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Abstract

This paper explores various aspects of the image de-
composition problem using modern variational tech-
niques. We aim at splitting an original image f into
two components u and v, where u holds the geometri-
cal information and v holds the textural information.
The focus of this paper is to study different energy
terms and functional spaces that suit various types of
textures.

Our modeling uses the total-variation energy for ex-
tracting the structural part and one of four of the fol-
lowing norms for the textural part: L2, G, L1 and a
new tunable norm, suggested here for the first time,
based on Gabor functions.

Apart from the broad perspective and our sugges-
tions when each model should be used, the paper con-
tains three specific novelties: first we show that the
correlation graph between u and v may serve as an ef-
ficient tool to select the splitting parameter, second we
propose a new fast algorithm to solve the TV -L1 min-
imization problem, and third we introduce the theory
and design tools for the TV -Gabor model.

Key-words: Image decomposition, restoration, pa-
rameter selection, BV , G, L1, Hilbert space, projec-
tion, total-variation, Gabor functions.

1 Introduction

1.1 Motivation

Decomposing an image into meaningful components is
an important and challenging inverse problem in im-
age processing. A first range of models are denoising
models: in such models, the image is assumed to have
been corrupted by noise, and the processing purpose is
to remove the noise. This task can be regarded as a

decomposition of the image into signal parts and noise
parts. Certain assumptions are taken with respect to
the signal and noise, such as the piecewise smooth na-
ture of the image, which enables good approximations
of the clean original image.

In modern image-processing, two main successful
approaches are usually considered to solve the denois-
ing problem. The first one is based on manipulating the
wavelet coefficients of the image [20, 35, 14, 34, 33, 37].
The second one is based on solving nonlinear partial-
differential equations (PDE’s) associated with the min-
imization of an energy composed of some norm of the
gradient [44, 13, 4, 37, 40, 41].

A related but different problem, which is the main
topic of this paper, is the decomposition of an image
into its structural and textural parts. The aim of this
type of decomposition is harder to formulate explicitly.
The general concept is that an image can be regarded
as composed of a structural part, corresponding to the
main large objects in the image, and a textural part,
containing fine scale-details, usually with some period-
icity and oscillatory nature. The definition of texture
is vague and highly depends on the image scale. A
“structure” in one scale, can be regarded as “texture”
in another scale. Nevertheless, we will attempt to use
various variational models, to decompose an image into
meaningful structural and textural parts. Moreover, we
will examine the ability to perform the task automat-
ically using the correlation criterion. This criterion is
very simple and does not assume any information on
the nature or scale of the texture. It works well in
simple cases and can aid in finding the right weight
between the structural and textural components. In
more complicated multi-scale images, more elaborated
mechanisms are needed, based on additional informa-
tion. We will discuss the advantages and drawbacks of
the correlation criterion and suggest possible ways for
further research to solve this difficult problem.
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In this paper, we will focus on image decomposition
models based on total variation regularization meth-
ods, as originally proposed in [44]. This approach has
recently been analyzed in [37], which is the inspiration
source of many works [50, 42, 5, 3, 45, 7, 11, 15, 19, 32,
51]. In Section 2 we review the decomposition models
that are considered in this paper.

We aim at splitting an original image f into two
components u and v, u containing the geometrical in-
formation and v the textural information. Our model-
ing is based on TV regularization approaches: we min-
imize a functional with two terms, a first one based
on the total variation and a second one on a different
norm adapted to the texture component. One aim of
the paper is to analyze the different structure-texture
models and to point out the similarities and differences
between the decomposition techniques. In addition,
three main contributions are presented:

1. First, we show that the correlation graph between
u and v is an efficient tool to select the splitting
parameter.

2. Second, we propose a new fast algorithm to solve
the TV -L1 minimization problem.

3. Third, we introduce a new TV -Gabor model which
leads us to adaptive frequency and directional im-
age decomposition.

All the algorithms we consider are inspired by the
ROF model [44], in the sense that they are all of the
generic form TV -another norm.

1.2 Outline of the paper

A main purpose of the paper is to know when one
should use each model. The organization of the paper
is influenced by our final conclusions. The four mod-
els can be classified to fit three main types of textures:
general oscillating patterns (TV − L2 and TV − G),
structural textures (TV − L1) and smooth periodic,
possibly directional, textures (TV -Gabor).

The paper is organized as follows. In Section 2,
the four decomposition models are formulated. In Sec-
tion 3, we introduce the notations that will be used in
the rest of the paper. We briefly review Chambolle’s
projection algorithm, which is a recent and efficient
method to solve the ROF problem [12]. We recall how
Chambolle’s algorithm can be used to solve the A2BC
model [5]. We also recall the framework of the TV -
Hilbert regularization of [8]. In Section 4, we propose
a method to compute the decomposition of an image
using a correlation criterion, inspired by the work of

[39]. In Section 5, we examine general type decompo-
sitions using the TV −L2 and TV −G models and re-
late their parameters in the A2BC framework (which
well approximates TV − G). In Section 6, we intro-
duce a new fast and efficient algorithm to solve the
TV − L1 minimization problem (5). We carry out the
complete mathematical analysis of this new algorithm.
The advantages and drawbacks of using the correlation
method for parameter tuning to this kind of regulariza-
tion are presented. In Section 7, we design a family of
Hilbert spaces based on Gabor functions. This provides
us with a new TV -Gabor model in which one can take
advantage of knowledge of both the frequency and the
direction of the texture. It is also shown how the corre-
lation criterion can be used to select the regularization
parameter. We then conclude the paper in Section 8
with some final remarks and future prospects. In Ap-
pendix A.1, we detail the proofs of the mathematical
results of Section 6.

2 Four Decomposition Models

From now on, we denote by f the original image to
decompose. It is reasonnable and classical to assume
that f is defined on a bounded and connected Lipschitz
open set Ω (typically Ω is a rectangle), and that f is
bounded. Therefore f belongs to L∞(Ω). Since Ω is
bounded, f also belongs to L2(Ω).

2.1 TV -L2 (ROF)

Rudin, Osher and Fatemi proposed in [44] a popular
denoising algorithm which preserves well the edges of
the original image, while removing most of the noise.
This algorithm decomposes an image f into a compo-
nent u belonging to BV and a component v in L2. In
this approach the following functional is being mini-
mized:

inf
(u,v)∈BV×L2/f=u+v

(∫

|Du|+ λ‖v‖2
L2

)

(1)

where
∫
|Du| is the total variation of u. For a detailed

mathematical study of (1) we refer the reader to [13].

2.2 TV -G (Meyer)

In [37], Meyer suggests a new decomposition model.
He proposes the following functional:

inf
(u,v)∈BV×G/f=u+v

(∫

|Du|+ λ‖v‖G

)

(2)

where the Banach space G contains signals with large
oscillations, and thus in particular textures and noise.
We give here the definition of G.
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Definition 1 G is the Banach space composed of dis-
tributions f which can be written as

f = ∂1g1 + ∂2g2 = div (g) (3)

with g1 and g2 in L∞. The space G is endowed with
the following norm:

‖v‖G = inf {‖g‖L∞ /v = div (g), g = (g1, g2),

g1 ∈ L∞, g2 ∈ L∞,
|g(x)| =

√

(|g1|2 + |g2|2)(x)
}

(4)

A function belonging to G may have large oscilla-
tions and nevertheless have a small norm. Thus the
norm on G is well-adapted to capture the oscillations
of a function in an energy minimization method. We
refer the reader to [7] for some numerical computations
of typical image G norm. In [37], the author did not
propose any numerical scheme to compute the decom-
position. Vese and Osher [50] were the first to propose
a numerical scheme to solve this model using Euler-
Lagrange equations based on Lp norms. Aujol et al
[6, 5] suggested a different method based on projection
(A2BC) which will be explained in Section 3.3. Notice
that an approach based on second order cone program-
ming has recently been proposed in [51].

2.3 TV -L1

In [2] and [40] it was suggested to replace the L2 norm
in the ROF model by a L1 norm. The functional to
minimize in this case is

inf
(u,v)∈BV×L1/f=u+v

(∫

|Du|+ λ‖v‖L1

)

(5)

Nikolova has showed that the L1 norm is particularly
well suited to remove salt and pepper noise [40]. Com-
paring to the ROF model (1), this functional does not
erode structures, and presents other interesting prop-
erties.

This model has recently been studied mathemati-
cally in the continuous case in [15]. The authors present
interesting quantitative properties of the model related
to scale-space and show that geometrical features are
better preserved. Numerically, one of the main draw-
backs of the model is that, until now, there was no fast
algorithm to solve (5). An important contribution of
the paper is to address this problem and to propose a
fast and efficient algorithm to solve (5). We will study
problem (5) in Section 6. A different method based
on second order cone programming has recently been
proposed in [51].

2.4 TV -Hilbert

Motivated by [44] and [42], the authors of [8] have pro-
posed a generalization of the ROF and OSV models:

inf
(u×v)∈BV×H/f=u+v

{∫

|Du|+ λ‖v‖2
H

}

(6)

where H is some Hilbert space. In the case when
H = L2, then (6) is the ROF model [44], and when
H = H−1 then (6) is the OSV model [42]. By choosing
suitably the Hilbert space H, it is possible to compute
a frequency and directional adaptive image decompo-
sition, as we will see in Section 7. One of the main
contributions of the paper is the designing of a family
of Hilbert spaces based on Gabor wavelets for such a
purpose.

3 Settings and Previous Projec-
tion Algorithms

In this paper all our models are solved numerically by
projections algorithms, and not by using the more clas-
sical techniques based on Euler-Lagrange equations.
Notice that a method based on convex analysis to solve
TV models was recently proposed in [18], and another
one based on Support Vector Regression in [46] We
present Chambolle’s projection algorithm, which is a
recent method to solve the ROF problem [12]. An im-
portant advantage of this algorithm is that there is no
need to regularize the TV energy. When using Euler-
Lagrange equations to minimize a TV term, one first
needs to regularize the functional and consider instead
∫ √

|∇u|2 + ε2. The small parameter ε is necessary to
prevent numerical instabilities. The main advantage
of Chambolle’s projection method is that it does not
use this additional artificial parameter, and is therefore
more faithful to the continuous formulation of the en-
ergy. Moreover, in this projection framework, we can
easily and rigourously show the convergence of the al-
gorithms towards the minimizers of the functional.

We also recall how Chambolle’s algorithm can be
used to solve the A2BC model [5]. We then recall how
Chambolle’s algorithm has been extended to a larger
class of TV -Hilbert functionals in [8]. We begin by
introducing the notations that we will use in the rest
of the paper.

3.1 Discretization

From now on and through the rest of the paper, we
consider the discrete case The image is a two dimen-
sion vector of size N × N . We denote by X the Eu-
clidean space R

N×N , and Y = X × X. The space X
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will be endowed with the L2 inner product (u, v)L2 =
∑

1≤i,j≤N ui,jvi,j and the norm ‖u‖L2 =
√

(u, u)L2 .
We also set ‖u‖L1 =

∑

1≤i,j≤N |ui,j |. To define a dis-
crete total variation, we introduce a discrete version of
the gradient operator. If u ∈ X, the gradient ∇u is
a vector in Y given by: (∇u)i,j = ((∇u)1i,j , (∇u)2i,j),
with

(∇u)1i,j =

{
ui+1,j − ui,j if i < N
0 if i = N

and

(∇u)2i,j =

{
ui,j+1 − ui,j if j < N
0 if j = N

.

The discrete total variation of u is then defined by:

J(u) =
∑

1≤i,j≤N

|(∇u)i,j | (7)

We also introduce a discrete version of the diver-
gence operator. We define it by analogy with the con-
tinuous setting by div = −∇∗ where ∇∗ is the ad-
joint of ∇: that is, for every p ∈ Y and u ∈ X,
(−div p, u)L2 = (p,∇u)Y . It is easy to check that:

(div (p))i,j =







p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i=1

−p1
i−1,j if i=N

(8)

+







p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j=1

−p2
i,j−1 if j=N

From now on, we will use these discrete operators. We
are now in position to introduce the discrete version of
Meyer’s space G.

Definition 2

G = {v ∈ X / ∃g ∈ Y such that v = div (g)} (9)

and if v ∈ G:

‖v‖G = inf {‖g‖∞ / v = div (g), (10)

g = (g1, g2) ∈ Y, |gi,j | =
√

(g1
i,j)

2 + (g2
i,j)

2
}

where ‖g‖∞ = maxi,j |gi,j |.
Moreover, we will denote:

Gµ = {v ∈ G / ‖v‖G ≤ µ} (11)

We recall that the Legendre-Fenchel transform of
F is given by F ∗(v) = supu(u, v)L2 − F (u) (see [22]).
The following result is proved in [5]. We see that J(.)
(resp.‖.‖G) is the polar of ‖.‖G (resp. J(.)).

Proposition 1 The space G identifies with the follow-
ing subspace:

X0 = {v ∈ X /
∑

i,j

vi,j = 0} (12)

Notice that these results are in discrete. See [3] for
the definition of G in the continuous case. We also refer
the interested reader to [30] about the relation between
the discrete and the continuous Fenchel dual.

3.2 Chambolle’s projection algorithm

Since J defined by (7) is homogeneous of degree one
(i.e. J(λu) = λJ(u) ∀u and λ > 0), it is then stan-
dard (see [22]) that J∗ is the indicator function of some
closed convex set, which turns out to be the set G1 de-
fined by (11):

J∗(v) = χG1
(v) =

{
0 if v ∈ G1

+∞ otherwise
(13)

This can be checked out easily (see [12] for details).
In [12], the author proposes a nonlinear projection al-
gorithm to minimize the ROF model. The problem
is:

inf
u∈X

(

J(u) +
1

2λ
‖f − u‖2

L2

)

(14)

We have the following result, which comes from stan-
dard convex duality theory [22]:

Proposition 2 ([12]): The solution of (14) is given
by: u = f−PGλ

(f) where P is the orthogonal projector
on Gλ (defined by (11)).

We use the following algorithm to compute PGλ
(f).

It indeed amounts to finding:

min
{
‖λdiv (p)− f‖2

L2 : p / |pi,j | ≤ 1 ∀i, j = 1, . . . , N
}

(15)
This problem can be solved by a fixed point method:
p0 = 0 and

pn+1
i,j =

pn
i,j + τ(∇(div (pn)− f/λ))i,j

1 + τ |(∇(div (pn)− f/λ))i,j |
(16)

In [12] is given a sufficient condition ensuring the con-
vergence of the algorithm: it is shown that as long
as τ ≤ 1/8, then λdiv (pn) converges to PGλ

(f) as
n→ +∞.

3.3 Aujol-Aubert-Blanc-Féraud-
Chambolle model (A2BC)

Inspired from the work by A. Chambolle [12] and by
the numerical results of [50], the authors of [5, 6] pro-
pose a relevant approach to solve Meyer problem. They
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consider the following problem

inf
(u,v)∈X×Gµ

(

J(u) +
1

2α
‖f − u− v‖2

L2

)

(17)

where Gµ = {v ∈ G/‖v‖G ≤ µ} , and ‖v‖G is defined
by (10), and J(u) by (7)

The authors of [5] present their model in a discrete
framework. See also [3] for a study of this model in a
continuous setting, and [10] for an extension to color
images. In this paper, we will focus on the A2BC
model to solve Meyer’s problem automatically in Sec-
tion 5. In [5, 6], the authors use Chambolle’s projection
algorithm [12] to solve (17). We describe their method
below.

Minimization: Since J∗ is the indicator function of
G1 (see (13)), we can rewrite (17) as

inf
(u,v)∈X×X

1

2α
‖f − u− v‖2

L2 + J(u) + J∗
(
v

µ

)

(18)

With this formulation, we see the symmetric roles
played by u and v. To solve (18), we consider the two
following problems:

• v being fixed, we search for u as a solution of:

inf
u∈X

(

J(u) +
1

2α
‖f − u− v‖2

L2

)

(19)

• u being fixed, we search for v as a solution of:

inf
v∈Gµ

‖f − u− v‖2
L2 (20)

From Proposition 2, we know that the solution of
(19) is given by: û = f − v − PGα

(f − v). And the
solution of (20) is simply given by: v̂ = PGµ

(f − u).

Algorithm:

1. Initialization:
u0 = v0 = 0 (21)

2. Iterations:

vn+1 = PGµ
(f − un) (22)

un+1 = f − vn+1 − PGα
(f − vn+1) (23)

3. Stopping test: we stop if

max(|un+1 − un|, |vn+1 − vn|) ≤ ε (24)

It is shown in [5] that the sequence (un, vn) given
by (21)-(22)-(23) converges to the unique minimizer of
problem (17).

Parameters: Algorithm (21)-(22)-(23) needs thus
the two parameters α and µ. The parameter α controls
the L2-norm of the residual f − u − v. The smaller α
is, the smaller the L2 norm of the residual f −u− v is.
The larger µ is, the more v contains information, and
therefore the more u is averaged. In fact, the choice
of α is easy. One just needs to set it very small. For
instance, in all the examples presented hereafter, we
have chosen α = 1, and found out a maximum norm
for f −u− v of about 0.5 (for values ranging from 0 to
255). But the µ parameter is much harder to tune. It
controls the G norm of the oscillating component v. In
the case of image denoising, a first method to tune µ
with respect to the standard deviation of the noise has
been proposed in [7]. We will present a way to select
µ in the case of image decomposition in Section 5.

3.4 H Hilbert space

In [8], the authors have considered other spaces to
model oscillating patterns. They propose to use a gen-
eral family of Hilbert spaces that we will consider in
Section 7. These Hilbert spaces are defined thanks to
an operator K.

K a linear symmetric positive-definite operator from
A to L2, where A is either X0 or L2 (we recall that X0

is defined by (12)). In the case when A = X0, then we
extend K to the whole L2 by setting K(x) = +∞ if
x ∈ L2\X0. Notice that with these assumptions, then
we can define K−1 on ImK = {z ∈ L2 such that ∃x ∈
A with z = K(x)}.

If f and g are in X0, then let us define:

〈f, g〉H = 〈f,Kg〉L2 (25)

This defines a inner product on X0 = {x ∈
X /

∑

i,j xi,j = 0}.
We note that since we only deal here with the dis-

crete case, all the spaces we consider are of finite di-
mension and are therefore Euclidean spaces.

Examples:

1. When K = Id, then H = L2.

2. When K = −∆, then H = H = {f ∈ L2,∇f ∈
L2}.

3. When K = −∆−1, then H = H−1 = (H1
0 )∗ (see

[1] for the definition of H−1).

Remark: In Section 7, we will assume A = L2, i.e.
that K is positive-definite on L2.
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3.5 TV -Hilbert regularization model

The model studied in [8] is the following:

inf
u

(

J(u) +
λ

2
‖f − u‖2

H

)

(26)

In [8], the authors give some mathematical results
about this problem. In particular, they show the ex-
istence and uniqueness of a solution for (26). They
also propose a modification of Chambolles’s projection
algorithm [12] to compute the solution of problem (26):

p0 = 0 (27)

and

pn+1
i,j =

pn
i,j + τ(∇(K−1div (pn)− λf))i,j

1 + τ |(∇(K−1div (pn)− λf))i,j |
(28)

Theorem 1 If τ ≤ 1
8‖K−1‖

L2
, then 1

λK
−1div pn → v̂

as n→∞, and f− 1
λK

−1div pn → û as n→∞, where
û is the solution of problem (26) and v̂ = f − û.

In [8], the authors apply their framework to solve
the OSV model [42] (i.e. when H = H−1), and they
study the problem of image denoising. In this paper,
we intend to use (26) to carry out frequency and di-
rectional adaptive image decomposition. Indeed, by
choosing the kernel K in a suitable way, we can em-
phasize the weight of some frequencies and directions.
We will address this problem in Section 7.

Now that we have introduced the notations and pre-
sented some of the previous works, we present a general
criterion based on correlation to select the regulariza-
tion parameter in the different models that we will con-
sider.

4 The Correlation Tool for Se-
lecting the Balance between
the Energies

In this section, we propose a method to select the
weight parameter for a proper decomposition of an
image. The authors are not aware of any suggested
method on how to choose the value of λ for decompo-
sition. Therefore we first discuss shortly the solutions
at present that are used for denoising and explain the
difficulties that arise in decomposition.

For the denoising problem, one often assumes that
the variance of the noise σ2 is known a-priori or can
be well estimated from the image. As the v part in

the denoising case should contain mostly noise, a nat-
ural condition is to select λ such that the variance of
v is equal to that of the noise, that is var(v) = σ2.
Such a method was used in [44] in the constrained ROF
model, and this principle dates back to Morozov [38] in
regularization theory. A modern approach, suggested
recently in [27], is to try to optimize a criterion, such
as the Signal-to-Noise Ratio (SNR). It was shown that
this method can achieve better results than the con-
strained formulation, in terms of SNR and visually, for
a wide class of images. This method also relies on an
estimation of the noise variance.

Both of the above approaches cannot be applied for
finding λ in decomposition. Here we do not know of a
good way to estimate the texture variance, also there
is no performance criterion like the SNR, which can be
optimized. Therefore we should resort to a different
approach.

Our approach follows the work of Mrazek-Navara
[39], used for finding the stopping time for denoising
with nonlinear diffusions. The method relies on a cor-
relation criterion and assumes no knowledge of noise
variance. As shown in [27], its performance is inferior
to the SNR-based method of [27] and to an analogue
of the variance condition for diffusions. For decompo-
sition, however, the approach of [39], adopted for the
variational framework, may be a good basic way for
the selection of λ.

In this paper the general decomposition framework
is of the form:

EStructure(u) + λETexture(v), f = u+ v, (29)

where u and v minimize the above total energy. Our
goal is to find the right balance between the energy
terms, or the value of λ, which produces a meaningful
structure-texture decomposition.

Let us define first the (empirical) notions of mean,
variance and covariance in the discrete setting of N×N
pixels image. The mean is

q̄
.
=

1

N2

∑

1≤i,j≤N

qi,j ,

the variance is

V (q)
.
=

1

N2

∑

1≤i,j≤N

(qi,j − q̄)2,

and the covariance is

cov(q, r)
.
=

1

N2

∑

1≤i,j≤N

(qi,j − q̄)(ri,j − r̄).

We would like to have a measure that defines orthog-
onality between two signals and is not biased by the
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magnitude (or variance) of the signals. A standard
measure in statistics is the correlation, which is the co-
variance normalized by the standard deviations of each
signal:

corr(q, r)
.
=

cov(q, r)
√

V (q)V (r)
.

By the Cauchy-Schwarz inequality it is not hard
to see that cov(q, r) ≤

√

V (q)V (r) and therefore
| corr(q, r)| ≤ 1. The upper bound 1 (completely cor-
related) is reached for signals which are the same, up
to an additive constant and up to a positive multi-
plicative constant. The lower bound −1 (completely
anti-correlated) is reached for similar signals but with
a negative multiplicative constant relation. When the
correlation is 0 we refer to the two signals as not cor-
related. This is a necessary condition (but not a suffi-
cient one) for statistical independence. It often implies
that the signals can be viewed as produced by different
“generators” or models.

To guide the parameter selection of a decomposition
we use the following assumption:

Assumption: The texture and the structure compo-
nents of an image are not correlated.

This assumption can be relaxed by stating that the
correlation of the components is very low. Let us de-
fine the pair (uλ, vλ) as the one minimizing (29) for a
specific λ. As proved in [37] for the TV − L2 model
(and in [24] for any convex structure energy term with
L2), we have cov(uλ, vλ) ≥ 0 for any non-negative λ
and therefore

0 ≤ corr(uλ, vλ) ≤ 1, ∀λ ≥ 0. (30)

This means that one should not worry about negative
correlation values. Note that positive correlation is
guaranteed in the TV − L2 case. As we will later see,
in the TV −L1 case we may have negative correlations,
and should therefore be more careful.

Following the above assumption and the fact that
the correlation is non-negative, to find the right param-
eter λ, we are led to consider the following problem:

λ∗ = argminλ (corr(uλ, vλ)) . (31)

In practice, one generates a scale-space using the pa-
rameter λ (in our formulation, smaller λ means more
smoothing of u) and selects the parameter λ∗ as the
first local minimum of the correlation function between
the structural part u and the oscillating part v. See also
[24, 25, 28, 26, 39, 8] for related approaches.

This selection method can be very effective in simple
cases with very clear distinction between texture and
structure. In these cases corr(u, v) behaves smoothly,

reaches a minimum approximately at the point where
the texture is completely smoothed out from u, and
then increases, as more of the structure gets into the v
part. See Figures 1 to 5 in the next section for some
numerical examples. The graphs of corr(u, v) in the
TV −L2 case behave quite as expected, and the selected
parameter lead to a good decomposition. We will make
more comments about the numerical results in the next
section.

For more complicated images, there are textures and
structures of different scales and the distinction be-
tween them is not obvious. In terms of correlation,
there is no more a single minimum and the function
may oscillate.

As a first approximation of a decomposition with a
single scalar parameter, we suggest to choose λ after
the first local minimum of the correlation is reached.
In some cases, a sharp change in the correlation is also
a good indicator: after the correlation sharply drops
or before a sharp rise. At this stage we cannot claim
a fully automatic mechanism for the parameter selec-
tion that always works, but rather a highly relevant
measurement that should be taken into consideration
in future development of automatic decompositions.

5 TV − L2 and TV − G Regular-
izations

In this section, we first show how we can use the cor-
relation tool to select the parameter in the TV − L2

regularization model. We then show how we can ex-
tend this method to the TV −G model.

5.1 Parameter selection for the TV −L2

model

Let us first recall here the TV − L2 problem [44]:

inf
u∈X

(

J(u) +
1

2β
‖f − u‖2

L2

)

(32)

We denote by (uβ , vβ) the solution of (32). This
regularization model has encountered a large success in
image denoising. One of the main reason of this success
is that the total variation regularization preserve the
edges of the restored image. It is straightforward to
apply the correlation criterion of Section 4 to select
the parameter in the TV − L2 model.
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5.2 Parameter selection for the TV −G

model

We focus here on the A2BC model [5], which is a very
good approximation. We show how we can use the cor-
relation criterion for the ROF model [44] to carry out
automatic image decomposition with the A2BC model.
A first approach would be to consider the correlation
between u and v computed with the A2BC algorithm.
We have rejected this approach because of computation
time: indeed, to compute an accurate solution with
the A2BC algorithm is about ten times slower than
the classical TV −L2 minimization approach. We have
decided instead to use the mathematical connections
between the ROF model and the A2BC algorithm to
select the parameter in a much faster way.

To this end, we first need to give some mathematical
properties of the A2BC model, (17), which is a way to
solve Meyer’s problem. As we have said in Section 3,
the parameter α in (17) is set to a fixed small value
(α = 1 in our numerical examples). The difficulty is
to tune the µ parameter. We intend here to propose
a method to compute automatically the parameter µ.
The idea is to use the method proposed for the ROF
model in Section 5.1 (which is a straightforward appli-
cation of the general method presented in Section 4).
By choosing β as the first minimum of the function
β 7→ corr(uβ , vβ) (where uβ is the solution of the ROF
problem (32) and vβ = f − uβ), we have an automatic
algorithm to compute the right parameter β for (32).
All we need to do then is to relate the parameter β in
(32) to µ in the A2BC model (17).

5.2.1 Relating β to µ

In [37], Meyer introduced the G norm to analyze the
mathematical properties of the ROF model. As noticed
in [48], one of the main results of [37] happens to be a
straightforward corollary of Proposition 2:

Corollary 1 Let us denote by uβ the solution of (32),
by vβ = f − uβ, and by f̄ the mean of f .

• If ‖f − f̄‖G ≥ β, then ‖vβ‖G = ‖f − uβ‖G = β.

• If ‖f − f̄‖G ≤ β, then uβ = f̄ .

As we can see, the behavior of the ROF model is
closely related to the G norm of the initial data f .

Lemma 1 The parameter β computed in Section 4 is
such that ‖vβ‖G = β.

Proof. Let us denote βmax = ‖f − f̄‖G. It is easy to
show that if β ∈ (0, βmax), then corr(uβ , vβ) remains
bounded. From Corollary 1, we get that if β ≥ βmax,

then uβ = f̄ and vβ = f − f̄ . Therefore the first local
minimum of the correlation is such that β ≤ βmax. We
then conclude thanks to Corollary 1. �

Thanks to Section 5.1, we know how to compute
automatically the decomposition of an original image
with the ROF model. And thanks to Lemma 1, we
also know the G norm of the v component we get with
the ROF model, i.e. ‖v‖G = β. As we have explained
in the introduction, Meyer’s idea is to replace the L2

norm in the ROF model (32) by the G norm. The
G norm is better suited to capture oscillating patterns,
such as textures, than the L2 norm (as it is numerically
shown in [7]). Therefore, a possible improvement of the
algorithm of Section 5.1 is to compute Meyer’s decom-
position under the constraint that ‖v‖G = β. Since the
G norm is a better choice to capture the texture part
of an image [37, 3, 7], this would indeed gives a better
decomposition result than the ROF model.

This naturally leads us to consider the A2BC model
(17) with

µ = β (33)

Indeed, with such a parameter, the v component com-
puted with the A2BC model is such that ‖v‖G ≤ β.
And we prove in the following subsection that in fact
we have ‖v‖G = β.

5.2.2 Some mathematical results about the

A2BC model

The functional to minimize in (17) is the following:

F (u, v) = J(u) + J∗
(
v

µ

)

+
1

2α
‖f − u− v‖2

L2 (34)

The following Lemma is proved in [5]:

Lemma 2 There exists a unique couple (û, v̂) ∈ X ×
Gµ minimizing F on X ×X.

From now on, let us denote by (û, v̂) the unique solution
of the A2BC problem (17). The next result will help to
see the connection between the parameter β in the ROF
model and the parameter µ in the A2BC algorithm:

Proposition 3 The following alternative holds:

• If ‖f − f̄‖G ≤ µ, then v̂ = f − f̄ .

• If ‖f − f̄‖G ≥ µ, then ‖v̂‖G = µ.

Proof. Let us first remark that F (u, v) ≥ 0 for all
(u, v) in X × X. Moreover, if we assume that ‖f −
f̄‖G ≤ µ, we have F (f̄ , f − f̄) = 0, which means that
(f̄ , f − f̄) is a minimizer of F . We then get the first
point of Proposition 3 thanks to the uniqueness result
of Lemma 2.
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We now turn our attention to the second point of
Proposition 3. We therefore assume that ‖f− f̄‖G ≥ µ.
Let us consider the following function defined onX×X:

H(u, v) = J(u) +
1

2α
‖f − u− v‖2

L2 (35)

H is a proper convex continuous function defined on
X×X. There exists therefore (ũ, ṽ) inX×Gµ such that
(ũ, ṽ) is a minimizer of H on X × Gµ. Let us remark
that H(f̄ , f − f̄) = 0. We then consider the function
g : t 7→ ‖tṽ+(1−t)(f−f̄)‖G. g is a continuous function
on [0, 1]. Moreover, we have g(0) = ‖f − f̄‖G ≥ µ and
g(1) = ‖ṽ‖G ≤ µ. There exists thus ť in [0, 1] such
that g(ť) = ‖ťṽ + (1− ť)(f − f̄)‖G = µ. Let us denote
by v̌ = ťṽ + (1 − ť)(f − f̄) and ǔ = ťũ + (1 − ť)f̄ .
Since H is a convex function, we get that H(ǔ, v̌) ≤
ťH(ũ, ṽ) + (1− ť)H(f̄ , f − f̄) ≤ H(ũ, ṽ). We therefore
deduce that (ǔ, v̌) is a minimizer ofH on X×Gµ. Since
H and F coincide on X × Gµ, we get that (ǔ, v̌) is a
minimizer of F on X × X. From Lemma 2, we then
conclude that (ǔ, v̌) = (û, v̂) the unique minimizer of
F on X ×X, and ‖v̂‖G = ‖v̌‖G = µ. �

From Lemma 1 and Corollary 1, we know that
‖f − f̄‖G ≥ β. And from (33), we have β = µ. From
Proposition 3, we thus deduce that v̂, the v compo-
nent we get with the A2BC algorithm, is such that
‖v̂‖G = µ. This new v component has therefore the
same G norm as the one of the v component (vβ) com-
puted with the ROF model in Section 5.1. But since
the G norm is better at capturing the oscillating pat-
terns then the L2 norm, this new decomposition is more
accurate than the previous one.

This analysis is confirmed by the numerical results
we get in the next subsection.

5.3 Numerical results

Let us first summarize the method we propose to com-
pute the decomposition into geometry and texture with
the A2BC model.

Automatic algorithm for the A2BC model:

1. Set α = 1 in (17).

2. Compute β as the first minimum of the function
β 7→ corr(uβ , vβ) (where uβ is the solution of the
ROF problem (32) and vβ = f − uβ).

3. Set µ = β in (17).

4. Compute the decomposition with the algorithm
(21)-(22)-(23).

We show some numerical results in Figures 1-5 of
TV −L2 and TV −G decompositions. As expected, the
results obtained with the A2BC algorithm are slightly
better than the ones obtained with the ROF model.
For instance, on Figure 1, one can check that the square
is less eroded with Meyer’s G norm (and in this case,
the square is a geometrical feature and should remain in
the u component). On Figure 5, one sees that the leg of
the table appears much more in the v component with
the ROF model than with the A2BC algorithm. In
general, the ROF model already does a good job, and
the A2BC algorithm seems to bring a small improve-
ment. Notice that we do not claim that we compute
the best possible results (see [50, 42, 5, 7] for instance
where the parameters are tuned manually): what we
claim is that our parameter selection method leads to
a visually good result (for both models).

Detailed explanation on the correlation graph:

In these experiments the correlation corr(u, v) of
50 values of λ is plotted. We initially set λ0 = 1
and reduced each time the value by a factor of 0.9
such that λn+1 = 0.9λn. To solve the minimization
problem for λn+1 we initialized with the solution
obtained for λn, and therefore the convergence is
quite fast. Also note that in practice one needs not
compute the whole graph and can stop when the
first local minimum is reached. One may also use
courser λ resolutions to save some computational
efforts. Note that the correlation graph finds well
the right splitting parameter in Figs. 1,2 and even
in the more complex Barbara image, Figs. 3-5. In
these cases a fully automatic decomposition is possi-
ble. In all the correlation graphs the splitting point
chosen by our automatic algorithm is marked with “x”.

Now that we have introduced a method to automat-
ically compute the µ parameter in (17), that is to au-
tomatically compute Meyer’s decomposition, we turn
our attention to another interesting, more geometric,
decomposition model.

6 TV -L1 Regularization

Let us first recall the model studied in [40]:

inf
u
{J(u) + λ‖f − u‖L1} (36)
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Original image corr(u, v)
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Figure 1: A simple example

6.1 A fast algorithm for TV -L1 regular-
ization

In this section, we introduce a new fast and efficient
algorithm to solve the TV − L1 minimization problem
(5). We carry out the complete mathematical analysis
of this new algorithm. We can then adapt the cor-
relation method for parameter tuning to this kind of
regularization.

As we have done previously for the ROF model, we
want to derive an automatic algorithm to compute the
parameter λ automatically. Our idea is to use the cor-
relation assumption as in Section 4. To this end, we
first need to propose a fast algorithm to minimize (36).
Indeed, the algorithm used for instance in [15] is a very
slow algorithm: the authors first regularize the func-
tional by considering the approximated problem:

inf
u

{∫ √

|∇u|2 + ε21 + λ

∫ √

(f − u)2 + ε22

}

(37)

They compute the solution of this new problem by solv-
ing the associated Euler-Lagrange equation.

Original image corr(u, v)

0 10 20 30 40 50
0.1

0.15

0.2

Iterations

C
or

r(
u,

v)

uROF vROF

uA2BC vA2BC

Figure 2: A synthetic image

In [40], the author solves the problem:

inf
u

{∫
√

|∇u|2 + ε2 + λ‖f − u‖L1

}

(38)

The author proposes a relaxation algorithm to compute
the solution, but this is also a slow algorithm. Notice
that in this case there may be several possible solutions.

We mention also the very recent work [51] where the
authors minimize (38), for ε = 0, with an algorithm
based on second order cone programming.

6.1.1 A new functional

We remind the reader that in this paper we only con-
sider the discrete case.

We propose here another possible regularization of
(36). We consider the functional:

inf
u,v

{

J(u) +
1

2α
‖f − u− v‖2

L2 + λ‖v‖L1

}

(39)

The parameter α is small so that we almost have
f = u+ v.
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Figure 3: Barbara image and TV − L2 correlation
graph.

uROF

uA2BC

Figure 4: u component of TV −L2 and TV −G decom-
positions of the Barbara image (the TV −G decompo-
sition is approximated with the A2BC algorithm)

Proposition 4 β being a positive parameter, the so-

vROF

vA2BC

Figure 5: v component of TV −L2 and TV −G decom-
positions of the Barbara image (the TV −G decompo-
sition is approximated with the A2BC algorithm).

lution v̂ of the problem

inf
v

{
1

2β
‖g − v‖2L2 + ‖v‖L1

}

(40)

is given by:

vi,j =







gi,j − β if gi,j ≥ β
0 if |gi,j | ≤ β
gi,j + β if gi,j ≤ −β

(41)

We will write v = ST (g, β), i.e. v is the Soft Thresh-
olding of g with level of threshold β.

Proof. The proof is the same as the one proposed in
[14] (page 323) in the case of Wavelet Soft Threshold-
ing. It is just a simple 1D minimization problem, since
all the equations are independent, and the computation
is straightforward. �

Let us now look at the minimization of (39). Since
the functional is convex, a natural way to compute the
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solution is to minimize with respect to each of the vari-
ables separately, and to iterate until convergence as in
the A2BC model for instance. See also [16, 17] for a
general approach of such minimization problems. We
therefore consider the two following problems:

• v being fixed, we search for u as a solution of:

inf
u

(

J(u) +
1

2α
‖f − u− v‖2

L2

)

(42)

• u being fixed, we search for v as a solution of:

inf
v

1

2α
‖f − u− v‖2

L2 + λ‖v‖L1 (43)

From Proposition 2, we know that the solution of
(42) is given by: û = f − v − PGα

(f − v). And from
Proposition 4, the solution of (43) is given by: v̂ =
ST (f − u, αλ).

It is possible to show as in [5] (for the A2BC model)
that iterating these two minimizations is a way to com-
pute the solution of problem (39). The main advantage
of this new algorithm is that instead of the two regu-
larization parameters ε1 and ε2 used in [15], here we
only have one regularization parameter λ. Moreover,
this new algorithm seems to be faster.

6.1.2 A thresholding algorithm

To increase the speed of the previous algorithm, we
propose a slight modification of problem (39). We con-
sider the new functional:

inf
u,v

{

‖u‖Ḃ1

1,1
+

1

2α
‖f − u− v‖2

L2 + λ‖v‖L1

}

(44)

where Ḃ1
1,1 is the usual homogeneous Besov space [37,

14, 7].
Although we consider the discrete case, we give here

the definition of Ḃ1
1,1 in the continuous case for the sake

of clarity.

Definition 3 Let ψj,k an orthonormal base composed

of smooth and compactly supported wavelets. Ḃ1
1,1 is a

subspace of L2(R2), and a function f belongs to Ḃ1
1,1 if

and only if:
∑

j∈Z

∑

k∈Z2 |cj,k| < +∞ , where cj,k are
the wavelet coefficients of f .

In this paper, since we want to approximate J(u) by
‖u‖Ḃ1

1,1
, we only consider the case of the Haar wavelet.

It is proved in [47] that in 1D, total variation minimiza-
tion is equivalent to wavelet soft thresholding (in the
case of the Haar wavelet with one level of decomposi-
tion). However, the two regularization spaces (BV and

Ḃ1
1,1) are different. In particular, characteristic func-

tions of sets with finite perimeter belong to BV but are
not in Ḃ1

1,1. This is the reason why it can be expected
that the edges of the original image f are better put
in the geometrical component u with model (39) than
with (44).

Let us now look at the minimization of (44). We
adopt the same strategy as for solving (39), that is we
minimize with respect to each of the variables sepa-
rately. We therefore consider the two following prob-
lems:

• v being fixed, we search for u as a solution of:

inf
u

(

‖u‖Ḃ1

1,1
+

1

2α
‖f − u− v‖2

L2

)

(45)

• u being fixed, we search for v as a solution of:

inf
v

1

2α
‖f − u− v‖2

L2 + λ‖v‖L1 (46)

From [14], we know that the solution of (45) is
given by: û = WST (f − v, α), where WST (f − v, α)
stands for the Wavelet Soft Thresholding of f − v with
threshold α [37, 7]. And from Proposition 4, the so-
lution of (46) is given by: v̂ = ST (f − u, αλ), where
ST (f−u, αλ) stands for the Soft Thresholding of f−u
with threshold αλ

The advantage for having replaced J(u) by ‖u‖Ḃ1

1,1

is that now, to minimize the new functional (44), we
just need to iterate thresholding schemes. This is why
the following algorithm is a very fast one (much faster
than the one used in [15] for instance).

Algorithm:

1. Initialization:

u0 = v0 = 0 (47)

2. Iterations:

vn+1 = ST (f − un, αλ) (48)

un+1 = WST (f − vn+1, α) (49)

3. Stopping test: we stop if

max(|un+1 − un|, |vn+1 − vn|) ≤ ε (50)

12



6.1.3 Mathematical analysis

We now show some mathematical results about our
new model, and we prove the convergence of the algo-
rithm. We will use the notation:

M(u, v) = ‖u‖Ḃ1

1,1
+

1

2α
‖f − u− v‖2

L2 + λ‖v‖L1 (51)

Theorem 2 Problem (44) admits a unique solution
(ũ, ṽ) in (X ×X).

Proof. See Appendix A.1. �

The next result is a consequence of Theorem 2:

Proposition 5 The sequence (un, vn) built in (47)-
(48)-(49) converges to the unique minimizer of problem
(44).

Proof. See Appendix A.2. �

The next result shows that when α goes to 0, then
the solution of problem (44) goes to a solution of the
problem:

inf
u

(

‖u‖Ḃ1

1,1
+ λ‖f − u‖L1

)

(52)

Proposition 6 Let us fix λ > 0 in (52). We consider
αn a decreasing sequence in R

∗
+ such that αn → 0. Let

us denote by (uαn
, vαn

) the solution of problem (44).
Then the sequence (uαn

, vαn
) is bounded, and any clus-

ter point is of the form (u0, f − u0) with u0 solution of
problem (52).

Proof. See Appendix A.2.
�

Remark: It is easy to show that problem (52) has
a solution (the functional is convex and coercive). In
the case when problem (52) has a unique solution u0,
then the sequence (uαn

, vαn
) converges to (u0, f − u0).

6.2 Numerical results

A main difference with the classical TV −L2 approach
[44] is that with the TV − L1 model, the v compo-
nent is not constrained to be of zero mean (numerical
experiments show that indeed the mean value changes
for different values of λ and is not necessarily close to
zero).

All the numerical results shown on Figures 6 to 8
have been obtained with the algorithm (47)-(48)-(49),
the parameter λ being computed automatically. The
parameter α is set to 1 in all our experiments. The
maximal absolute values of the computed residuals
f − u − v are always smaller than 1 (and the values
of the images rank from 0 to 255). This means that

the residual energy term, needed mainly for numerical
and theoretical reasons (uniqueness), does not affect
much the model and the decomposition results.

Remark about parameter selection: To choose
the parameter λ, we consider the correlation graph as
in Section 4. The difference is that in this case we are
not interested in a local minimum of the graph, but
in a large variation. This is related to the non-smooth
behavior of TV − L1 regularization, as pointed out in
[15]. We should remark that the correlation can attain
also negative values, unlike the TV −L2 case. If one is
interested in decorrelation between u and v, one should
seek values close to zero and not minimal ones.

Figure 6 shows an example of removing salt and pep-
per noise. This relates decomposition to the denoising
problem, where in this case the structural part is the
clean image and the noise can be regarded as a form of
texture. It has been shown in [40] that the L1 term is
particularly well suited to remove such a noise. This is
due to the close connections between the L1 norm and
the median operator. In this simple case, the restora-
tion is almost perfect. In Figure 6, second row, the
decomposition at the 6th iteration is shown, right after
the significant correlation change. Most of the noise
is already filtered, but it is better to assume a steadier
correlation state, such as at the 10th iteration, depicted
in the bottom row. In Figures 7 a decomposition of
non-geometric texture is shown. The result is relatively
good, though somewhat different than the decomposi-
tion of the same image by TV − L2 and TV − G (see
Fig. 2). The structural part is less eroded and edges
are strong. However, the rounded top left part is not
recovered well, and tends to be blocky.

In the case of Figure 8, the decomposition is exact
(in this case, the maximum of the absolute of the resid-
ual f−u−v is equal to 0.001), and the result is perfect
(it is clearly better than the results of Figure 1). The
L1 norm seems to be particularly well suited to capture
non smooth textures. Notice however that this image
is particularly well suited for the Haar wavelet.

We present, in Figure 9, the decomposition results
obtained with the algorithm of [51], which exactly
solves (36) as a second-order cone program. We see
that both algorithms give similar results for salt and
peper noise removal as well as for structure/texture
separation.

In this section, we have mainly considered non
smooth textures. On the contrary, we will consider
smooth textures in the next section.
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Figure 6: Removing salt and pepper noise (algorithm
(47)-(48)-(49)).

7 TV -Gabor Regularization

In this section, we design a family of Hilbert spaces
based on Gabor wavelets [36]. Gabor functions, pro-
posed by [23], have been found to be very useful in
texture processing applications, e.g. [21, 31], and to
have close relations with the human-visual system [43].
The Gabor wavelets were also defined by Zibulski and
Zeevi in the context of Multiwindow Gabor frames [52].
We introduce a new TV -Gabor model in which one can
take advantage of a-priori knowledge of both the fre-
quency and the direction of the textures of interest. We
show how the correlation criterion can be used also in
this case to select the regularization parameter.

7.1 Introduction

Let us first recall the model studied in [8]:

inf
u

(

J(u) +
λ

2
‖f − u‖2

H

)

(53)
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Figure 7: Approximation of the TV-L1 decomposition
of non-geometric texture (algorithm (47)-(48)-(49))

.

In [8], the authors apply their framework to solve
the OSV model [42] (i.e. when H = H−1), and they
study the problem of image denoising. Here, we in-
tend to use (53) to carry out frequency and directional
adaptive image decomposition. Indeed, by choosing
the kernel K in a suitable way, we can emphasize the
weight of some frequencies and some directions. No-
tice that, even though K is a linear filter, solving (53)
does not amount to linear filtering due to the non linear
term J(u). It is well known in image processing that
linear filtering cannot preserve edges in an image, but
thanks to the total variation term (53) does not suffer
from this drawback. To construct the “texture-norm”
we use Gabor wavelets.

The projection algorithm proposed in [8] to solve
(53) is given by (27)-(28) (in Section 3). In fact, one
needs to use K−1 and not K to solve (53) with this
algorithm. It is therefore easier to construct K−1 (so
that K has some good properties, but without com-
puting K explicitly). K needs to be a non negative
symmetric linear operator. Here we even assume that
K is positive-definite. This implies that K−1 is also a
symmetric positive linear operator.

Remark on a possible alternative construction:

K being a positive-definite symmetric operator, there
exists a unique positive-definite symmetric linear oper-

ator, denoted by
√
K, such that

√
K

2
= K. In par-

ticular, we have ‖f − u‖2
H = 〈f − u,K(f − u)〉L2 =
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Figure 8: Approximation of the TV-L1 decomposi-
tion of non-geometric texture (with non-invariant Haar
wavelet soft-thresholding)) with algorithm (47)-(48)-
(49))

‖
√
K(f −u)‖2

L2 . We can then rewrite problem (53) as:

inf
u

(

J(u) +
λ

2
‖
√
K(f − u)‖2

L2

)

(54)

In fact, instead of K−1, it also may be interesting to

construct
√
K
−1

. In what follows, we only focus on

K−1, but our construction can be applied to
√
K
−1

as
well.

7.2 Texture-specific kernels

In [8] it was shown that the difference between the OSV
model [42] and ROF model [44] could be understood
as frequency weighting of the L2 norm for the H−1

fidelity term of OSV. The frequency weighting of the
square norm is proportional to 1

ω2 , which corresponds
to the ∆−1 operator in the frequency domain, see Fig.
10 . The low frequencies are therefore highly penalized
in the fidelity term, considerably reducing the eroding
effect compared with ROF. This has proved to be an
efficient tool for image denoising [42, 7]. In [8] it was
suggested that other linear kernels could be used for
adaptive frequency algorithms.

In this section we address the problem of designing
a family of kernels for image decomposition. The oper-
ator K is a convolution operator, therefore K−1 in the
Fourier domain is simply its inverse. Moreover, K−1

u v

u v

Figure 9: TV-L1 decomposition with the algorithm of
[51]. First raw: restoration of the image of Figure 6;
second raw: decomposition of the image of Figure 7.

is also a convolution operator. We denote by H the
associated filter, and in the rest of the section we focus
on the designing of this filter.

In the u + v decomposition model K penalizes fre-
quencies that are not considered as part of the texture
component. Therefore K−1 could be interpreted as
the frequencies which should mainly be included in the
texture part. A general and simple characterization of
textures could be done using Gabor functions. These
functions would typically describe the type of textures
we would like to extract. Naturally, they apply as good
candidates for K−1. As already mentioned, the inverse
kernel is actually the one needed in the numerical im-
plementation. Thus our proposed design strategy is to
use Gabor functions for constructing the inverse ker-
nel. Notice that other design methods could be used.
We use the function:

g(x) = cos (2πνx)
1√

2πσ2
exp

(−x2

2σ2

)

(55)

This gives the following values for the filter H:

hk = cos (2πνk)
1√

2πσ2
exp

(−k2

2σ2

)

(56)

ν ∈ (0, 0.5] is the frequency of the texture. σ is
related to the width of the band-pass around this fre-
quency. A small σ in the spatial domain means a wide
band-pass in the frequency domain. If we know the fre-
quency of the texture we want to get, it is then inter-
esting to use a large σ (which means a small band-pass
in the frequency domain). Note that some restrictions
apply for choosing σ, see Lemma 4. Actually, σ cannot
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Figure 10: The kernel K and its inverse K−1 for the
OSV, ROF and the proposed TV-Gabor model.

be very large, which may be interpreted as a from of
an uncertainty principle.

(55) is a one dimension filter. There are many meth-
ods to then design a 2D filter. One possibility is to
consider the product g(x)g(y). We will analyze this
possibility later. Another choice to construct our filter
H is to use rotationally invariant Gabor wavelets as:

g(x, y) = cos
(

2πν
√

x2 + y2
) 1√

2πσ2
exp

(−x2 − y2

2σ2

)

(57)
Such a choice will give better numerical results when
the texture is known to be rotationally invariant.

Directions: Many textures are not rotationally in-
variant. It is therefore interesting to add this direction
information in our filter H. To do so, we just need to
use a 1D filter as (55), and then rotate it so that it fits
the direction of the texture. A possible improvement
is to use an ellipse (see [21] for instance).

7.3 1D and 2D filters

In this subsection, we propose a way to construct a 2D
kernel K−1 (in fact of the associated filter H) out of a

1D filter:

Hx =
(

h d−1

2

, . . . , h1, h0, h1, . . . , h d−1

2

)

(58)

where d is the dimension of the filter Hx, and hk is
given by (56). Since K−1 is symmetric, we also choose
Hx to be symmetric. We then set H = Hx ∗ Hy ,
where H stands for the filter associated to K−1, ∗ de-
notes convolution, and Hy = HT

x , where T stands for
transpose.

Remark: In all this section, for the convolution, we
consider periodic boundary conditions.

7.4 Eigenvalues

In this subsection, we compute the eigenvalues of K−1,
and give a sufficient condition so that they are positive.

The filterH associated withK−1 should define a lin-
ear symmetric positive operator. By construction, H
defines a linear symmetric operator. But as we will see,
we have to impose some conditions on the values hk of
the filter so that it is positive. We recall that a linear
symmetric operator is positive if and only of its eigen-
values are positive (this can even be taken as a defini-
tion). To get the positivity for H, we are therefore lead
to compute its associated eigenvalues (the ones of the
associated linear mapping). Since we have constructed
H out of two 1-D filters, we are in fact interested in
the eigenvalues of these filters (since they will give us
the eigenvalues of K−1). Since K−1 is positive, we also
impose the constraint that Hx is positive.

The filtering of an image of size N ×M by Hx cor-
responds to a linear mapping from R

NM to R
NM (this

is the reason why we speak of the eigenvalues of the
filter H, which are in fact the eigenvalues of the corre-
sponding linear mapping). Let us denote by Ax (resp
Ay) the matrix of size (NM)2 associated to Hx (resp
Hy). An image I is a matrix (Ii,j), with 1 ≤ i ≤ N and
1 ≤ j ≤M . We rewrite it as a 1 Dimensional vector Ik,
with 1 ≤ k ≤ NM , using Ik = Ii,j if k = M(i− 1) + j.

Since Ax and Ay have a very particular form (they
are both circulant matrices), we can compute the exact
values of their eigenvalues, as stated by the following
result:

Proposition 7 The eigenvalues of Ax are:





h0 + 2

d−1

2∑

k=1

hk cos

(
2πqk

M

)

, 0 ≤ q ≤ M

2






(59)

and the ones of Ay are:





h0 + 2

d−1

2∑

k=1

hk cos

(
2πqk

N

)

, 0 ≤ q ≤ N

2






(60)
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Proof. The proof is just a consequence of the fact that
Ax and Ay are circulant matrix. We refer the interested
reader to [9] for the details. �

Now that we have computed the eigenvalues of Ax

and Ay, we can get the ones of K−1. Since Ax and Ay

commute, the eigenvalues of K−1 are contained in the
set:

{

P1(ω
p
M )P2(ω

q
N ), 0 ≤ q ≤ M

2
, 0 ≤ q ≤ N

2

}

(61)

Since the eigenvalues of Ax and Ay are positive, so are
the ones of K−1. If we denote by γx

min (resp γy
min) the

smallest eigenvalue of Ax (resp Ay) and by γx
max (resp

γy
max) the largest eigenvalue of Ax (resp Ay), then, if γ

is an eigenvalue of K−1, we have:

γx
minγ

y
min ≤ γ ≤ γx

maxγ
y
max (62)

From this last point, we deduce in particular that

‖K−1‖L2 ≤ γx
maxγ

y
max (63)

Lemma 3 If we choose τ ≤ 1
8γx

max
γy
max

in algorithm

(28), then the algorithm converges.

Proof. This a direct consequence of (63) and of The-
orem 1 (in Section 3). �

Unfortunately, the eigenvalues of K−1 can be neg-
ative. The next lemma gives a sufficient condition for
the eigenvalues of K−1 to be positive.

Lemma 4 If

h0 ≥ 2

d−1

2∑

k=1

|hk| (64)

then the eigenvalues of Ax, Ay and K−1 are positive.

Proof. This is a consequence of Proposition 7 and
of (61). �

Notice that (64) is only a sufficient condition. The
eigenvalues can still be positive in less restrictive cases,
and can be computed explicitly for the designed kernel
(see Proposition 7).

By using Lemma 4 and the explicit values of hk given
by (56), we can derive more explicit sufficient condi-
tions about the positivity of the eigenvalues of K−1.
In particular, we show that if σ is small enough, then
the eigenvalues of H are positive, see more details in
[9].

7.5 Numerical results

We show some numerical results obtained with the new
TV -Gabor model on Figures 11 to 16.

In Figure 11, the texture is a periodic signal of fre-
quency 1/π ≈ 0.32. In this case we use a rotation-
ally symmetric Gabor function of frequency 0.25 and
σ = 1 (no directional knowledge is incorporated). As
expected, the decomposition in this case is very good.
In the next two examples we focus on the ability of
the model to have directional selectivity of the textural
part, a main feature that clearly distinguishes the TV -
Gabor model from the previous ones. In case the tex-
tural directions are not known beforehand, we suggest
to select them by the dominant peaks in the Fourier
domain in medium and high frequencies. This can give
basic but sufficient information for designing the ker-
nel (choosing frequency and preferred direction). The
Fourier transforms of the processed images are shown
in Figures 14 and 15. In Figures 12 and 13 the original
image is composed of two types of textures and a syn-
thetic structural part. We would like to extract the pe-
riodic texture in the ellipses, and not the small squares
on the top right. This type of selectivity is quite hard,
but is achieved quite well, as seen in Fig. 12. Edges
of the structural part are kept sharp, and clearly out-
performs any linear kernel that would be designed to
achieve a similar goal. Compared to TV −L2 (Fig. 13,
bottom) one observes that both textures are mostly
in the v part. Also there is some more erosion of the
structure (seen in the brighter triangle in the v com-
ponent) and some “left-overs” of the ellipses-texture in
the u part. The comparison was made such that both
v parts of TV -Gabor and TV − L2 have the same L2

norm.
In Figures 15 and 16, we show another example of

directional decomposition of part of a Dollar note im-
age. In this case, we use the directional TV -Gabor
model in the y direction to capture the forehead tex-
tures. For comparison, we also display the result with
the standard TV −L2 model. As the textures are quite
fine with low contrast, we show in Fig. 16, bottom, a
contrast enhanced version of v, by multiplying the v
part by 4. Again here, both v components have the
same L2 norm. One clearly sees the high directional
selectivity of the TV -Gabor model on the left, versus
the non-selectiveness of TV − L2.

8 Conclusion

In this paper, we have studied the problem of image de-
composition. Given an original image f , we split it into
two components u and v, u containing the geometric
information and v the texture information. Our mod-
eling is focused on TV regularization approaches: we
minimize a functional with two terms, the first one is
based on the total variation semi-norm and the second
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Figure 11: Decomposition of a simple image by TV-
Gabor.

one on a different norm adapted to the texture compo-
nent of the image. We have considered four different
decomposition models: TV − L2, TV − G, TV − L1

and TV -Gabor.
An interesting conclusion of this study is a form of

“recipe” we can derive to carry out image decomposi-
tion:

1. If the texture part is known to be very structured,
then the TV − L1 approach seems to be the best
choice.

2. In the case of directional texture or if an estima-
tion of the frequency of the texture is known, and if
the texture is rather smooth, then the TV -Gabor
model is the more appropriate approach.

3. In a general case, when no a-priori knowledge of
the texture is at hand, we advocate the TV − L2

approach, or its improvement with the TV − G
regularization.

This provides us with a sort of image decomposition
toolbox for a wide class of synthetic and natural im-
ages.

Apart from the broad perspective and our sugges-
tions when each model should be used, the main contri-
butions of our paper are related to the three following
issues:

1. First, we show that the correlation graph between
u and v is an efficient tool to select the splitting pa-
rameter. We have applied this method to the four

f

TV -Gabor, u

TV-L2, u

Figure 12: u component of the decomposition of a syn-
thetic image with textures of specific frequency and ori-
entation by TV -Gabor and TV − L2. The TV -Gabor
can be more selective and reduce the inclusion in v
of undesired textures / small-structures like the small
blocks on the top right. Also erosion of large structures
is reduced (more apparent in the brighter triangle).

models. As far as we know, this is the first attempt
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TV -Gabor, v

TV-L2, v

Figure 13: v component of the decomposition of a syn-
thetic image with textures of specific frequency and ori-
entation by TV -Gabor (top) and TV − L2 (bottom).
See the caption of Fig. 12.

to tune the decomposition parameter of such mod-
els other than by trial and error (the problem had
been considered before only in the denoising case).

2. Second, we propose new and fast algorithms to
solve the TV -L1 minimization problem using pro-
jection and thresholding techniques. We have car-
ried out the complete mathematical study of these
algorithms, and shown their efficiency with some
numerical examples.

3. Third, we introduce a new TV -Gabor model which
leads us to adaptive frequency and directional im-
age decomposition. In the case when we have some
additional information about the texture, then we
can take advantage of it by incorporating this in-
formation in the functional. We have designed and
studied the corresponding filters, and we have il-
lustrated this new approach with numerical exam-

Fourier transform of f corr(u, v)
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Figure 14: Fourier transform and the correlation of
TV -Gabor of the synthetic image in Fig. 12.

ples.

In this paper we presented a way to design sim-
ple texture-specific filters based on Gabor functions.
Other, more sophisticated methods could be incorpo-
rated to this framework, such as ones based on wavelets
[45]. In future works we intend to explore these issues.
Notice that a straightforward extension of the new TV -
Gabor model to multiple selected directions, is to use
the linearity of the Hilbert fitting term and simply add
several directional kernels.

A natural generalization for the u + v decomposi-
tion is to consider a multi-scale approach, as done in
[49, 26, 25, 41, 29]. This also relates to the parame-
ter selection problem, where better and more accurate
mechanisms could be used instead of the correlation
criterion. A more detailed version of this work, with
some more theoretical results and proofs can be found
in our report [9].
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Figure 15: Decomposition of a Dollar note image by
directional TV-Gabor in the y direction to capture the
forehead textures.

A Proofs for the TV − L1 algo-
rithm

In this appendix, we give the proofs of the Mathemati-
cal results stated in Section 6 for the new fast TV −L1

algorithm.

A.1 Existence and uniqueness of a so-
lution

We give here the proof of Theorem 2 stated in Section 6.
We first recall the theorem:

Theorem 2 Problem (44) admits a unique solution
(ũ, ṽ) in (X ×X).

To prove Theorem 2, we will use the following
lemma:

Lemma 5 Let us assume that f 6= 0 (i.e. that there
exists (i, j) such that fi,j 6= 0). If g ∈ X, then (0, g) is
not a minimizer of problem (44).

Proof.(Lemma 5): By contradiction, let us assume
that there exists g ∈ X such that (0, g) is a minimizer
of problem (44), then in particular we have:

M(0, g) = inf
v

(
1

2α
‖f − v‖2L2 + λ‖v‖L1

)

(65)

u (TV -Gabor) v (TV -Gabor)

u (TV − L2) v (TV − L2)

4v (TV -Gabor) 4v (TV − L2)

Figure 16: Decomposition of a Dollar note image by
TV-Gabor in the y direction and by TV-L2.

From Proposition 4, we get that g = ST (f, αλ). Since
f ≥ 0 (in our case, we even have 0 ≤ f ≤ 255), we
deduce that g ≥ 0.

• Let us first assume that there exists (i, j)
such that gi,j > 0. Let us define ε =
min (gi,j such that gi,j > 0). We have M(ε, g −
ε) = M(0, g) − N2ε (we recall that f is of size
N ×N), which contradicts the fact that (0, g) is a
minimizer of problem (44).

• Let us now assume that gi,j = 0 for all (i, j) ∈ N2.

We define ε1 =
∫

f
N2 (we know that

∫
f > 0). We

have M(ε2, 0) = 1
2α‖f − ε2‖2L2 . But ‖f − ε2‖2L2 =

‖f‖2L2 +N2ε22−2ε2
∫
f < ‖f‖2

L2 . Therefore, we get
M(ε2, 0) <

1
2α‖f‖2L2 = M(0, 0), which contradicts

the fact that (0, g) is a minimizer of problem (44).

�

Proof.(Theorem 2): The existence of a solution for
problem (44) is standard. It is a straightforward con-
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sequence of the fact that M the functional to minimize
is convex and coercive.

Let us now show the uniqueness. In the case when
f = 0, then it is clear that (0, 0) is the unique mini-
mizer of problem (44). Let us therefore assume that
f 6= 0 (i.e. that there exists (i, j) such that fi,j 6= 0).
By contradiction, let us assume that there exist two
solutions for problem (44), (u1, v1) and (u2, v2). We
denote by m = M(u1, v1) = M(u2, v2). If t ∈ (0, 1),
then we get:

M(tu1 + (1− t)u2, tv1 + (1− t)v2) = (66)

‖tu1 + (1− t)u2‖Ḃ1

1,1
+ λ‖tv1 + (1− t)v2‖L1

+ 1
2α‖t(f − u1 − v1) + (1− t)(f − u2 − v2)‖2L2

But by convexity, we have:

‖tu1+(1−t)u2‖Ḃ1

1,1
≤ t‖u1‖Ḃ1

1,1
+(1−t)‖u2‖Ḃ1

1,1
(67)

and

‖tv1 + (1− t)v2‖L1 ≤ t‖u1‖L1 + (1− t)‖u2‖L1 (68)

as well as

‖t(f − u1 − v1) + (1− t)(f − u2 − v2)‖2L2 (69)

≤ t‖f − u1 − v1‖2L2 + (1− t)‖f − u2 − v2‖2L2

From (66)-(67)-(68)-(69), we deduce that (since
M(u1, v1) = M(u2, v2) = m):

M(tu1 + (1− t)u2, tv1 + (1− t)v2) ≤ m (70)

and (70) is an equality if and only if (67)-(68)-(69) are
equalities. But by definition, we have M(tu1 + (1 −
t)u2, tv1 + (1 − t)v2) ≥ m. Therefore (70) must be an
equality, as well as (67)-(68)-(69).

The function in (69) is strictly convex. Therefore
(69) is an equality if and only if f−u1−v1 = f−u2−v2,
i.e. if and only if

u1 − u2 = v2 − v1 (71)

(67) is an equality if and only if there exists wu ∈
X\{0} and (au, bu) ∈ R

2
+ such that u1 = auwu and

u2 = buwu. (68) is an equality if and only if there exists
wv ∈ X\{0} and (av, bv) ∈ R

2
+ such that v1 = avwv

and v2 = bvwv. Using wu and wv, then (71) becomes
(au − bu)wu = (av − bv)wv. Since we assume that
(u1, v1) 6= (u2, v2), this implies that we cannot have
simultaneously au = bu and av = bv. We thus get that
wu and wv are proportional.

We therefore deduce that there exists w ∈ X\{0}
and (a, b, c) ∈ R

4 such that u1 = aw, u2 = bw, v1 = cw
and v2 = (a−b+c)w. Moreover, we have a−b 6= 0. Let

us remark that: M(tu1 + (1 − t)u2, tv1 + (1 − t)v2) =
M(u2+t(u1−u2), v2+t(v1−v2)) = M(u1+(t−1)(u1−
u2), v1 +(t−1)(v1−v2)). We recall that t ∈ (0, 1). We
assume that a 6= 0 and b 6= 0 (in the case when a = 0 or
b = 0, then we get a contradiction thanks to Lemma 5).

We impose 0 ≤ t < min
(

1, |a|
|a−b| ,

|b|
|a−b|

)

:

0 ≤ M(u2 + t(u1 − u2), v2 + t(v1 − v2))−M(u2, v2)

= ‖aw + t(a− b)w‖Ḃ1

1,1
− ‖aw‖Ḃ1

1,1

+λ‖bw − t(a− b)w‖L1 − λ‖bw‖L1

= t|a− b|
(

‖w‖Ḃ1

1,1
− λ‖w‖L1

)

We therefore deduce that ‖w‖Ḃ1

1,1
− λ‖w‖L1 ≥ 0.

By using the fact that 0 ≤ M(u1 + (t − 1)(u1 −
u2), v1 + (t − 1)(v1 − v2)) −M(u1, v1), we get exactly
as before that ‖w‖Ḃ1

1,1
− λ‖w‖L1 ≤ 0. We therefore

deduce that:
‖w‖Ḃ1

1,1
= λ‖w‖L1 (72)

And (72) also holds with u1, u2, v1 and v2. In par-
ticular, this implies that (0, u1 + v1) is a minimizer of
problem (44). Since we assume that f 6= 0 (i.e that
there exists (i, j) such that fi,j 6= 0), we get a contra-
diction thanks to Lemma 5. �

A.2 Convergence of the TV − L1 algo-
rithm

We give here the proofs of Proposition 5 and 6 stated
in Section 6.

Proof. (Proposition 5):
The proof uses the same ideas as the ones of Propo-

sition 3.4 in [5], but we put it here for the sake of
completeness.

We first remark that, as we solve successive mini-
mization problems, we have:

M(un, vn) ≥M(un, vn+1) ≥M(un+1, vn+1) (73)

In particular, the sequence M(un, vn) is nonincreas-
ing. As it is bounded from below by 0, it thus converges
in R. We denote by m its limit. We want to show that

m = inf
(u,v)∈X×X

M(u, v) (74)

As M is coercive and as the sequence M(un, vn)
converges, we deduce that the sequence (un, vn) is
bounded in X×X. We can thus extract a subsequence
(unk

, vnk
) which converges to (û, v̂) as nk → +∞, with

(û, v̂) ∈ X×X. Moreover, we have, for all nk ∈ N and
all v in X:

M(unk
, vnk+1) ≤M(unk

, v) (75)
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and for all nk ∈ N and all u in X:

M(unk
, vnk

) ≤M(u, vnk
) (76)

Let us denote by ṽ a cluster point of (vnk+1). Con-
sidering (73), we get (since M is continuous on X×X):

m = M(û, v̂) = M(û, ṽ) (77)

By passing to the limit in (48), we get:
ṽ = ST (f − û, αλ), i.e. ṽ is the solution of
infv

(
1
2α‖f − û− v‖2

2 + λ‖v‖L1

)
. But from (77), we

know that: 1
2α‖f − û − ṽ‖2

2 + λ‖ṽ‖L1 = 1
2α‖f − û −

v̂‖22 + λ‖v̂‖L1 . By uniqueness of the solution, we con-
clude that ṽ = v̂. Hence vnk+1 → v̂. By passing to the
limit in (75) (M is continuous on X×X), we therefore
have for all v:

M(û, v̂) ≤M(û, v) (78)

And by passing to the limit in (76), for all u:

M(û, v̂) ≤M(u, v̂) (79)

(78) and (79) can respectively be rewritten:

M(û, v̂) = inf
v∈X

M(û, v) (80)

M(û, v̂) = inf
u∈X

M(u, v̂) (81)

But, from the definition of M(u, v), (81) is equiva-
lent to (see [22]):

0 ∈ −f + û+ v̂ + α∂JB(û) (82)

and (80) to:

0 ∈ −f + û+ v̂ + αλ∂JL1 (v̂) (83)

where the functions JB is defined by JB(u) = ‖u‖Ḃ1

1,1

and JL1 by JL1(v) = ‖v‖L1 . The subdifferential of M
at (û, v̂) is given by:

∂M(û, v̂) =
1

α

(
−f + û+ v̂ + α∂JB(û)
−f + û+ v̂ + αλ∂JL1 (v̂)

)

(84)

And thus, according to (82) and (83), we have:

(
0
0

)

∈ ∂M(û, v̂) (85)

which is equivalent to: M(û, v̂) =
inf(u,v)∈X2 M(u, v) = m. Hence the whole se-
quence M(un, vn) converges towards m the unique
minimum of M on X × X. We deduce that the

sequence (un, vn) converges to (û, v̂), the minimizer of
M , when n tends to +∞.

�

Proof. (Proposition 6):
The proof is very similar to the one of Proposition

3.8 in [5].
The existence and uniqueness of (uαn

, vαn
) is given

by Theorem 2. Since (uαn
, vαn

) is the solution of prob-
lem (44), we have

M(uαn
, vαn

) ≤M(f, 0) (86)

From this, we get that (uαn
, vαn

) is bounded. Then,
up to an extraction, there exists (u0, v0) ∈ X×X such
that (uαn

, vαn
) converges to (u0, v0). From (86), we

get that ‖f − uαn
− vαn

‖22 ≤ 2α‖f‖Ḃ1

1,1
. By passing to

the limit n → +∞, we get: ‖f − u0 − v0‖2 = 0, i.e.
v0 = f − u0.

To conclude the proof of the proposition, there re-
mains to show that (u0, f−u0) is a solution of problem
(52). Let u ∈ X. We have:

‖u‖Ḃ1

1,1
+ λ‖f − u‖L1 + 1

2αn
‖f − u− (f − u)‖2

︸ ︷︷ ︸

=0

≥ ‖uαn
‖Ḃ1

1,1
+ λ‖vαn

‖L1 + 1
2αn

‖f − uλn
− vλn

‖2

≥ ‖uαn
)‖Ḃ1

1,1
+ λ‖vαn

‖L1

︸ ︷︷ ︸

→‖u0‖Ḃ1
1,1

+λ‖f−u0‖L1

�
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