldbeused,the main contri-
butions of our paper are related to the three following
issues:

1. First, we show that the correlation graph between
u and v is an e�cien t tool to selectthe splitting pa-
rameter. We have applied this method to the four

f

T V -Gabor, u

TV- L 2 , u

Figure 12: u component of the decomposition of a syn-
thetic imagewith textures of speci�c frequencyand ori-
entation by TV-Gabor and TV � L 2. The TV-Gabor
can be more selective and reduce the inclusion in v
of undesired textures / small-structures like the small
blocks on the top right. Also erosionof large structures
is reduced(more apparent in the brighter triangle).

models. As far asweknow, this is the �rst attempt
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T V -Gabor, v

TV- L 2 , v

Figure 13: v component of the decomposition of a syn-
thetic imagewith textures of speci�c frequencyand ori-
entation by TV-Gabor (top) and TV � L 2 (bottom).
Seethe caption of Fig. 12.

to tune the decomposition parameter of such mod-
els other than by trial and error (the problem had
beenconsideredbeforeonly in the denoisingcase).

2. Second, we propose new and fast algorithms to
solve the TV-L 1 minimization problem using pro-
jection and thresholding techniques. We have car-
ried out the completemathematical study of these
algorithms, and shown their e�ciency with some
numerical examples.

3. Third, we intro ducea newTV-Gabor model which
leadsus to adaptive frequencyand directional im-
agedecomposition. In the casewhenwehavesome
additional information about the texture, then we
can take advantage of it by incorporating this in-
formation in the functional. Wehavedesignedand
studied the corresponding �lters, and we have il-
lustrated this new approach with numerical exam-

Fourier transform of f corr( u; v)
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Figure 14: Fourier transform and the correlation of
TV-Gabor of the synthetic image in Fig. 12.

ples.

In this paper we presented a way to design sim-
ple texture-speci�c �lters based on Gabor functions.
Other, more sophisticated methods could be incorpo-
rated to this framework, such asonesbasedon wavelets
[45]. In future works we intend to explore theseissues.
Notice that a straightforward extensionof the newTV-
Gabor model to multiple selecteddirections, is to use
the linearit y of the Hilb ert �tting term and simply add
several directional kernels.

A natural generalization for the u + v decomposi-
tion is to consider a multi-scale approach, as done in
[49, 26, 25, 41, 29]. This also relates to the parame-
ter selectionproblem, where better and more accurate
mechanisms could be used instead of the correlation
criterion. A more detailed version of this work, with
somemore theoretical results and proofs can be found
in our report [9].
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Figure 15: Decomposition of a Dollar note image by
directional TV-Gab or in the y direction to capture the
foreheadtextures.

A Pro ofs for the TV � L 1 algo-
rithm

In this appendix, we give the proofs of the Mathemati-
cal results stated in Section6 for the new fast TV � L 1

algorithm.

A.1 Existence and uniqueness of a so-
lution

Wegiveherethe proof of Theorem2 stated in Section6.
We �rst recall the theorem:

Theorem 2 Problem (44) admits a unique solution
(~u; ~v) in (X � X ).

To prove Theorem 2, we will use the following
lemma:

Lemma 5 Let us assumethat f 6= 0 (i.e. that there
exists (i; j ) such that f i;j 6= 0). If g 2 X , then (0; g) is
not a minimizer of problem(44).

Proof.(Lemma 5): By contradiction, let us assume
that there exists g 2 X such that (0; g) is a minimizer
of problem (44), then in particular we have:

M (0; g) = inf
v

�
1

2�
kf � vk2

L 2 + � kvkL 1

�
(65)

u (T V -Gabor) v (T V -Gabor)

u (T V � L 2 ) v (T V � L 2 )

4v (T V -Gabor) 4v (T V � L 2 )

Figure 16: Decomposition of a Dollar note image by
TV-Gab or in the y direction and by TV- L 2.

From Proposition 4, we get that g = ST(f ; � � ). Since
f � 0 (in our case,we even have 0 � f � 255), we
deducethat g � 0.

� Let us �rst assume that there exists (i; j )
such that gi;j > 0. Let us de�ne � =
min (gi;j such that gi;j > 0). We have M (�; g �
� ) = M (0; g) � N 2� (we recall that f is of size
N � N ), which contradicts the fact that (0; g) is a
minimizer of problem (44).

� Let us now assumethat gi;j = 0 for all (i; j ) 2 N 2.

We de�ne � 1 =
R

f
N 2 (we know that

R
f > 0). We

have M (� 2; 0) = 1
2� kf � � 2k2

L 2 . But kf � � 2k2
L 2 =

kf k2
L 2 + N 2� 2

2 � 2� 2
R

f < kf k2
L 2 . Therefore,we get

M (� 2; 0) < 1
2� kf k2

L 2 = M (0; 0), which contradicts
the fact that (0; g) is a minimizer of problem (44).

�
Proof.(Theorem 2): The existenceof a solution for

problem (44) is standard. It is a straightforward con-
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sequenceof the fact that M the functional to minimize
is convex and coercive.

Let us now show the uniqueness. In the casewhen
f = 0, then it is clear that (0; 0) is the unique mini-
mizer of problem (44). Let us therefore assumethat
f 6= 0 (i.e. that there exists (i; j ) such that f i;j 6= 0).
By contradiction, let us assumethat there exist two
solutions for problem (44), (u1; v1) and (u2; v2). We
denote by m = M (u1; v1) = M (u2; v2). If t 2 (0; 1),
then we get:

M (tu1 + (1 � t)u2; tv1 + (1 � t)v2) = (66)

ktu1 + (1 � t)u2k _B 1
1; 1

+ � ktv1 + (1 � t)v2kL 1

+ 1
2� kt(f � u1 � v1) + (1 � t)( f � u2 � v2)k2

L 2

But by convexity, we have:

ktu1 + (1� t)u2k _B 1
1; 1

� tku1k _B 1
1; 1

+ (1� t)ku2k _B 1
1; 1

(67)

and

ktv1 + (1 � t)v2kL 1 � tku1kL 1 + (1 � t)ku2kL 1 (68)

as well as

kt(f � u1 � v1) + (1 � t)( f � u2 � v2)k2
L 2 (69)

� tkf � u1 � v1k2
L 2 + (1 � t)kf � u2 � v2k2

L 2

From (66)-(67)-(68)-(69), we deduce that (since
M (u1; v1) = M (u2; v2) = m):

M (tu1 + (1 � t)u2; tv1 + (1 � t)v2) � m (70)

and (70) is an equality if and only if (67)-(68)-(69) are
equalities. But by de�nition, we have M (tu1 + (1 �
t)u2; tv1 + (1 � t)v2) � m. Therefore (70) must be an
equality, as well as (67)-(68)-(69).

The function in (69) is strictly convex. Therefore
(69) is an equality if and only if f � u1 � v1 = f � u2 � v2,
i.e. if and only if

u1 � u2 = v2 � v1 (71)

(67) is an equality if and only if there exists wu 2
X nf 0g and (au ; bu ) 2 R2

+ such that u1 = au wu and
u2 = bu wu . (68) is an equality if and only if there exists
wv 2 X nf 0g and (av ; bv ) 2 R2

+ such that v1 = av wv

and v2 = bv wv . Using wu and wv , then (71) becomes
(au � bu )wu = (av � bv )wv . Since we assumethat
(u1; v1) 6= (u2; v2), this implies that we cannot have
simultaneously au = bu and av = bv . We thus get that
wu and wv are proportional.

We therefore deduce that there exists w 2 X nf 0g
and (a;b;c) 2 R4 such that u1 = aw, u2 = bw, v1 = cw
and v2 = (a� b+ c)w. Moreover, we have a� b 6= 0. Let

us remark that: M (tu1 + (1 � t)u2; tv1 + (1 � t)v2) =
M (u2 + t(u1 � u2); v2 + t(v1 � v2)) = M (u1 + (t � 1)(u1 �
u2); v1 + (t � 1)(v1 � v2)). We recall that t 2 (0; 1). We
assumethat a 6= 0 and b 6= 0 (in the casewhen a = 0 or
b = 0, then we get a contradiction thanks to Lemma 5).

We impose0 � t < min
�

1; j aj
ja� bj ;

j bj
ja� bj

�
:

0 � M (u2 + t(u1 � u2); v2 + t(v1 � v2)) � M (u2; v2)

= kaw + t(a � b)wk _B 1
1; 1

� kawk _B 1
1; 1

+ � kbw� t(a � b)wkL 1 � � kbwkL 1

= tja � bj
�

kwk _B 1
1; 1

� � kwkL 1

�

We therefore deducethat kwk _B 1
1; 1

� � kwkL 1 � 0.

By using the fact that 0 � M (u1 + (t � 1)(u1 �
u2); v1 + (t � 1)(v1 � v2)) � M (u1; v1), we get exactly
as before that kwk _B 1

1; 1
� � kwkL 1 � 0. We therefore

deducethat:
kwk _B 1

1; 1
= � kwkL 1 (72)

And (72) also holds with u1, u2, v1 and v2. In par-
ticular, this implies that (0; u1 + v1) is a minimizer of
problem (44). Since we assumethat f 6= 0 (i.e that
there exists (i; j ) such that f i;j 6= 0), we get a contra-
diction thanks to Lemma 5. �

A.2 Convergence of the TV � L 1 algo-
rithm

We give here the proofs of Proposition 5 and 6 stated
in Section 6.

Proof. (Proposition 5):
The proof usesthe sameideasas the onesof Propo-

sition 3.4 in [5], but we put it here for the sake of
completeness.

We �rst remark that, as we solve successive mini-
mization problems, we have:

M (un ; vn ) � M (un ; vn +1 ) � M (un +1 ; vn +1 ) (73)

In particular, the sequenceM (un ; vn ) is nonincreas-
ing. As it is boundedfrom below by 0, it thusconverges
in R. We denoteby m its limit. We want to show that

m = inf
(u;v )2 X � X

M (u; v) (74)

As M is coercive and as the sequenceM (un ; vn )
converges, we deduce that the sequence(un ; vn ) is
boundedin X � X . We can thus extract a subsequence
(un k ; vn k ) which convergesto (û; v̂) asnk ! + 1 , with
(û; v̂) 2 X � X . Moreover, we have, for all nk 2 N and
all v in X :

M (un k ; vn k +1 ) � M (un k ; v) (75)
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and for all nk 2 N and all u in X :

M (un k ; vn k ) � M (u; vn k ) (76)

Let us denote by ~v a cluster point of (vn k +1 ). Con-
sidering (73), we get (sinceM is continuouson X � X ):

m = M (û; v̂) = M (û; ~v) (77)

By passing to the limit in (48), we get:
~v = ST(f � û; � � ), i.e. ~v is the solution of
inf v

�
1

2� kf � û � vk2
2 + � kvkL 1

�
. But from (77), we

know that: 1
2� kf � û � ~vk2

2 + � k~vkL 1 = 1
2� kf � û �

v̂k2
2 + � kv̂kL 1 . By uniquenessof the solution, we con-

clude that ~v = v̂. Hencevn k +1 ! v̂. By passingto the
limit in (75) (M is continuouson X � X ), we therefore
have for all v:

M (û; v̂) � M (û; v) (78)

And by passingto the limit in (76), for all u:

M (û; v̂) � M (u; v̂) (79)

(78) and (79) can respectively be rewritten:

M (û; v̂) = inf
v2 X

M (û; v) (80)

M (û; v̂) = inf
u2 X

M (u; v̂) (81)

But, from the de�nition of M (u; v), (81) is equiva-
lent to (see[22]):

0 2 � f + û + v̂ + � @JB (û) (82)

and (80) to:

0 2 � f + û + v̂ + � �@JL 1 (v̂) (83)

where the functions JB is de�ned by JB (u) = kuk _B 1
1; 1

and JL 1 by JL 1(v) = kvkL 1 . The subdi�eren tial of M
at (û; v̂) is given by:

@M (û; v̂) =
1
�

�
� f + û + v̂ + � @JB (û)
� f + û + v̂ + � �@JL 1 (v̂)

�
(84)

And thus, according to (82) and (83), we have:
�

0
0

�
2 @M (û; v̂) (85)

which is equivalent to: M (û; v̂) =
inf (u;v )2 X 2 M (u; v) = m. Hence the whole se-
quence M (un ; vn ) converges towards m the unique
minimum of M on X � X . We deduce that the

sequence(un ; vn ) convergesto (û; v̂), the minimizer of
M , when n tends to + 1 .

�
Proof. (Proposition 6):
The proof is very similar to the one of Proposition

3.8 in [5].
The existenceand uniquenessof (u� n ; v� n ) is given

by Theorem 2. Since(u� n ; v� n ) is the solution of prob-
lem (44), we have

M (u� n ; v� n ) � M (f ; 0) (86)

From this, we get that (u� n ; v� n ) is bounded. Then,
up to an extraction, there exists (u0; v0) 2 X � X such
that (u� n ; v� n ) converges to (u0; v0). From (86), we
get that kf � u� n � v� n k2

2 � 2� kf k _B 1
1; 1

. By passingto

the limit n ! + 1 , we get: kf � u0 � v0k2 = 0, i.e.
v0 = f � u0.

To conclude the proof of the proposition, there re-
mains to show that (u0; f � u0) is a solution of problem
(52). Let u 2 X . We have:

kuk _B 1
1; 1

+ � kf � ukL 1 + 1
2� n

kf � u � (f � u)k2

| {z }
=0

� ku� n k _B 1
1; 1

+ � kv� n kL 1 + 1
2� n

kf � u� n � v� n k2

� ku� n )k _B 1
1; 1

+ � kv� n kL 1

| {z }
!k u 0 k _B 1

1; 1
+ � kf � u 0 kL 1

�
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