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Abstract

This paper explores various aspects of the image de-
composition problem using modern variational tech-
nigues. We aim at splitting an original image f into
two componerts u and v, where u holds the geometri-
cal information and v holds the textural information.
The focus of this paper is to study dierent energy
terms and functional spacesthat suit various types of
textures.

Our modeling usesthe total-variation energyfor ex-
tracting the structural part and one of four of the fol-
lowing norms for the textural part: L?, G, L' and a
new tunable norm, suggestedhere for the rst time,
basedon Gabor functions.

Apart from the broad perspective and our sugges-
tions when each model should be used, the paper con-
tains three specic novelties: rst we show that the
correlation graph betweenu and v may serwe as an ef-
cient tool to selectthe splitting parameter, secondwe
proposea new fast algorithm to solve the TV-L* min-
imization problem, and third we introduce the theory
and designtools for the TV -Gabor model.

Key-w ords: Image decomposition, restoration, pa-
rameter selection, BV, G, L, Hilbert space, projec-
tion, total-variation, Gabor functions.

1 Intro duction

1.1 Motiv ation

Decomposing an image into meaningful componerts is
an important and challenging inverse problem in im-
age processing. A rst range of models are denoising
models: in such models, the image is assumedto have
beencorrupted by noise,and the processingpurposeis
to remove the noise. This task can be regarded as a

decomposition of the image into signal parts and noise
parts. Certain assumptionsare taken with respect to
the signal and noise, such asthe piecewisesmooth na-
ture of the image, which enablesgood approximations
of the clean original image.

In modern image-processing, two main successful
approadesare usually consideredto solve the denois-
ing problem. The rst oneis basedon manipulating the
wavelet coe cien ts of the image[20, 35, 14, 34, 33, 37].
The secondone is basedon solving nonlinear partial-
di erential equations(PDE's) assaiated with the min-
imization of an energy composedof somenorm of the
gradient [44, 13, 4, 37, 40, 41].

A related but di erent problem, which is the main
topic of this paper, is the decomposition of an image
into its structural and textural parts. The aim of this
type of decomposition is harder to formulate explicitly .
The generalconceptis that an image can be regarded
as composedof a structural part, corresponding to the
main large objects in the image, and a textural part,
containing ne scale-details,usually with someperiod-
icity and oscillatory nature. The de nition of texture
is vague and highly depends on the image scale. A
\structure" in one scale,can be regarded as \texture"
in another scale. Nevertheless,we will attempt to use
various variational models,to decomposean imageinto
meaningful structural and textural parts. Moreover, we
will examine the ability to perform the task automat-
ically using the correlation criterion. This criterion is
very simple and does not assumeany information on
the nature or scale of the texture. It works well in
simple casesand can aid in nding the right weight
between the structural and textural componerts. In
more complicated multi-scale images, more elaborated
medanisms are needed,basedon additional informa-
tion. We will discussthe advantagesand drawbacks of
the correlation criterion and suggestpossible ways for
further researd to solwve this dicult problem.



In this paper, we will focus on image decomposition
models based on total variation regularization meth-
ods, as originally proposedin [44]. This approact has
recertly beenanalyzedin [37], which is the inspiration
sourceof many works [50, 42, 5, 3, 45, 7,11, 15, 19, 32,
51]. In Section 2 we review the decomposition models
that are consideredin this paper.

We aim at splitting an original image f into two
componerts u and v, u containing the geometrical in-
formation and v the textural information. Our model-
ing is basedon TV regularization approaces: we min-
imize a functional with two terms, a rst one based
on the total variation and a secondone on a di erent
norm adapted to the texture componert. One aim of
the paper is to analyzethe dierent structure-texture
modelsand to point out the similarities and di erences
between the decompsition techniques. In addition,
three main contributions are preseried:

1. First, we shaw that the correlation graph between
u and v is an e cien t tool to selectthe splitting
parameter.

2. Second,we proposea new fast algorithm to solve
the TV-L! minimization problem.

3. Third, weintroduceanew TV -Gabor model which
leadsus to adaptive frequencyand directional im-
age decomposition.

All the algorithms we consider are inspired by the
ROF model [44], in the sensethat they are all of the
genericform TV -another norm.

1.2 Outline of the paper

A main purpose of the paper is to know when one
should use each model. The organization of the paper
is in uenced by our nal conclusions. The four mod-
elscanbeclassied to t three main typesof textures:
general oscillating patterns (TV L2 and TV G),
structural textures (TV L) and smooth periodic,
possibly directional, textures (TV-Gabor).

The paper is organized as follows. In Section 2,
the four decomposition models are formulated. In Sec-
tion 3, we introduce the notations that will be usedin
the rest of the paper. We briey review Chambolle's
projection algorithm, which is a recert and e cient
method to solve the ROF problem [12]. We recall how
Chambolle's algorithm can be usedto solve the A?BC
model [5]. We also recall the framework of the TV-
Hilb ert regularization of [8]. In Section 4, we propose
a method to compute the decomposition of an image
using a correlation criterion, inspired by the work of

[39. In Section5, we examine generaltype decompo-
sitions usingthe TV L2 and TV G modelsand re-
late their parametersin the A?BC framework (which
well approximates TV~ G). In Section 6, we intro-
duce a new fast and e cien t algorithm to solve the
TV L minimization problem (5). We carry out the
complete mathematical analysis of this new algorithm.
The advantagesand drawbacks of using the correlation
method for parameter tuning to this kind of regulariza-
tion are preseried. In Section 7, we designa family of
Hilb ert spacedasedon Gabor functions. This provides
us with a new TV -Gabor model in which one can take
advantage of knowledge of both the frequencyand the
direction of the texture. It is alsoshaovn how the corre-
lation criterion canbe usedto selectthe regularization
parameter. We then conclude the paper in Section 8
with some nal remarks and future prospects. In Ap-
pendix A.1, we detail the proofs of the mathematical
results of Section 6.

2 Four Decomp osition Mo dels

From now on, we denote by f the original image to
decompose. It is reasonnableand classicalto assume
that f is de ned on a boundedand connectedLipschitz
open set (typically s a rectangle), and that f is
bounded. Therefore f belongsto L' (). Since is
bounded, f alsobelongsto L2().

2.1 TV-L2 (ROF)

Rudin, Osher and Fatemi proposedin [44] a popular
denoising algorithm which preseneswell the edgesof
the original image, while remaving most of the noise.
This algorithm decomposesan image f into a compo-
nent u belongingto BV and a componert v in L2. In
this approac the following functional is being mini-
mized:
z
. N 2

(u;v)ZBVInIZ:f:u+v Ibuj+ kaLz @
where jDuj is the total variation of u. For a detailed
mathematical study of (1) we refer the readerto [13].

2.2 TV-G (Mey er)

In [37], Meyer suggestsa new decomposition model.
He proposesthe following fugctional:

inf iDuj+ kvkg @)
(uv)2BV G=f =u+v

where the Banadch spaceG contains signalswith large
oscillations, and thus in particular textures and noise.
We give here the de nition of G.



Denition 1 G is the Banach space composel of dis-
tributions f which can be written as

f = @au+ @q = div(g) ®)

with g; and gz in L? .
the following norm:

The space G is endowel with

kvke = inffkgk.: =v=div(g); 9= (01; R);
w2l @2Llt;
j9x)ji = (jo1j? + jg2j2)(x) (4)

A function belongingto G may have large oscilla-
tions and neverthelesshave a small norm. Thus the
norm on G is well-adapted to capture the oscillations
of a function in an energy minimization method. We
refer the readerto [7] for somenumerical computations
of typical image G norm. In [37], the author did not
proposeany numerical schemeto compute the decom-
position. Veseand Osher [50] werethe rst to propose
a numerical scheme to solve this model using Euler-
Lagrange equations basedon LP norms. Aujol et al
[6, 5] suggesteda di erent method basedon projection
(A%BC) which will be explainedin Section3.3. Notice
that an approac basedon secondorder coneprogram-
ming hasrecertly beenproposedin [51].

23 Tv-L?!

In [2] and [40] it was suggestedto replacethe L? norm
in the ROF model by a L* norm. The functional to
minimize in this caseis

z

inf jDuj+  kvk:
(u;v)ZBVInL1=f=u+V 1Py VKL (5)

Nikolova has showed that the L! norm is particularly
well suited to remove salt and pepper noise[40]. Com-
paring to the ROF model (1), this functional doesnot
erode structures, and preseris other interesting prop-
erties.

This model has recertly been studied mathemati-
cally in the continuouscasein [15]. The authors presert
interesting quarntitativ e properties of the model related
to scale-spaceand show that geometrical features are
better presened. Numerically, one of the main draw-
badks of the model is that, until now, there was no fast
algorithm to solve (5). An important cortribution of
the paper is to addressthis problem and to proposea
fast and e cien t algorithm to solve (5). We will study
problem (5) in Section 6. A dierent method based
on secondorder cone programming has recertly been
proposedin [5]].

2.4 TV-Hilb ert

Motiv ated by [44] and [42], the authors of [8] have pro-
poseda generalization of the ROF and OSV models:

z
. N 2

(u v)ZB\}nIE =f=u+v Jbup+ kaH (6)
where H is some Hilbert space. In the casewhen
H = L2, then (6) is the ROF model [44], and when
H = H 1 then (6) is the OSV model [42]. By choosing
suitably the Hilb ert spaceH, it is possibleto compute
a frequency and directional adaptive image decompo-
sition, as we will seein Section 7. One of the main
cortributions of the paper is the designing of a family
of Hilb ert spacesbasedon Gabor wavelets for such a
purpose.

3 Settings and Previous Pro jec-
tion Algorithms

In this paper all our models are solved numerically by
projections algorithms, and not by usingthe more clas-
sical techniques based on Euler-Lagrange equations.
Notice that a method basedon corvex analysisto solve
TV modelswas recertly proposedin [18], and another
one based on Support Vector Regressionin [46] We
presert Chambolle's projection algorithm, which is a
recert method to solve the ROF problem [12]. An im-
portant advantage of this algorithm is that there is no
needto regularize the TV energy When using Euler-
Lagrange equations to minimize a TV term, one rst
dsto regularize the functional and considerinstead
jr uj2+ 2. The small parameter is necessaryto
prevent numerical instabilities. The main advantage
of Chambolle's projection method is that it does not
usethis additional arti cial parameter, and is therefore
more faithful to the continuous formulation of the en-
ergy. Moreover, in this projection framework, we can
easily and rigourously show the convergenceof the al-
gorithms towards the minimizers of the functional.
We also recall how Chambolle's algorithm can be
usedto solve the A2BC model [5]. We then recall how
Chambolle's algorithm has been extended to a larger
class of TV-Hilbert functionals in [8]. We begin by
introducing the notations that we will usein the rest
of the paper.

3.1 Discretization

From now on and through the rest of the paper, we
consider the discrete caseThe image is a two dimen-
sion vector of sizeN N. We denote by X the Eu-
clidean spaceRN N,andY = X X. The spaceX



will be endowved with the L? inner product {u; V), 2 =

10 N Ui Vi andpthe norm kuk > = = (u;u)_e.
We alsosetkuk . = | 5  juijj. Todene adis-
crete total variation, we introduce a discrete version of
the gradient operator. If u 2 X, the gradiert r u is

a vector in Y given by: (r u)i; = ((r u)f ;(r ),
with
1 _ Uiz Ui ifi <N
(r Wi 0 ifi =N
and
2 _ Uijj +1 Ui;j |fj < N
ruwii = o ifj = N

The discrete total variation of u is then de ned by:

J(u) = J(r uij | (7)

1§ N

We also introduce a discrete version of the diver-
genceoperator. We de ne it by analogy with the con-
tinuous setting by div = r wherer is the ad-
joint of r : that is, for elery p 2 Y and u 2 X,
( divp;u)Lz = (p;r u)y. It is easyto ched that:

g p Py fl<i<N
div ()i = . Py if i=1 )
S« if i=N
< pj p§ , if1<j<N
+ PG if j=1
[T if j=N

From now on, we will usethesediscrete operators. We
are now in position to introducethe discrete version of
Meyer's spaceG.

De nition 2
G=fv2X =9g2Y suchthatv=div(g)g (9

andif v2 G:

kvke = inffkgky =v= div(g);

9= (g 0) 2 Y;jg; =

(1%)
(95 )%+ (95 )?

where kgky = max;; jg; |-
Moreover, we will denote:

G =fv2G =kvkg g (12)

We recall that the Legendre-Fenchel transform of
F isgivenby F (v) = sup,(u;v)L2  F(u) (see[22).
The following result is proved in [5]. We seethat J(:)
(respkikg) is the polar of kikg (resp. J(:)).

Prop osition 1 The space G identi es with the follow-
ing subspce:
X
XOZfVZX: vi;,-:0g
isj

(12)

Notice that theseresults are in discrete. See[3] for
the de nition of G in the continuouscase.We alsorefer
the interestedreaderto [30] about the relation between
the discrete and the cortin uous Fendel dual.

3.2 Chambolle's pro jection algorithm

SinceJ de ned by (7) is homogeneousof degreeone
(iie. J(u) = J (u) 8uand > 0), it is then stan-
dard (see[22)) that J isthe indicator function of some
closedcorvex set, which turns out to be the setG; de-
ned by (11):

0 if v2 Gy

JM= 6.M= 1 otherwise

13)
This can be cheded out easily (see[12] for details).
In [12], the author proposesa nonlinear projection al-
gorithm to minimize the ROF model. The problem
is: 1
H - 2
U@L J(u) + 5 kf  uki. (14)
We have the following result, which comesfrom stan-
dard corvex duality theory [22]:

Prop osition 2 ([12]): The solution of (14) is given
by:u=f Pg (f) wher P is the orthogonal projector
on G (dened by (11)).

We usethe following algorithm to compute Pg (f).
It indeed amounts to nding:
min k div(p) fk?::p=jpij
(15)
This problem can be solved by a xed point method:
p° = 0 and

et _ Pyt (r (div(p")

) =)y
P T 1 j(r (div (o)

f=)i]
In [12] is given a su cien t condition ensuring the con-
vergenceof the algorithm: it is showvn that as long

as 1=8, then div(p") corvergesto Pg (f) as
n! +1.

(16)

3.3 Aujol-Aub ert-Blanc-F eraud-
Cham bolle model (A2BC)
Inspired from the work by A. Chambolle [12] and by

the numerical results of [50], the authors of [5, 6] pro-
posearelevant approac to solve Meyer problem. They



considerthe following problem

. 1 5
(u;v)lzn)z‘ o J(u) + 5 kf u vki. a7
whereG = fv 2 G=kvkg
by (10), and J(u) by (7)

The authors of [5] presert their model in a discrete
framework. Seealso [3] for a study of this model in a
continuous setting, and [10] for an extension to color
images. In this paper, we will focus on the A?BC
model to solve Meyer's problem automatically in Sec-
tion 5. In [5, 6], the authors useChambolle's projection
algorithm [12] to solve (17). We describe their method
below.

g, and kvkg is de ned

Minimization: SinceJ is the indicator function of
G; (see(13)), we can rewrite (17) as

inf Sk ou v +dW+d Y @8)

(uv)2Xx X 2

With this formulation, we see the symmetric roles
played by u and v. To solve (18), we considerthe two
following problems:

v being xed, we seard for u asa solution of:

inf - J(u)+ Zikf u  vk?, (19)

u being xed, we seard for v asa solution of:

Jnf kfu vkZ, (20)

From Proposition 2, we know that the solution of
(19) isgivenby: a6 =f v Pg (f v). And the
solution of (20) is simply givenby: ¢ = Pg (f u).

Algorithm:
1. Initialization:
Up=Vvo=0 (21)
2. lterations:
Vns1 = P (' up) (22)
U+t = F Vher P (f Vie1) (23)
3. Stopping test: we stop if
mMax(jun+1  UnjijVas1  Vaj) (24)

It is showvn in [5] that the sequence(u,;vy) given
by (21)-(22)-(23) corvergesto the unique minimizer of
problem (17).

Parameters:  Algorithm (21)-(22)-(23) needs thus
the two parameters and . The parameter cortrols
the L2?-norm of the residualf u v. The smaller

is, the smaller the L? norm of the residualf u vis.
The larger is, the more v contains information, and
therefore the more u is averaged. In fact, the choice
of is easy One just needsto setit very small. For
instance, in all the examples preseried hereafter, we
have chosen = 1, and found out a maximum norm
forf u v ofabout 0.5 (for valuesranging from 0 to
255). But the parameteris much harder to tune. It
cortrols the G norm of the oscillating componert v. In
the caseof image denoising,a rst method to tune

with respect to the standard deviation of the noisehas
beenproposedin [7]. We will present a way to select

in the caseof image decomposition in Section5.

3.4 H Hilb ert space

In [8], the authors have considered other spacesto
model oscillating patterns. They proposeto usea gen-
eral family of Hilbert spacesthat we will considerin
Section 7. These Hilb ert spacesare de ned thanks to
an operator K .

K alinear symmetric positive-de nite operator from
A to L2, whereA is either X or L? (we recall that X
is de ned by (12)). In the casewhen A = X, then we
extend K to the whole L? by setting K (x) = +1 if
X 2 L2nX,. Notice that with these assumptions,then
wecandene K *onlImK = fz2 L? sud that 9x 2
A with z = K (x)g.

If f and g arein Xg, then let us de ne:

H;gip = HF;KgiL (25)

This IDde nes a inner product on X = fx 2
X = i Xij = 0g.

We note that sincewe only deal here with the dis-
crete case,all the spaceswe consider are of nite di-

mensionand are therefore Euclidean spaces.

Examples:

1. When K = Id, then H = L2,

2.WhenK = |, thenH =H = ff 2 L%rf 2
L2g.
3. WhenK = LthenH = H 1= (H}) (see

[1] for the de nition of H 1).

Remark: In Section 7, we will assumeA = L2, i.e.
that K is positive-de nite on L?2.



3.5 TV-Hilb ert regularization model

The model studied in [8] is the following:

inf () + Sk uk (26)

In [8], the authors give some mathematical results
about this problem. In particular, they show the ex-
istence and uniguenessof a solution for (26). They
also proposea modi cation of Chambolles'sprojection
algorithm [12] to compute the solution of problem (26):

p’=0 (27)
and
o+ (r (K Mdiv(p") )i
o = P + (r( _ ") T )i 29)
' 1+ j(r (K tdiv(p") f))ij]
Theorem 1 If m, then 1K Idivp" ! ¢
asn! 1 ,andf 1K Idivp"! 0asn! 1, wher

0 is the solution of problem(26) and ¢ = f 0.

In [8], the authors apply their framework to solve
the OSV model [42] (i.e. whenH = H 1), and they
study the problem of image denoising. In this paper,
we intend to use (26) to carry out frequency and di-
rectional adaptive image decomposition. Indeed, by
choosing the kernel K in a suitable way, we can em-
phasizethe weight of somefrequenciesand directions.
We will addressthis problem in Section7.

Now that we have intro ducedthe notations and pre-
serted someof the previousworks, we presen a general
criterion basedon correlation to selectthe regulariza-
tion parameterin the di erent modelsthat we will con-
sider.

4 The Correlation Tool for Se-
lecting the Balance between
the Energies

In this section, we propose a method to select the
weight parameter for a proper decomposition of an
image. The authors are not aware of any suggested
method on how to choosethe value of for decompo-
sition. Therefore we rst discussshortly the solutions
at presen that are usedfor denoisingand explain the
di culties that arisein decomposition.

For the denoising problem, one often assumesthat
the variance of the noise 2 is known a-priori or can
be well estimated from the image. As the v part in

the denoising caseshould contain mostly noise, a nat-

ural condition is to select sud that the variance of
v is equal to that of the noise, that is var(v) = 2.

Sudch a method wasusedin [44] in the constrainedROF

model, and this principle datesbad to Morozov [38] in

regularization theory. A modern approad, suggested
recertly in [27], is to try to optimize a criterion, such

asthe Signal-to-NoiseRatio (SNR). It was shawvn that

this method can achieve better results than the con-
strained formulation, in terms of SNR and visually, for

a wide classof images. This method also relies on an

estimation of the noisevariance.

Both of the above approadescannot be applied for
nding in decomposition. Here we do not know of a
good way to estimate the texture variance, also there
is no performancecriterion like the SNR, which canbe
optimized. Therefore we should resort to a dierent
approac.

Our approad follows the work of Mrazek-Navara
[39], usedfor nding the stopping time for denoising
with nonlinear di usions. The method relies on a cor-
relation criterion and assumesno knowledge of noise
variance. As shown in [27], its performanceis inferior
to the SNR-basedmethod of [27] and to an analogue
of the variance condition for di usions. For decompo-
sition, however, the approac of [39], adopted for the
variational framework, may be a good basic way for
the selection of

In this paper the generaldecomposition framework
is of the form:

Estuctur e(U) + E Texwr e(V); f =u+v; (29)

where u and v minimize the above total energy Our
goal is to nd the right balance between the energy
terms, or the value of , which producesa meaningful
structure-texture decomposition.

Let us de ne rst the (empirical) notions of mean,
varianceand covariancein the discretesetting of N N
pixels image. The meanis

.1 X
q= m q;j ;
1§ N
the varianceis
21 X 2.
V(g) = NZ (G; 97
10 N
and the covarianceis
-1
cov(gr) = NZ (@; a(riy 1)
1§ N

We would like to have a measurethat de nes orthog-
onality betweentwo signals and is not biased by the



magnitude (or variance) of the signals. A standard
measurein statistics is the correlation, which is the co-
variance normalized by the standard deviations of eah
signal:
corr(gr) = cov(ar) .
’ V(@V(n)

By the Caudcy-Schwarz i@equality it is not hard
to seethat cov(qg;r) V(qQV(r) and therefore
jeorr(g;r)j 1. The upper bound 1 (completely cor-
related) is readhed for signals which are the same, up
to an additive constart and up to a positive multi-
plicative constart. The lower bound 1 (completely
anti-correlated) is reached for similar signalsbut with
a negative multiplicativ e constart relation. When the
correlation is O we refer to the two signals as not cor-
related. This is a necessarycondition (but not a su -
cient one) for statistical independence.lIt often implies
that the signalscan be viewed asproducedby di erent
\generators" or models.

To guide the parameter selectionof a decomposition
we usethe following assumption:

Assumption:  The texture and the structure compo-
nents of an image are not correlated.

This assumption can be relaxed by stating that the
correlation of the componerts is very low. Let us de-
ne the pair (u ;v ) asthe one minimizing (29) for a
specic . As proved in [37] for the TV  L? model
(and in [24] for any convex structure energyterm with
L?), we have cov(u ;v ) O for any non-negative
and therefore

0 corr(u;v) 1,8 0: (30)

This meansthat one should not worry about negative
correlation values. Note that positive correlation is
guaranteed in the TV L? case. As we will later see,
inthe TV L! casewe may have negative correlations,
and should therefore be more careful.

Following the above assumption and the fact that
the correlation is non-negative, to nd the right param-
eter , we are led to considerthe following problem:

= argmin (corr(u ;v )): (31)

In practice, one generatesa scale-spaceusing the pa-
rameter (in our formulation, smaller meansmore
smoothing of u) and selectsthe parameter as the
rst local minimum of the correlation function between
the structural part u and the oscillating part v. Seealso
[24, 25, 28, 26, 39, 8] for related approaces.

This selectionmethod canbevery e ectiv ein simple
caseswith very clear distinction between texture and
structure. In these casescorr(u;v) behaves smoothly,

reachesa minimum approximately at the point where
the texture is completely smoothed out from u, and
then increases,as more of the structure getsinto the v
part. SeeFigures 1 to 5 in the next section for some
numerical examples. The graphs of corr(u;v) in the
TV L2 casebehave quite asexpected,and the selected
parameter leadto a good decomposition. We will make
more commerts about the numerical resultsin the next
section.

For more complicated images,there are textures and
structures of dierent scalesand the distinction be-
tween them is not obvious. In terms of correlation,
there is no more a single minimum and the function
may oscillate.

As a rst approximation of a decomposition with a
single scalar parameter, we suggestto choose after
the rst local minimum of the correlation is readed.
In somecasesa sharp changein the correlation is also
a good indicator: after the correlation sharply drops
or before a sharp rise. At this stage we cannot claim
a fully automatic mecanism for the parameter selec-
tion that always works, but rather a highly relevant
measuremen that should be taken into consideration
in future dewvelopmert of automatic decompositions.

5 TV L?and TV G Regular-
izations

In this section, we rst show how we can usethe cor-
relation tool to selectthe parameter in the TV L?
regularization model. We then showv how we can ex-
tend this method to the TV G model.

5.1 Parameter selection for the TV L?
mo del

Let us rst recall herethe TV L2 problem [44]:

inf J(u)+2ikf uk?; (32)

We denote by (u ;v ) the solution of (32). This
regularization model hasencourtered a large successn
imagedenoising. One of the main reasonof this success
is that the total variation regularization presene the
edgesof the restored image. It is straightforward to
apply the correlation criterion of Section 4 to select
the parameterin the TV L2 model.



5.2 Parameter selection for the TV G
mo del

We focus here on the A?B C model [5], which is a very
good approximation. We shav how we can usethe cor-
relation criterion for the ROF model [44] to carry out
automatic image decomposition with the A2B C model.
A rst approad would be to considerthe correlation
betweenu and v computed with the A2B C algorithm.
We have rejected this approac becauseof computation
time: indeed, to compute an accurate solution with
the A2BC algorithm is about ten times slower than
the classicalTV L2 minimization approac. We have
decided instead to use the mathematical connections
betweenthe ROF model and the A2BC algorithm to
selectthe parameter in a much faster way.

Tothis end, we rst needto give somemathematical
properties of the A2B C model, (17), which is a way to
solve Meyer's problem. As we have said in Section 3,
the parameter in (17) is setto a xed small value
(= 1in our numerical examples). The dicult y is
to tune the parameter. We intend here to propose
a method to compute automatically the parameter
The idea is to use the method proposedfor the ROF
model in Section5.1 (which is a straightforward appli-
cation of the general method preseried in Section 4).
By choosing asthe rst minimum of the function

7! corr(u ;v ) (whereu is the solution of the ROF
problem (32) andv =f u ), we have an automatic
algorithm to compute the right parameter for (32).
All we needto do then is to relate the parameter in
(32) to in the A2BC model (17).

5.2.1 Relating to

In [37], Meyer introduced the G norm to analyze the
mathematical properties of the ROF model. As noticed
in [48], one of the main results of [37] happensto be a
straightforward corollary of Proposition 2:

Corollary 1 Letusdenotebyu the solution of (32),
byv =f u ,andbyf the mean of f.

If kf fkg , thenkv kg = kf  u kg =

If kf fkg , thenu =f.

As we can see,the behavior of the ROF model is
closelyrelated to the G norm of the initial data f .

Lemma 1 The parameter
suchthat kv kg =

computed in Section 4 is

Proof. Let usdenote nax = kf  fkg. It is easyto
shawv that if 2 (0; max), then corr(u ;v ) remains
bounded. From Corollary 1, we get that if max »

thenu =f andv =f f. Thereforethe rst local
minimum of the correlation is suc that max - We
then concludethanks to Corollary 1.

Thanks to Section 5.1, we know how to compute
automatically the decomposition of an original image
with the ROF model. And thanks to Lemma 1, we
alsoknow the G norm of the v componernt we get with
the ROF model, i.e. kvkg = . As we have explained
in the introduction, Meyer's idea is to replacethe L2
norm in the ROF model (32) by the G norm. The
G norm is better suited to capture oscillating patterns,
sud astextures, than the L2 norm (asit is numerically
shown in [7]). Therefore, a possibleimprovemert of the
algorithm of Section5.1is to compute Meyer's decom-
position under the constraint that kvkg = . Sincethe
G norm is a better choice to capture the texture part
of an image [37, 3, 7], this would indeed givesa better
decomposition result than the ROF model.

This naturally leadsusto considerthe A2B C model
(17) with

= (33)

Indeed, with sud a parameter, the v componert com-
puted with the A2BC model is sudh that kvkg

And we prove in the following subsectionthat in fact
we have kvkg =

5.2.2 Some mathematical results about the

AZBC model

The functional to minimize in (17) is the following:
‘YY) = v 1 2
Fuyv)=J(uw+J — + 2—kf u vki. (34)

The following Lemma is proved in [5]:

Lemma 2 There exists a unique couple (0;%) 2 X
G minimizing F on X X.

From now on, let usdenoteby (@; ¥) the unique solution
of the A2B C problem (17). The next result will help to
seethe connectionbetweenthe parameter in the ROF
model and the parameter in the A2BC algorithm:

Prop osition 3 The following alternative holds:
If kf fkg
If kf fkg

,then¢=1f f.
, then k¢kg =

Proof. Let us rst remark that F(u;v) 0 for all
(u;v) in X X. Moreover, if we assumethat kf
f kg , we have F(f ;f f) = 0, which meansthat
(f;f f) is a minimizer of F. We then get the rst
point of Proposition 3 thanks to the uniquenessresult
of Lemma 2.



We now turn our attention to the secondpoint of
Proposition 3. Wethereforeassumethat kf f kg
Let usconsiderthe following function de ned onX X:

H(u;v) = J(u) + zikf u vk?, (35)

H is a proper convex cortinuous function de ned on
X X. There existstherefore(t;¥) in X G suc that
(&; %) is a minimizer of H on X G . Let us remark
that H(f;f f) = 0. We then considerthe function
g: t7! ktw+ (1 t)(f f)ks. gisacontinuousfunction
on [0; 1]. Moreover, we have g(0) = kf  fkg and
g(1) = kwkg There exists thus t in [0; 1] such
that g(t) = ktw+ (1 t)(f f)keg = . Let usdenote
by v=1te+ @2 t)(f f)andu = ta+ (1 t)f.
Since H is a corvex function, we get that H (u;v)
tH(;w) + (1 t)H(f;f f) H(&w. We therefore
deducethat (u;v) isaminimizer of H onX G . Since
H and F coincideon X G , we get that (u;v) is a
minimizer of F on X  X. From Lemma 2, we then
conclude that (u;v) = (0;%) the unique minimizer of
F onX X, and kokg = kvkg =

From Lemma 1 and Corollary 1, we know that
kf  fkg . And from (33), we have = . From
Proposition 3, we thus deducethat ©, the v compo-
nent we get with the A?BC algorithm, is suc that
k¢kg = . This new v componert has therefore the
sameG norm asthe one of the v componert (v ) com-
puted with the ROF model in Section5.1. But since
the G norm is better at capturing the oscillating pat-
terns then the L2 norm, this new decomosition is more
accurate than the previous one.

This analysisis con rmed by the numerical results
we get in the next subsection.

5.3 Numerical results

Let us rst summarizethe method we proposeto com-
pute the decomposition into geometryand texture with
the A2BC model.

Automatic  algorithm for the A2BC model:
1. Set = 1in (17).
2. Compute asthe rst minimum of the function

7! corr(u ;v ) (whereu is the solution of the
ROF problem (32) andv =f u).
3.Set = in(17).

4. Compute the decomposition with the algorithm
(21)-(22)-(23).

We showv some numerical results in Figures 1-5 of
TV L2andTV G decompositions. As expected, the
results obtained with the A?B C algorithm are slightly
better than the onesobtained with the ROF model.
For instance,on Figure 1, onecanched that the square
is lesseroded with Meyer's G norm (and in this case,
the squareis a geometricalfeature and shouldremainin
the u componert). On Figure 5, oneseeghat the leg of
the table appearsmuch more in the v componert with
the ROF model than with the A2BC algorithm. In
general,the ROF model already doesa good job, and
the A?BC algorithm seemsto bring a small improve-
ment. Notice that we do not claim that we compute
the best possibleresults (see[50, 42, 5, 7] for instance
where the parameters are tuned manually): what we
claim is that our parameter selectionmethod leadsto
a visually good result (for both models).

Detailed explanation on the correlation graph:

In these experiments the correlation corr(u;v) of
50 values of s plotted. We initially set ° = 1
and reduced ead time the value by a factor of 0:9
such that "1 = 0:9 ". To solve the minimization
problem for "*1 we initialized with the solution
obtained for ", and therefore the convergence is
quite fast. Also note that in practice one needsnot
compute the whole graph and can stop when the
rst local minimum is reached. One may also use
courser  resolutions to save some computational
eorts. Note that the correlation graph nds well
the right splitting parameter in Figs. 1,2 and even
in the more complex Barbara image, Figs. 3-5. In
these casesa fully automatic decomposition is possi-
ble. In all the correlation graphs the splitting point
chosenby our automatic algorithm is marked with \x".

Now that we have introduceda method to automat-
ically compute the parameterin (17), that is to au-
tomatically compute Meyer's decomposition, we turn
our attention to another interesting, more geometric,
decomposition model.

6 TV-L! Regularization

Let us rst recall the model studied in [40]:

inffI(w+ K ukiig (36)
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Figure 1: A simple example

6.1 A fast algorithm for TV-L? regular-
ization

In this section, we introduce a new fast and e cien t
algorithm to solve the TV L' minimization problem
(5). We carry out the complete mathematical analysis
of this new algorithm. We can then adapt the cor-
relation method for parameter tuning to this kind of
regularization.

As we have done previously for the ROF model, we
want to derive an automatic algorithm to compute the
parameter automatically. Our ideais to usethe cor-
relation assumption as in Section 4. To this end, we
rst needto proposea fast algorithm to minimize (36).
Indeed, the algorithm usedfor instancein [15] is a very
slow algorithm: the authors rst regularize the func-
tional by consideringthe approximated problem:

Z q Z q
(f

iﬂf jruz+ 2+ uy2+ 2 (37)

They computethe solution of this new problem by solv-
ing the assaiated Euler-Lagrange equation.

10

Figure 2: A synthetic image

In [40Q], the author solvesthe problem:
z

irl}f jrujz+ 2+ kf  ukg: (38)

The author proposesa relaxation algorithm to compute
the solution, but this is also a slow algorithm. Notice
that in this casethere may be se\eral possiblesolutions.
We merntion alsothe very recen work [51] wherethe
authors minimize (38), for = 0, with an algorithm

basedon secondorder cone programming.

6.1.1 A new functional

We remind the reader that in this paper we only con-
sider the discrete case.

We propose here another possibleregularization of
(36). We considerthe functional:

infJ(u) + Zikf u vk, + kvk: (39)

The parameter is small so that we almost have

f=u+wv.
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Figure 3: Barbara image and TV  L? correlation

graph.
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Figure 4: u componert of TV L?2andTV G decom-
positions of the Barbara image (the TV G decompo-
sition is approximated with the A2B C algorithm)

Prop osition 4  heing a positive parameter, the so-
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VROF

VazBcC

Figure 5: v componert of TV L?and TV G decom-
positions of the Barbara image (the TV G decompo-
sition is approximated with the A2B C algorithm).

lution ¢ of the problem

inf zikg vkZ; + kvkg 1 (40)
is given by:
8 .
< G if i
vij =, 0 if jGi;j j (41)
Gij + it g

We will write v = ST(g; ), i.e. v is the Soft Thresh-
olding of g with level of threshold

Proof. The proof is the sameasthe one proposedin
[14] (page 323) in the caseof Wavelet Soft Threshold-
ing. It is just a simple 1D minimization problem, since
all the equationsare independert, and the computation
is straightforward.

Let us now look at the minimization of (39). Since
the functional is corvex, a natural way to compute the



solution is to minimize with respectto ead of the vari-
ablesseparately and to iterate until convergenceasin
the A?BC model for instance. Seealso [16, 17] for a
general approach of such minimization problems. We
therefore considerthe two following problems:

v being xed, we seard for u asa solution of:

infJ(u) + Zikf u  vkZ, (42)

u being xed, we seard for v asa solution of:

igfzikf u vk, + kvk: (43)

From Proposition 2, we know that the solution of
(42) isgivenby: 6 =f v Pg (f v). And from
Proposition 4, the solution of (43) is given by: ¢ =
ST(f u; ).

It is possibleto shaw asin [5] (for the A2B C model)
that iterating thesetwo minimizations is a way to com-
pute the solution of problem (39). The main advantage
of this new algorithm is that instead of the two regu-
larization parameters ; and , usedin [15], here we
only have one regularization parameter . Moreover,
this new algorithm seemsto be faster.

6.1.2 A thresholding algorithm

To increasethe speed of the previous algorithm, we
proposea slight modi cation of problem (39). We con-
sider the new functional:

inf
u;v

kukB{1+ Zikf u vkZ; + kvk s (44)

where B_};l is the usual homogeneousBesors space[37,
14, 7).

Although we considerthe discrete case,we give here
the de nition of B, in the contin uouscasefor the sake
of clarity.

De nition 3 Let jy an orthonormal base composed
of smaoth and compactly supported wavelets. B.il is a
subspce of L5(R?) pand a function f belongsto B, if
andonly if: =, ,22iGki< +1 , wher ¢y are
the waveletcoe cients of f .

In this paper, since we want to approximate J(u) by
kukg: , weonly considerthe caseof the Haar wavelet.

It is pfovedin [47] that in 1D, total variation minimiza-
tion is equivalent to wavelet soft thresholding (in the
caseof the Haar wavelet with one level of decomposi-
tion). Howewer, the two regularization spacegBV and

12

Bi,) are dierent. In particular, characteristic func-
tions of setswith nite perimeter belongto BV but are
not in B{,. This is the reasonwhy it can be expected
that the edgesof the original image f are better put
in the geometrical componert u with model (39) than
with (44).

Let us now look at the minimization of (44). We
adopt the samestrategy as for solving (39), that is we
minimize with respect to ead of the variables sepa-
rately. We therefore consider the two following prob-
lems:

v being xed, we seard for u as a solution of:

inf kukle:1+2ikf u  vk?, (45)

u being xed, we seard for v as a solution of:

igfzikf u  vkZ, + kvkg: (46)

From [14], we know that the solution of (45) is
givenby: 0 = WST(f v; ), whereWST(f v; )
stands for the Wavelet Soft Thresholding of f v with
threshold [37, 7]. And from Proposition 4, the so-
lution of (46) is givenby: ¢ = ST(f u; ), where
ST(f u; ) standsfor the Soft Thresholdingof f u
with threshold

The advantage for having replacedJ (u) by kukB%_1

is that now, to minimize the new functional (44), we
just needto iterate thresholding schemes. This is why
the following algorithm is a very fast one (much faster
than the oneusedin [15] for instance).

Algorithm:

1. Initialization:

Uo = Vo = (47)
2. lterations:
Vnsr = ST(F un; ) (48)
Un+1 = WST(E  Vpar; ) (49)
3. Stopping test: we stop if
max(jun+1  Unj;jVa+1  Vnj) (50)



6.1.3 Mathematical analysis

We now shonv some mathematical results about our
new model, and we prove the convergenceof the algo-
rithm. We will usethe notation:

M (u;v) = kukg; + Zikf u vk + kvk: (51)

Theorem 2 Problem (44) admits a unique solution
(v in (X X).

Proof. SeeAppendix A.1.
The next result is a consequencef Theorem 2:

Prop osition 5 The seuen® (un;vy) built in (47)-
(48)-(49) convemesto the unique minimizer of problem
(44).

Proof. SeeAppendix A.2.

The next result shaws that when goesto 0, then
the solution of problem (44) goesto a solution of the
problem:

igf kukB{1 + kf  ukp: (52)

Prop osition 6 Letus x > 0in (52). We consider

n a decreasing sequene in R, suchthat ! 0. Let

us denote by (u , ;v ,) the solution of problem (44).

Then the squene (u ;v ) is boundal, and any clus-

ter point is of the form (ug;f  ug) with ug solution of
problem (52).

Proof. SeeAppendix A.2.

Remark: It is easyto show that problem (52) has
a solution (the functional is corvex and coercive). In
the casewhen problem (52) has a unique solution uy,
then the sequencqu ;v ,) corvergesto (Up;f  Uo).

n?

6.2 Numerical results

A main di erence with the classicalTV L2 approadc
[44] is that with the TV  L! model, the v compo-
nert is not constrained to be of zero mean (numerical
experiments show that indeed the mean value changes
for dierent valuesof and is not necessarilycloseto
zero).

All the numerical results shovn on Figures 6 to 8
have beenobtained with the algorithm (47)-(48)-(49),
the parameter being computed automatically. The
parameter is setto 1 in all our experiments. The
maximal absolute values of the computed residuals
f u v are always smaller than 1 (and the values
of the imagesrank from 0 to 255). This meansthat
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the residual energyterm, neededmainly for numerical
and theoretical reasons(uniqueness), does not a ect
much the model and the decomposition results.

Remark about parameter selection: To choose
the parameter , we considerthe correlation graph as
in Section4. The di erence is that in this casewe are
not interested in a local minimum of the graph, but
in a large variation. This is related to the non-smaoth
behavior of TV L?! regularization, as pointed out in
[15]. We should remark that the correlation can attain
alsonegative values, unlikethe TV L2 case.If oneis
interestedin decorrelation betweenu and v, oneshould
seekvaluescloseto zeroand not minimal ones.

Figure 6 shows an exampleof removing salt and pep-
per noise. This relates decomposition to the denoising
problem, where in this casethe structural part is the
cleanimage and the noisecan be regardedasa form of
texture. It hasbeenshown in [4Q] that the L term is
particularly well suited to remaove such a noise. This is
due to the closeconnectionsbetweenthe L* norm and
the median operator. In this simple case,the restora-
tion is almost perfect. In Figure 6, secondrow, the
decomposition at the 6th iteration is shownn, right after
the signi cant correlation change. Most of the noise
is already ltered, but it is better to assumea steadier
correlation state, such asat the 10th iteration, depicted
in the bottom row. In Figures 7 a decomposition of
non-geometrictexture is showvn. The result is relatively
good, though somewhatdi erent than the decomposi-
tion of the sameimageby TV L2 and TV G (see
Fig. 2). The structural part is lesseroded and edges
are strong. Howewer, the rounded top left part is not
recovered well, and tends to be blocky.

In the caseof Figure 8, the decomposition is exact
(in this case,the maximum of the absolute of the resid-
ualf u visequalto 0.001),and the result is perfect
(it is clearly better than the results of Figure 1). The
L! norm seemsgo be particularly well suited to capture
non smooth textures. Notice howewer that this image
is particularly well suited for the Haar wavelet.

We presen, in Figure 9, the decomposition results
obtained with the algorithm of [51], which exactly
solves (36) as a second-ordercone program. We see
that both algorithms give similar results for salt and
peper noise removal as well as for structure/texture
separation.

In this section, we have mainly considered non
smooth textures. On the contrary, we will consider
smooth textures in the next section.
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Figure 6: Removing salt and pepper noise (algorithm
(47)-(48)-(49)).

7 TV-Gab or Regularization

In this section, we design a family of Hilb ert spaces
based on Gabor wavelets [36]. Gabor functions, pro-
posed by [23], have been found to be very useful in
texture processingapplications, e.g. [21, 31], and to
have closerelations with the human-visual system[43].
The Gabor wavelets were also de ned by Zibulski and
Zeeviin the context of Multiwindo w Gabor frames[52).
Weintroducea new TV -Gabor model in which onecan
take advantage of a-priori knowledge of both the fre-
quencyand the direction of the textures of interest. We
shav how the correlation criterion can be usedalsoin
this caseto selectthe regularization parameter.

7.1 Intro duction

Let us rst recall the model studied in [8]:

inf - J(u) + Skf uk? (53)
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Figure 7: Approximation of the TV-L1 decomposition
of non-geometrictexture (algorithm (47)-(48)-(49))

In [8], the authors apply their framework to solve
the OSV model [42] (i.e. when H = H 1), and they
study the problem of image denoising. Here, we in-
tend to use(53) to carry out frequencyand directional
adaptive image decomposition. Indeed, by choosing
the kernel K in a suitable way, we can emphasizethe
weight of some frequenciesand some directions. No-
tice that, eventhough K is alinear lIter, solving (53)
doesnot amourt to linear ltering dueto the non linear
term J(u). It is well known in image processingthat
linear lItering cannot presene edgesin an image, but
thanks to the total variation term (53) doesnot su er
from this drawback. To construct the \texture-norm"
we use Gabor wavelets.

The projection algorithm proposedin [8] to solve
(53) is given by (27)-(28) (in Section 3). In fact, one
needsto useK ! and not K to solve (53) with this
algorithm. It is therefore easierto construct K * (so
that K has somegood properties, but without com-
puting K explicitly). K needsto be a non negative
symmetric linear operator. Here we even assumethat
K is positive-de nite. This implies that K ! is alsoa
symmetric positive linear operator.

Remark on a possible alternativ e construction:

K being a positive-de nite symmetric operator, there
exists a unique positive-de nite symmetric linear oper-
ator, denotedby = K, such that K= K. In par-
ticular, we have kf  uk3 = HF u K@ uwi_. =
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Figure 8: Approximation of the TV-L1 decomposi-
tion of non-geometrictexture (with non-invariant Haar
wavelet soft-thresholding)) with algorithm (47)-(48)-

(49))

p

k K(f u)k?,. We canthen rewrite problem (53) as:

inf J(u)+§kpi(f u)k?, (54)

In fact, instead of K 1, it also may be interesting to
construct = K In what follows, we only focus on
1 . . — 1
K -+, but our construction canbe appliedto K = as

well.

7.2 Texture-sp ecic kernels

In [8] it wasshawn that the di erence betweenthe OSV
model [42] and ROF model [44] could be understood
as frequency weighting of the L2 norm for the H !
delit y term of OSV. The frequency weighting of the
square norm is proportional to %, which corresponds
to the ! operator in the frequencydomain, seeFig.
10. The low frequenciesare therefore highly penalized
in the delit y term, considerably reducing the eroding
e ect comparedwith ROF. This has proved to be an
ecient tool for image denoising[42, 7]. In [8] it was
suggestedthat other linear kernels could be used for
adaptive frequency algorithms.

In this section we addressthe problem of designing
a family of kernelsfor image decomposition. The oper-
ator K is a corvolution operator, thereforeK * in the
Fourier domain is simply its inverse. Moreover, K 1!
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Figure 9: TV-L1 decomposition with the algorithm of
[51]. First raw: restoration of the image of Figure 6;
secondraw: decomposition of the image of Figure 7.

is also a corvolution operator. We denote by H the
assaiated lter, and in the rest of the sectionwe focus
on the designingof this lter.

In the u + v decomposition model K penalizesfre-
guenciesthat are not consideredas part of the texture
componert. Therefore K 1 could be interpreted as
the frequencieswhich should mainly be included in the
texture part. A generaland simple characterization of
textures could be done using Gabor functions. These
functions would typically describe the type of textures
we would like to extract. Naturally, they apply asgood
candidatesfor K 1. As already mertioned, the inverse
kernel is actually the one neededin the numerical im-
plemertation. Thus our proposeddesignstrategy is to
use Gabor functions for constructing the inverse ker-
nel. Notice that other design methods could be used.
We usethe function:

2

1 X
g(x) = cos(2 x) \9ﬁ exp 57 (55)
This givesthe following valuesfor the Iter H:
1 2
2 (0;0:5] is the frequency of the texture. is

related to the width of the band-passaround this fre-
qguency A small in the spatial domain meansa wide
band-passin the frequencydomain. If we know the fre-
guency of the texture we want to get, it is then inter-
estingto usealarge (which meansa small band-pass
in the frequencydomain). Note that somerestrictions
apply for choosing , seeLemmad4. Actually, cannot
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Figure 10: The kernel K and its inverseK 1 for the

OSV, ROF and the proposedTV-Gab or model.

be very large, which may be interpreted as a from of
an uncertainty principle.

(55) is a onedimension lter. There are many meth-
ods to then designa 2D lter. One possibility is to
consider the product g(x)g(y). We will analyze this
possibility later. Another choiceto construct our Iter
H is to userotationally invariant Gabor wavelets as:

XZ
2 2

(57)

Sudh a choice will give better numerical results when
the texture is known to be rotationally invariant.

P
g(x;y) = cos 2 X2+ y2 p% exp

Directions: Many textures are not rotationally in-
variant. It is therefore interesting to add this direction
information in our Iter H. To do so, we just needto
usea 1D lter as(55), and then rotate it sothat it ts
the direction of the texture. A possibleimprovemert
is to usean ellipse (see[2]] for instance).

7.3 1D and 2D

In this subsection,we proposea way to construct a 2D
kernel K 1! (in fact of the asswiated Iter H) out of a

Iters
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1D lter:
(58)

where d is the dimension of the lter Hy, and hy is
given by (56). SinceK ! is symmetric, we also choose
Hy to be symmetric. We then setH = Hy Hy ,
whereH standsfor the lter assaiatedto K 1, de-
notes corvolution, and Hy = H, where T stands for
transpose.

Remark: In all this section, for the convolution, we
consider periodic boundary conditions.

7.4 Eigenvalues

In this subsection,we compute the eigernvaluesof K 1,
and give a su cien t condition sothat they are positive.

The Iter H assa&iated with K ! shouldde ne alin-
ear symmetric positive operator. By construction, H
de nes a linear symmetric operator. But aswe will see,
we have to imposesomeconditions on the valueshy of
the Iter sothat it is positive. We recall that a linear
symmetric operator is positive if and only of its eigen-
valuesare positive (this can even be taken as a de ni-
tion). To getthe positivity for H, we are therefore lead
to compute its assaiated eigervalues (the onesof the
asscaiated linear mapping). Sincewe have constructed
H out of two 1-D lters, we are in fact interested in
the eigervalues of these lters (since they will give us
the eigervaluesof K 1). SinceK ! is positive, we also
imposethe constraint that Hy is positive.

The ltering of an image of sizeN M by Hy cor-
respondsto a linear mapping from RNM to RNM (this
is the reasonwhy we speak of the eigervalues of the
Iter H, which are in fact the eigervaluesof the corre-
sponding linear mapping). Let us denote by A4 (resp
Ay) the matrix of size (NM)? assaiated to Hy (resp
Hy). Animagel isamatrix (I ), with 1 i N and
1 | M. Werewrite it asalDimensionalvector |y,
with 1k NM,usingly = Iy ifk=M(@ 1)+]j.

Since Ax and Ay have a very particular form (they
are both circulant matrices), we can compute the exact
values of their eigervalues, as stated by the following
result:

Prop osition 7 The eigenvaluesof Ay are:

8 - 9

< Xz =
_ho+2 hgcos —Zqu ;0 g M7 (59)
' k=1 '

and the onesof A, are:

8 s 9

< X 2 qk =

cho+ 2 heecos == 0 g o (60)
' k=1 '



Proof. The proof is just a consequencef the fact that
Ay and Ay arecirculant matrix. Wereferthe interested
readerto [9] for the details.

Now that we have computed the eigervalues of Ay
and Ay, we can get the onesof K 1. SinceAy and A,
commute, the eigervaluesof K ! are cortained in the
set:

M
2

N

PL(tF P2 )i O g >

;0 ¢ (61)
Sincethe eigervaluesof A, and Ay are positive, soare
the onesof K 1. If wedenoteby X, (resp /) the
smallest eigervalue of Ay (resp Ay) and by .. (resp
hax ) the largest eigervalue of Ay (resp Ay), then, if

is an eigervalue of K 1, we have:

min  min max max (62)
From this last point, we deducein particular that

KK kez  Xax (63)
Lemma 3 If we choose s;—lg in algorithm

(28), then the algorithm converges.

Proof. This a direct consequencef (63) and of The-
orem 1 (in Section 3).

Unfortunately, the eigervaluesof K ! can be neg-
ative. The next lemma givesa su cien t condition for
the eigernvaluesof K ! to be positive.

Lemma 4 If

d 1
X2

2 jhgj
k=1

ho (64)

then the eigenvaluesof A,, A, and K ! are positive.

Proof. This is a consequencedf Proposition 7 and
of (61).

Notice that (64) is only a su cien t condition. The
eigernvaluescan still be positive in lessrestrictiv e cases,
and can be computed explicitly for the designedkernel
(seeProposition 7).

By usingLemma4 and the explicit valuesof hy given
by (56), we can derive more explicit su cien t condi-
tions about the positivity of the eigervalues of K 1.
In particular, we show that if is small enough,then
the eigervalues of H are positive, seemore details in
[9].

7.5 Numerical results

We show somenumerical results obtained with the new
TV -Gabor model on Figures 11 to 16.

17

In Figure 11, the texture is a periodic signal of fre-
quency 1= 0:32. In this casewe use a rotation-
ally symmetric Gabor function of frequency 0:25 and

= 1 (no directional knowledge is incorporated). As
expected, the decomposition in this caseis very good.
In the next two exampleswe focus on the ability of
the model to have directional selectivity of the textural
part, a main feature that clearly distinguishesthe TV -
Gabor model from the previous ones. In casethe tex-
tural directions are not known beforehand,we suggest
to selectthem by the dominant peaksin the Fourier
domain in medium and high frequencies.This can give
basic but su cien t information for designingthe ker-
nel (choosing frequency and preferred direction). The
Fourier transforms of the processedimagesare shown
in Figures 14 and 15. In Figures 12 and 13 the original
image is composedof two types of textures and a syn-
thetic structural part. We would like to extract the pe-
riodic texture in the ellipses,and not the small squares
on the top right. This type of selectivity is quite hard,
but is achieved quite well, as seenin Fig. 12. Edges
of the structural part are kept sharp, and clearly out-
performs any linear kernel that would be designedto
achieve a similar goal. Comparedto TV  L? (Fig. 13,
bottom) one obsenes that both textures are mostly
in the v part. Also there is somemaore erosion of the
structure (seenin the brighter triangle in the v com-
ponert) and some\left-o vers" of the ellipses-texturein
the u part. The comparisonwas made such that both
v parts of TV-Gabor and TV L? have the samelL?
norm.

In Figures 15 and 16, we show another example of
directional decomposition of part of a Dollar note im-
age. In this case,we use the directional TV-Gabor
model in the y direction to capture the foreheadtex-
tures. For comparison, we also display the result with
the standard TV L2 model. As the textures are quite
ne with low cortrast, we show in Fig. 16, bottom, a
contrast enhancedversion of v, by multiplying the v
part by 4. Again here, both v componerts have the
sameL? norm. One clearly seesthe high directional
selectivity of the TV -Gabor model on the left, versus
the non-selectivenessof TV L?2.

8 Conclusion

In this paper, we have studied the problem of imagede-
composition. Givenan original imagef , we split it into
two componerts u and v, u containing the geometric
information and v the texture information. Our mod-
eling is focusedon TV regularization approaces: we
minimize a functional with two terms, the rst oneis
basedon the total variation semi-normand the second



f corr(u; v)

Corr(uy)

/

15 20

0 5 10
Iterations

u Vv

Figure 11: Decomposition of a simple image by TV-
Gabor.

oneon adierent norm adaptedto the texture compo-
nent of the image. We have consideredfour di erent
decomposition models: TV L2, TV G, TV L?
and TV -Gabor.

An interesting conclusion of this study is a form of
\recip e" we can derive to carry out image decomposi-
tion:

1. If the texture part is known to be very structured,
then the TV L' approach seemsto be the best
choice.

. In the caseof directional texture or if an estima-
tion of the frequencyof the texture is known, and if
the texture is rather smooth, then the TV -Gabor
model is the more appropriate approad.

. In a general case,when no a-priori knowledge of
the texture is at hand, we advocate the TV~ L?
approad, or its improvemert with the TV G
regularization.

This provides us with a sort of image decomposition
toolbox for a wide class of synthetic and natural im-
ages.

Apart from the broad perspective and our sugges-
tions when eat model should be used,the main cortri-
butions of our paper are related to the three following
issues:

1. First, we show that the correlation graph between
uandv isane cien t tool to selectthe splitting pa-
rameter. We have applied this method to the four
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TV-Gabor, u

TV-L2,u

Figure 12: u componert of the decomposition of a syn-
thetic imagewith textures of speci ¢ frequencyand ori-
entation by TV-Gabor and TV L2. The TV-Gabor
can be more selective and reduce the inclusion in v
of undesiredtextures / small-structures like the small
blocks on the top right. Also erosionof large structures
is reduced (more apparert in the brighter triangle).

models. As far aswe know, this isthe rst attempt



TV-Gabor, v

TV-L2, v

Figure 13: v componert of the decomposition of a syn-
thetic imagewith textures of speci ¢ frequencyand ori-
entation by TV-Gabor (top) and TV L2 (bottom).
Seethe caption of Fig. 12.

to tune the decomposition parameter of such mod-
els other than by trial and error (the problem had
beenconsideredbeforeonly in the denoisingcase).

2. Second, we propose new and fast algorithms to
solve the TV-L! minimization problem using pro-
jection and thresholding techniques. We have car-
ried out the complete mathematical study of these
algorithms, and shown their e ciency with some
numerical examples.

3. Third, weintroduceanew TV -Gabor model which
leadsus to adaptive frequencyand directional im-
agedecomposition. In the casewhenwe have some
additional information about the texture, then we
can take advantage of it by incorporating this in-
formation in the functional. We have designedand
studied the corresponding Iters, and we have il-
lustrated this new approac with numerical exam-
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Fourier transform of f corr(u; v)

0 5 15 20

10
Iterations

Figure 14: Fourier transform and the correlation of
TV -Gabor of the synthetic imagein Fig. 12.

ples.

In this paper we presenied a way to design sim-
ple texture-speci c lters basedon Gabor functions.
Other, more sophisticated methods could be incorpo-
rated to this framework, such asonesbasedon wavelets
[45). In future works we intend to explore theseissues.
Notice that a straightforward extensionof the new TV -
Gabor model to multiple selecteddirections, is to use
the linearity of the Hilbert tting term and simply add
seweral directional kernels.

A natural generalization for the u + v decomposi-
tion is to consider a multi-scale approac, as done in
[49, 26, 25, 41, 29]. This also relates to the parame-
ter selectionproblem, where better and more accurate
mecdanisms could be used instead of the correlation
criterion. A more detailed version of this work, with
somemore theoretical results and proofs can be found
in our report [9].
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Figure 15: Decomposition of a Dollar note image by
directional TV-Gab or in the y direction to capture the
foreheadtextures.

A Proofs for the TV
rithm

L1 algo-

In this appendix, we give the proofs of the Mathemati-
cal results stated in Section6 for the newfast TV L*?
algorithm.

A.1 Existence and unigueness of a so-
lution

We give herethe proof of Theorem 2 stated in Section6.
We rst recall the theorem:

Theorem 2 Problem (44) admits a unique solution
(¥ in (X X).

To prove Theorem 2, we will use the following
lemma:

Lemma 5 Let us assumethat f 6 0 (i.e. that there
exists (i; j) suchthat f;; & 0). If g2 X, then (0;9) is
not a minimizer of problem (44).

Proof.(Lemma 5): By cortradiction, let us assume
that there exists g 2 X sud that (0O;g) is a minimizer
of problem (44), then in particular we have:

M (0;g) = inf Zikf vkZ, +  kvkg s (65)

u (TV-Gabor) v (TV-Gabor)

u(Tv L3 v(TV L2

4v (TV-Gabor) 4v (TV L2

Figure 16: Decomposition of a Dollar note image by
TV-Gabor in the y direction and by TV-L2.

From Proposition 4, we get that g = ST(f;
f 0 (in our case,we even have 0 f
deducethat g O.

). Since
255), we

Let us rst assume that there exists (i;j)
such that g; > 0. Let us dene =
min (g;; sud that g; > 0). We have M(; g

) = M(0;g) N2 (we recall that f is of size
N N), which cortradicts the fact that (0; ) is a
minimizer of problem (44).

Let us now assumethat g;; = 0 for

Wedene ;= N—fz (we know that f > 0). We
have M ( »;0) = 2_1FU ok?,. But kf k2, =
kfk?,+ N2 3 2, f < kfk?,. Therefore, we get
M ( 2;0) < s-kf k?, = M (0;0), which cortradicts
the fact that (0; g) is a minimizer of problem (44).

al (i) 2 N2

Proof.(Theorem 2): The existenceof a solution for
problem (44) is standard. It is a straightforward con-



sequenceof the fact that M the functional to minimize
is convex and coercive.

Let us now show the uniqueness.In the casewhen
f = 0, then it is clear that (0;0) is the unique mini-
mizer of problem (44). Let us therefore assumethat
f 6 0 (i.e. that there exists (i; j) sudh that f;; 6 0).
By cortradiction, let us assumethat there exist two
solutions for problem (44), (uy;vi) and (uz;vz). We
denoteby m = M (us;vi) = M (ug;vo). If t 2 (0;1),
then we get:

M((tu+ (1 tugtvi+ (1 t)vy) = (66)
ktug + (1 t)Usz_%_l + ktvp+ (1 t)voki s
+okt(f up v+ (@ O Uz vo)kE,

But by corvexity, we have:

ktui+ (1 uzkgy  thuikg + (1 tkuzkg, —(67)

and
ktvp + (1 t)voki:  tkugk s + (1 t)kugk : (68)
aswell as
kt(f up vi)+ (@ O(f ux wv)k3, (69)
tkf  up wvik?, + (1 t)kf ux  vok?,

From (66)-(67)-(68)-(69), we deduce that (since
M (uz;vi) = M (uz;v2) = m):

M(us+ (1 tugtvi+ (1 t)v,) m
and (70) is an equality if and only if (67)-(68)-(69) are
equalities. But by de nition, we have M (tu; + (1
us;tvi + (1 t)vo)  m. Therefore (70) must be an
equality, aswell as (67)-(68)-(69).

The function in (69) is strictly corvex. Therefore
(69) isanequality if andonly if f u; vi=1f uy vy,
i.e. if and only if

(70)

Up Uz =Vy Vi (71)

(67) is an equality if and only if there exists w, 2
XnfOg and (ay;b,) 2 R? sud that u; = a,w, and
U = bywy. (68) is an equality if and only if there exists
wy 2 XnfOg and (ay;b,) 2 R? suc that v; = a,w,
and v, = b,w,. Using w, and w,, then (71) becomes
(ay b)w, = (ay b)w,. Since we assumethat
(ug;v1) 6 (uy;vy), this implies that we cannot have
simultaneously a, = b, and a, = h,. Wethus get that
w, and w, are proportional.

We therefore deducethat there exists w 2 X nfQOg
and (a;b;c) 2 R* such that u; = aw, U, = bw, v; = cw
andv, = (a b+ c)w. Moreover, wehavea b6 0. Let
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us remark that: M (tu; + (1
M (uz+t(uy uz);ve+t(ve Vv2)) = M(up+(t 1)(ug

up);vi+ (t 1)(vi  v2)). Werecallthat t 2 (0;1). We
assumethat a6 0Oandb6 0 (in the casewhena = 0Qor

b= 0, then we get a cortradiction thanksto Lemmayb).
jaj . _jbj

tuztvi + (1 t)vp) =

Weimpose0 t < min 1;ja ' fa b
0 M(uz + t(up  uz);va+ t(va Vv2)) M (uz;ve)
= kaw+ t(a b)wkEHl_1 kakajl_1
+ kbw t(a bwkg: kbwk 1
= tja b kwkg, kwk 1
We therefore deducethat kwkg: ~— kwk.: 0.
By using the fact that O M‘(ul + (t 1)(up
uz);vi+ (t 1)(vi  Vvz)) M (u1;vi), we get exactly
as before that kwkg, kwk 1 0. We therefore
deducethat: '
kwkail_1 = kwk; 1 (72)

And (72) also holds with ui, uz, v; and v,. In par-
ticular, this implies that (O;u; + v1) is a minimizer of
problem (44). Since we assumethat f 6 0 (i.e that
there exists (i; j ) sud that f;; 6 0), we get a cortra-
diction thanks to Lemma 5.

A.2 Convergence of the TV L?! algo-

rithm

We give here the proofs of Proposition 5 and 6 stated
in Section 6.

Proof. (Proposition 5):

The proof usesthe sameideasasthe onesof Propo-
sition 3.4 in [5], but we put it here for the sake of
completeness.

We rst remark that, as we solve successie mini-
mization problems, we have:

M (Un;Va) M (Un;Vn+1)

M (Un+1 »Vn+1 ) (73)

In particular, the sequenceM (un; Vv, ) is nonincreas-
ing. Asit isboundedfrom below by 0, it thus corverges
in R. We denoteby m its limit. We want to show that

inf
(uv)2X X

m = M (u; V) (74)
As M is coercive and as the sequenceM (un;Vvyp)
corverges, we deduce that the sequence(un;vy) is
boundedin X X . We canthus extract a subsequence
(Un, ; Vn, ) which corvergesto (0;%) asn, ! +1 , with
(0;9) 2 X X. Moreover, we have, for all ng, 2 N and
all vin X:
(75)

M (Un,;Vn, 1) M (Un, V)



andforall ng 2 N andall uin X:

M(unk;vnk) M(U;Vnk) (76)
Let us denote by v a cluster point of (v, +1). Con-

sidering (73), we get (sinceM is cortinuouson X X):

m= M(0;¢) = M (0;w) (77)

By passing to the limit in (48), we get:
v = ST(f 0; ), i.e. v is the solution of
inf, J2kf 0 vki+ kvk.: . But from (77), we

know that: zlkf 0 wk3+ kvk: = Zikf 0
vk3 + kok_:. By uniquenessof the solution, we con-
cludethat v= 9. Hencevp,+1 ! ¥. By passingto the
limit in (75) (M is continuouson X X)), we therefore
have for all v:

M((0;9) M (0;v) (78)
And by passingto the limit in (76), for all u:
M(0;¢) M (u; % (79)
(78) and (79) can respectively be rewritten:
M (0;9) = inf M (0;v) (80)
v2X
M (0;9) = inf M (u;¥®) (81)
u2X

But, from the de nition of M (u;v), (81) is equiva-
lent to (see[22)):

02 f+0+90+ @z(0) (82)

and (80) to:

02 f+0+0+ @JIL1(¥

where the functions Jg is de ned by Jg (u) = kukle_1

and J_ 1 by J; 1(v) = kvk 1. The subdi erential of M
at (0;9) is given by:

(83)

1 f+0+0+ @g(0)

OMEN== ti0+0+ @) &
And thus, accordingto (82) and (83), we have:
0
0 2@1(0;0) (85)
which is  equivalent  to: M (0;9) =

infuvyax2M(u;v) = m. Hence the whole se-
quence M (un;Vvn) corverges towards m the unique
minimum of M on X  X. We deduce that the
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sequencgun; vy ) corvergesto (0; %), the minimizer of
M, whenn tendsto +1 .

Proof. (Proposition 6):

The proof is very similar to the one of Proposition
3.8in [5].

The existenceand uniquenessof (u ;v ) is given
by Theorem 2. Since(u , ;v ,) is the solution of prob-
lem (44), we have

M(u ,;v,) M(f;0) (86)

From this, we get that (u ;v ,) is bounded. Then,
up to an extraction, there exists (up; vo) 2 X X sud
that (u ;v ,) cornvergesto (uo;Vvp). From (86), we
getthat ki u, v k3 2 kfkg; . By passingto
the limit n! +1 , we get: kf uo' voko = 0, i.e.
Vo = f Uop.

To conclude the proof of the proposition, there re-
mainsto show that (up;f up) is a solution of problem
(52). Let u2 X. We have:

}
k2

1 2
kukle;l+ kf  uk_: + ﬁl(f u {éf uk
=0

ku k

oKes * kv ke + -kfu v

ku )k .+ kv k|_1
n B‘l;l n
| {z }

k Uok&%‘1+ kf UOkLl
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