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Abstract

Since the celebrated works of Rudin-Osher-Fatemi (Physica D, 60:259-268, 1992), the func-
tions in the space of bounded variations (BV) has become a powerful mathematical model for
approximating generic image signals in contemporary imaging and vision sciences. Motivated by
the important application of image and video dejittering, we study the mathematical properties
of the slicing moments of BV images. The regularity characterization leads to a novel model for
the dejittering problem based upon the Bayesian/Tikhonov principle. Mathematical as well as
computational properties are developed.

keyword: Bounded variation, slicing moments, Bayesian, inverse problem, dejittering, varia-
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1 Introduction

Growing popularity of image processing and vision analysis within the mathematics community
has been determined by two basic facts:

(a) images and visual signals are first of all functions [7], and

(b) understanding the patterns [19] of the functions (i.e. visual perception (e.g., for robots)
and image analysis (e.g., medical CT or MRI images)) is, mathematical properties, such as
geometrical, algebraic, topological, or stochastic invariants.

Thus, processing of images or visual signals is the tantamount to the analysis of a special class of
functions called images, which serves as the mathematical foundation of image processing.

In recent two decades, the marriage of image processing, vision analysis, and mathematics has
nurtured numerous exciting discoveries as well as revived various classical subjects. For example,
revisiting many classical subjects includes wavelets, multiresolution analysis, oscillatory patterns,
fractals, moving fronts, multiphase problems with free boundaries, and Gibbs’ random fields, just
to name a few [10, 12, 17, 20, 21, 28]. Mathematics has provided the solid ground for solving many
challenging imaging and vision problems in unified and mass-production manners. At the same
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time, countless emerging applications of imaging and vision technologies in this information era
have provided fertile soils for nurturing new problems and theories in mathematics. The recent
expository article [9] and research monograph [7] provide further details along this line.

This current work is easily embedded into this general picture of contemporary mathemati-
cal image and vision analysis (Miva). Inspired by an important application called image(video)
dejittering, we introduce and explore the properties of the slicing moments of multi-dimensional
functions with bounded variations (BV).

The BV image model was first introduced into image analysis by the celebrated work of Rudin,
Osher, and Fatemi [21]. It has become one of the most powerful image models that reach a good
balance between geometric fidelity and computational complexity (e.g., [1, 3, 5, 6, 8, 22, 24, 27]).
Numerous applications have shown that except for oscillatory textures of small amplitudes [2, 25],
the BV image model performs sufficiently well in describing visually important geometric features
like edges.

Motivated by the image dejittering problem, in the current paper, we first introduce and study
the properties of the slicing moments of BV functions, and propose a novel dejittering model based
upon the idea of moment regularization. Our mathematical framework is intentionally kept general
(in terms of dimensions and assumptions), and aims at contributing to solving many other problems
in related applied sciences.

As shown in Fig. 1, image jittering occurs when the slices of a high dimensional image signal
are randomly displaced along the slicing space (e.g., a line or a plane). Three major technological
areas where jittering frequently arises are: (a) video jittering due to the corruption of synchroniza-
tion signals in analog video tapes; (b) video interlacing due to the temporal difference between
the fast motions of objects in a scene and the refreshing speed of a digital display device; and
(c) slice jittering in imaging devices such as CT (computer tomography) and MRI (magnetic res-
onance imaging) scanning, when patients or devices undergo random spatial displacements during
an imaging acquisition process.

(a) (b)

Figure 1: (a) an ideal image u(x, y), and (b) its randomly jittered image uJ(x, y).

To restore an ideal image u from its jittered version uJ is the problem called image dejittering.
For corrupted analog videos, in [15, 16], Kokaram and his colleagues first explored dejittering meth-
ods that only rely upon the jittered video images instead of other irrelevant tape information. Such
approaches are said to be intrinsic in contrast with most conventional video dejittering techniques,
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which employ extra image-irrelevant information. In [23], the second author developed an intrinsic
variational dejittering model based on Bayesian estimation theory. In [14], the two authors further
proposed a flexible two-step model called “bake and shake” for intrinsic image dejittering using
nonlinear diffusion partial differential equations.

The aforementioned works could be considered as “differential” since they all depend upon
the characterizations of local image structures. The current work ,therefore, distinguishes in its
“integral” nature since slicing moments are integrated quantities. In general, integral methods are
more robust to small perturbations. Furthermore, integrated quantities like moments naturally
achieve dimensionality reduction and gain substantial computational efficiency.

The organization of the paper goes as follows. In Section 2, we first introduce the notion of slicing
moments for high-dimensional BV images, and prove that they generally inherit the BV regularity.
In Section 3, based on the regularity of slicing moments as well as Bayesian estimation theory, we
propose a novel variational dejittering model in arbitrary dimensions, and establish its wellposedness
by showing the existence and uniqueness of the optimal solution. In Section 4, algorithm and
numerical examples are presented to demonstrate the performance of the new dejittering model. A
brief conclusion is made in Section 5.

2 Slicing Moments of BV Functions

In this section, we first show that the slicing moments of a typical BV image is also a BV function,
which enables us to employ the Bayesian restoration framework for image dejittering [7]. In this
paper, we shall study BV functions in Rn which are compactly supported and nonnegative:

BV +
c = BV +

c (Rn) = {v ∈ L1(Rn) | v ≥ 0, compactly supported, and
∫

Rn

|Dv| < ∞}.

Nonnegativity is a plausible assumption in imaging and vision since physically image values rep-
resent photon counts. Recall that the total variation (TV) Radon measure is defined by, for any
open domain U ⊆ Rn,∫

U
|Dv| = sup

~g∈C1
c (U,Bn)

∫
U

v div(~g)dz, with dz = dz1 · · · dzn, (1)

where Bn denotes the n-dimensional unit ball centered at the origin in Rn. Fixing any d =
0, 1, . . . n− 1, we write z = (x, y) ∈ Rn with

x = (z1, · · · , zn−d) ∈ Rn−d and y = (zn−d+1, · · · , zn) ∈ Rd.

For any multi-exponent α = (α1, · · · , αn−d) ∈ {0, 1, 2, · · · }n−d, define xα to be

xα = zα1
1 zα2

2 · · · zαn−d

n−d ∈ R.

Definition 1 (Slicing Moments) Given an image u ∈ BV +
c and an exponent α, the slicing

moment of u of codimension d is defined by

md(y|u, α) =
∫

Rn−d

xαu(x, y)dx. (2)
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Figure 2: (a) an image sample u; (b) the (horizontal) slicing moment m1(y | u, 1).

Notice that md is a function in Rd for any given u and α. The integral is indeed well defined
since u ∈ BV +

c is assumed to be compactly supported. Fig. 2 shows an example of slicing moments
of a simple image with dimension n = 2 and codimension d = 1. The image on the left panel is
a synthetic BV image, and the graph plotted on the right panel is its (horizontal) slicing moment
with α = 1 and d = 1. It is clear that the slicing moment is piecewise constant and still a BV
function of y. If image (a) is jittered, the moment function in (b) would become noisy, and effective
noise estimation can reveal the important information about the unknown jitters. This is the key
observation leading to our novel dejittering model later. We now first show that the slicing moment
function is also a BV function when the given image u is. This theorem is crucial for our new model,
since it allows to make use of regularization techniques for degraded BV functions [21].

Theorem 1 For any given image u ∈ BV +
c (Rn), codimension d ∈ {0, 1, · · · , n − 1}, and multi-

exponent α ∈ {0, 1, · · · }n−d,
md(y|u, α) ∈ BVc(Rd).

Proof. We show that md is compactly supported, belongs to L1(Rd), and
∫
|Dmd| < ∞.

[1] Since u is compactly supported, there exists some γ > 0 such that

supp u ⊆ {z ∈ Rn : |z|∞ = max
1≤i≤n

|zi| ≤ γ}. (3)

In particular, for any z = (x, y) with x ∈ Rn−d and |y|∞ > γ, one has u(x, y) = 0 and

md(y|u, α) =
∫

Rn−d

xαu(x, y)dx = 0.

Therefore, md(y|u, α) is also compactly supported and

supp md(y|u, α) ⊆ {y ∈ Rd : |y|∞ ≤ γ}.
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[2] Next, we show that md ∈ L1(Rd). With z = (x, y), one has∫
Rd

|md(y|u, α)|dy =
∫

Rd

|
∫

Rn−d

xαu(x, y)dx|dy

≤
∫

Rn

|xα| u(z)dz (by Fubini’s Theorem)

=
∫
{z:|x|∞≤γ}

|xα| u(z)dz (by (3))

≤ γ|α|
∫

Rn

u(z)dz < ∞, (since u ∈ L1(Rn))

where |α| = α1 + α2 + · · ·+ αn−d. Therefore, md(y|u, α) ∈ L1(Rd).
[3] By the definition of the TV Radon measure (1),∫

Rd

|D md(y|u, α)| = sup
~ϕ∈C1

c (Rd,Bd)

∫
Rd

md(y|u, α) divy(~ϕ) dy, (4)

where y = (y1, y2, . . . , yd), ~ϕ = ~ϕ(y) = (ϕ1, · · · , ϕd), and

divy(~ϕ) = ∂y1ϕ1 + · · ·+ ∂yd
ϕd.

For any fixed γ in (3), choose ργ(x) ∈ C1
c (Rn−d) such that ργ(x) ∈ [0, 1] and

ργ(x) =
{

1, for |x|∞ ≤ γ
0, for |x|∞ > γ + 1

. (5)

Then, ∀z ∈ Rn (with x ∈ Rn−d and y ∈ Rd), one has

u(z) = u(x, y) ≡ u(x, y)ργ(x). (6)

For any given α and ~ϕ(y) ∈ C1
c (Rd,Bd), define a new flow on the entire space Rn by

~g(z) = ~g(x, y) =
(
0n−d, xα~ϕ(y)ργ(x)

)
, (7)

where 0n−d denotes the origin of Rn−d. Then,

div(~g(z)) = divy

(
xαργ(x)~ϕ(y)

)
= xαργ(x) divy(~ϕ(y)). (8)

Furthermore, by the definitions in (5) and (7),

supp ~g ⊆ {x : |x|∞ ≤ γ} × supp~ϕ(y),

implying that ~g ∈ C1
c (Rn, Rn). With z = (x, y) and (5),

|~g(z)|2 = |xαργ(x)| · |~ϕ(y)|2 ≤ γ|α|‖~ϕ‖∞, (9)

where ‖~ϕ‖∞ = supy |~ϕ(y)|2. Therefore, γ−|α|~g ∈ C1
c (Rn,Bn).

5



For any test flow ~ϕ(y) ∈ C1
c (Rd,Bd), by Fubini’s Theorem,∫

Rd

md(y|u, α) divy ~ϕ(y) dy =
∫

Rd

( ∫
Rn−d

xαu(x, y)dx
)

divy ~ϕ(y) dy

=
∫

Rn

u(x, y) xαdivy ~ϕ(y) dz

=
∫

Rn

u(x, y) ργ(x) xαdivy ~ϕ(y) dz (by (6))

=
∫

Rn

u(z) div~g(z)dz (by (8))

≤ γ|α|
∫

Rn

|Du|. (by (9))

Since ~ϕ is arbitrary and u ∈ BV +
c (Rn), we conclude that∫

Rd

|D md(y|u, α)| ≤ γ|α|
∫

Rn

|Du| < ∞. (10)

The proof is complete. �
In particular when α = 0n−d, we have the following corollary for marginal projections, which

is need for later developments. (The term “marginal” has been motivated by the term “marginal
distribution” in multivariate probability theory.)

Corollary 1 (Marginal Projections) Define Md(y|u) = md(y|u, 0n−d) to be the marginal pro-
jection of codimension d. Then, Md(y|u) ∈ BV +

c (Rd), and∫
Rd

|D Md(y|u)| ≤
∫

Rn

|Du|. (11)

Proof. Notice that Md ≥ 0 due to u ≥ 0. Then, (11) follows from (10) for α = 0n−d. �
In Theorem 1, the slicing moment functions have been shown to belong to the BV space. We

now remark via the example in Fig. 2 that the BV regularity cannot be upgraded to the Sobolev
regularity W 1,1. The image on the left panel of Fig. 2 is defined by, with z = (x, y),

u(z) =


0, |z|∞ > 1
1, |z|∞ ≤ 1, x ≤ 0
3, |z|∞ ≤ 1, x > 0

.

For α = 1, define the (horizontal) linear slicing moment m(y|u) = m1(y|u, 1) =
∫

R xu(x, y)dx.
Then, for ∀y with |y| > 1, one has m(y|u) ≡ 0, and for ∀y ∈ (−1, 1),

m(y|u) =
∫ 0

−1
xdx +

∫ 1

0
3xdx =

∫ 1

0
2xdx ≡ 1.

Therefore, as illustrated on the right panel of Fig. 2, m(y|u) = 1|y|≤1(y), and the signed total
variation Radon measure is only expressible via Dirac’s delta function:

Dm(y|u) = δ(y + 1)− δ(y − 1),
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which does not belong to L1(R). Thus, m(y|u) ∈ BV (R) \ W 1,1(R), and the regularity result in
Theorem 1 is optimal.

For the application to intrinsic image dejittering, such regularity information will be the key to
our novel model which is to be discussed next.

3 Moments Regularization for Image Dejittering

In this section, we apply the above regularity results to the problem of image dejittering.

3.1 Formulation of the jittering problem

In the language of inverse problems, dejittering is to invert the forward problem of jittering. Thus,
we first propose a generic forward model for the jittering process.

Definition 2 (Jitter s) A q-dimensional jitter (field) on Rd is a random map:

s : Rd → Rq, y → s(y),

such that, for any finite set of points E ⊆ Rd,

{s(y) | y ∈ E},

are independent and identically distributed (i.i.d) random variables.

As an example, for any fixed y ∈ Rd, jitter s(y) could be subject to the Gaussian normal
distribution N (0q,Σ) with a covariance matrix Σ. In term of the probability density function
(p.d.f.), one has

p(s = ŝ) =
1√

(2π)q|Σ|
e−

1
2
ŝT Σ−1ŝ. (12)

Definition 3 (Jittered Image uJ) Let u ∈ BV +
c (Rn) and d ∈ {0, 1, . . . , n − 1}. For any given

(n− d)-dimensional jitter s(y) on Rd, the jittered image uJ is defined to be :

uJ(z) = uJ(x, y) = u(x− s(y), y), z ∈ Rn, x ∈ Rn−d, and y ∈ Rd. (13)

Definition 4 (Dejittering) The dejittering problem is the inverse problem of restoring the orig-
inal image u(z) from its jittered observation uJ(z) (see Fig. 1).

3.2 Linear slicing moments and Bayesian inference

Definition 5 (Linear Slicing Moments) Let the codimension d linear moments ~md(y|u) for u ∈
BV +

c (Rn) be the vectorial function

~md(y|u) =
(
md(y|u, e1), · · · ,md(y|u, en−d)

)
, (14)

where ei = (0, · · · , 0, 1ith , 0, · · · , 0), i = 1, . . . , n− d. Equivalently, it is given by

~md(y|u) =
∫

Rn−d

xu(x, y)dx, x = (z1, · · · , zn−d).
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By Theorem 1, one immediately has the following regularity.

Corollary 2 The linear slicing moment ~md(y|u) belongs to BVc(Rd, Rn−d).

Notice that in terms of linear structures, one has BVc(Rd, Rn−d) = BVc(Rd, R)n−d = BVc(Rd)n−d.
As for the TV Radon measure in BVc(Rd, Rn−d), we follow the general definition of total varia-
tions for product measures [11]. Recall that for any given p measures µ1, · · · , µp on a measur-
able space (X, Σ) (where Σ is a σ-algebra on X), the total variation |~µ| of the vectorial measure
~µ = (µ1, · · · , µp) is defined by ;

For any E ∈ Σ, |~µ|(E) = sup
‖~ϕ‖∞≤1

p∑
i=1

∫
E

ϕidµi = sup
‖~ϕ‖∞≤1

∫
E

~ϕ · d~µ,

where ~ϕ is a Σ-measurable vectorial function, and

‖~ϕ‖∞ = sup
x∈X

|~ϕ|2(x) = sup
x∈X

√
ϕ2

1(x) + · · ·+ ϕ2
p(x).

One symbolically writes |~µ| =
√

µ2
1 + · · ·+ µ2

p. If there exists a (positive) measure v on (X, Σ),
such that all the Radon-Nikodym derivatives exist:

ρi =
dµi

dv
, i = 1, . . . , p,

then, |~µ| must be differentiable with respect to v, and

d|~µ|
dv

= |~ρ|2 =
√

ρ2
1 + · · ·+ ρ2

p

or equivalently |~µ|(E) =
∫
E |~ρ|2dv for any E ∈ Σ.

By this general framework, the natural total variation measure in BVc(Rd, Rn−d) for ~md(y|u)
is: for any Borel set U ⊆ Rd,∫

U
|D ~md(y|u)| =

∫
U

[
n−d∑
i=1

[Dmd(y|u, ei)]2
]1/2

, (15)

where ei’s are as in (14). In particular, if ~md ∈ W 1,1(Rd, Rn−d), one has

∫
U
|D ~md(y|u)| =

∫
U

[
n−d∑
i=1

[∇md(y|u, ei)]2
]1/2

dy. (16)

By Corollary 2, ~md is a BV vectorial function under the definition in (15). In the following
proposition, we consider the link between the linear slicing moment and the jitter s(y).

Proposition 1 Let uJ(z) denote the jittered image generated from u(z) by jitter s(y) as in (13).
Then, the linear slicing moment of uJ and u are connected by:

~md(y|uJ) = ~md(y|u) + s(y)Md(y|u), (17)

where Md(y|u) is the codimension d marginal projection of u as defined in Corollary 1.
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Proof. It suffices to carry out the following computation,

~md(y|uJ) =
∫

Rn−d

xuJ(x, y)dx =
∫

Rn−d

xu(x− s(y), y)dx

=
∫

Rn−d

(t + s(y))u(t, y)dt

=
∫

Rn−d

tu(t, y)dt + s(y)
∫

Rn−d

u(x, y)dx

= ~md(y|u) + s(y)Md(y|u). �

Therefore, if the true image u were known, one could easily identify the jitter s(y) by Proposi-
tion 1. In reality, only uJ and ~md(y | uJ) are directly available while u and ~md(y | u) are unknown.
The following proposition shows that Md(y | u) is in fact directly readable from the jittered image
uJ .

Proposition 2 The marginal projection is jittering invariant, i.e.,

Md(y|uJ) = Md(y|u).

The proof is straightforward since the Lebesgue measure dx is translation-invariant. Eqn. (17)
now becomes

~md(y|uJ) = ~md(y|u) + s(y)Md(y|uJ). (18)

To summarize, in terms of estimating the unknown linear slicing moment ~md(y | u), (which is
equivalent to the estimation of the jitter s(y),) we have established the following two key ingredients
in the framework of Bayesian inference [12, 18].

1. The prior model: Eqn. (15) specifies the regularity of the linear slicing moment ~md(y|u) for
any given u ∈ BV +

c (Rn).

2. The (generative) data model: Eqn. (18) specifies how the observable or computable data
~md(y|uJ) are generated from the unknown ~md(y|u).

In combination, they lead to our novel dejittering model built upon the Bayesian rationale [18], or
equivalently in terms of the framework of inverse problems, the Tikhonov method [26].

3.3 Dejittering via moment regularization

For any fixed codimension d, we shall simplify the notations by defining M(y) = Md(y|uJ) =
Md(y|u), ~mJ(y) = ~md(y|uJ), and ~m(y) = ~md(y|u). For image and video dejittering, as in Eqn. (12),
the jitter s(y) is assumed to be of Gaussian type N (0n−d,Σ) with a covariance matrix Σ. Also the
data model in (18) reveals

s(y) =
1

M(y)
(
~mJ(y)− ~m(y)

)
.
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In combination with the BV regularity, the Bayesian/Tikhonov framework [9, 18], it leads to the
following variational model for restoring the ideal linear moment ~md(y) from its jittered version
~mJ(y):

min
~m(y)∈BVc(Rd,Rn−d)

∫
Rd

|D~m(y)|+ λ

2

∫
Rd

1
M2(y)

(~mJ(y)− ~m(y))Σ−1(~mJ(y)− ~m(y))T dy. (19)

The weight λ balances the regularity term and the fitting term, and the model is a regularized
weighted least-square problem. In the fitting term, M(y) = Md(y|uJ) and ~mJ(y) = ~md(y|uJ)
are directly computable from a given jittered image uJ(z), while ~m(y) = ~md(y|u) is unknown.
Furthermore, they satisfy the following compatibility condition.

Proposition 3 (Compatibility Condition) For any u ∈ BV +
c (Rd), the condition M(y) = Md(y|uJ) =

Md(y|u) = 0 implies that ~mJ(y) = 0 and ~m(y) = 0, for any y ∈ Rd.

Proof. ∀y ∈ Rd, M(y) = 0 ⇔ u(x, y) = 0 for a.e. x ∈ Rn−d, which implies that

~mJ(y) = ~md(y|uJ) =
∫

Rn−d

xu(x− s(y), y)dx = 0,

~m(y) = ~md(y|u) =
∫

Rn−d

xu(x, y)dx = 0. �

Inspired by this proposition, we now study independently the properties of the dejittering energy

E[~m|~mJ ,M ] =
∫

Rd

|D~m|+ λ

2

∫
Rd

1
M2

(~mJ − ~m)Σ−1(~mJ − ~m)T dy, (20)

for any given ~mJ and M , that are subject to:

(A1) M(y) ≥ 0, compactly supported, and M ∈ L∞(Rd);

(A2) M(y) = 0 ⇒ ~mJ(y) = 0n−d, where ~mJ : Rd → Rn−d is Lebesgue measurable; and

(A3) ~mJ ∈ L2(Rd → Rn−d, dµ), where dµ = 1
M2 dy denotes the weighted measure on Rd.

Proposition 4 Let ~m ≡ 0n−d be the zero vectorial function. Then, E[~m = 0n−d|~mJ ,M ] < ∞.

Proof. This is guaranteed by (A3), and the fact that

~mJΣ−1 ~mT
J ≤

1
λmin(Σ)

|mJ |2, (21)

where λmin(Σ) > 0 denotes the smallest eigenvalue of Σ. �

Proposition 5 Suppose ~m ∈ BV (Rd, Rn−d) and E[~m|~mJ ,M ] < ∞, then

M(y) = 0 implies ~m(y) = 0n−d, a.e. y ∈ Rd. (22)

In particular, ~m(y) must be compactly supported and ~m(y) ∈ BVc(Rd, Rn−d).
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Proof. By the assumption,∫
Rd

1
M2

(~mJ − ~m)Σ−1(~mJ − ~m)T dy < ∞.

Thus, M = 0 implies (~mJ − ~m)Σ−1(~mJ − ~m)T = 0, for a.e. y ∈ Rd. Since Σ is positive definite,
this further implies ~mJ = ~m, a.e. in Rd. Then, (22) follows directly from the assumption (A2) (or
Proposition 3), and the compactness of M passes onto ~m as a result. �

With these propositions, we now prove the existence and uniqueness of the minimizers to the
dejittering energy (20).

Theorem 2 Under the assumptions (A1), (A2) and (A3), the minimizer to energy E[~m|~mJ ,M ]
in (20) exists and is unique in BVc(Rd, Rn−d).

Proof. First, we prove the existence of the minimizer. By Proposition 4,

inf
~m∈BVc(Rd,Rn−d)

E[~m|~mJ ,M ] ≤ E[0n−d|~mJ ,M ] < ∞.

Let {~mi(y)} be a minimizing sequence in BVc(Rd, Rn−d). Then, by Proposition 5, {~mi(y)}∞i=1

must be uniformly compactly supported, i.e., there exists a bounded open set U and a compact set
K ⊆ U , such that

supp ~mi ⊆ K ⊆ U, for i = 1, · · · ,∞. (23)

In addition, by the assumption (A2) and Proposition 5, one can assume

supp ~mJ , supp M ⊆ K ⊆ U. (24)

Then,
E[~mi|~mJ ,M ] ≡ E[~mi|~mJ ,M, U ], (25)

where the latter refers to the energy restricted over U :

E[~mi|~mJ ,M,U ] =
∫

U
|D~mi|+ λ

2

∫
U

1
M2

(~mJ − ~mi)Σ−1(~mJ − ~mi)T dy.

By the assumption (A1)

1
M2

(~mJ − ~mi)Σ−1(~mJ − ~mi)T ≥ 1
λmax(Σ)

1
‖M‖2

∞
|~mJ − ~mi|22,

where λmax(Σ) denotes the largest eigenvalue of the covariance matrix. Since L2(U, Rn−d) ⊆
L1(U, Rn−d) for any bounded domain U , the sequence {~mi(y)|U}∞n=1 is a bounded sequence in
BV (U, Rn−d). Therefore, by the L1-weak compactness, there exists a subsequence {~mk(y)|U} =
{~mik(y)|U} that converges to some ~m∞ in L1(U, Rn−d). One can further require that

~mk(y) −→ ~m∞(y), a.e. y ∈ U. (26)

Then, by the lower-semicontinuity property of the TV Radon measure under L1 convergence,∫
U
|D~m∞| ≤ lim inf

k→∞

∫
U
|D~mk|. (27)

11



On the other hand, by (26) and Fatou’s Lemma:∫
U

1
M2

(~mJ − ~m∞)Σ−1(~mJ − ~m∞)T dy ≤ lim inf
k→∞

∫
U

1
M2

(~mJ − ~mk)Σ−1(~mJ − ~mk)T dy. (28)

In combinations of (27), (28), and (25), we have

E[~m∞|~mJ ,M, U ] ≤ lim
k→∞

E[~mk|~mJ ,M, U ] = lim
k→∞

E[~mk|~mJ ,M ].

By (23), one must have supp ~m∞ ⊆ K ⊆ U , and

E[~m∞|~mJ ,M,U ] = E[~m∞|~mJ ,M ].

Therefore, we have established

E[~m∞|~mJ ,M ] ≤ lim
k→∞

E[~mk|~mJ ,M ] = inf
~m

E[~m|~mJ ,M ].

Thus ~m∞ ∈ BVc(Rd, Rn−d) has to be a minimizer.
Regarding the uniqueness, from the assumption (A1) on M(y) ∈ L∞(Rd), one has M < ∞

and 1
M2 > 0 a.e. on Rd. Then, it is trivial to see that E[~m|~mJ ,M ] must be strictly convex in

BVc(Rd, Rn−d), and the minimizer has to be unique. �
This theorem secures the feasibility of proper numerical computations of the proposed dejittering

model. From the given image uJ , first compute the jittered linear moment ~mJ , then apply the
dejittering functional (20) to regularize this moment function. The regularized moment function
m∗ is then employed to estimate the unknown jitter s(y). For the model and algorithm to work
effectively, one needs two pieces of input data: the jittered image uJ ∈ Rn and the statistics of the
(n− d)-jitter s(y) ∈ Rd (i.e., the covariance matrix Σ as modeled by (12), which is often obtained
by suitable statistical estimators).

Algorithm:

1. Compute the marginal projection M(y) and the linear slicing moment ~mJ(y) of image uJ .

2. Find the minimizer of (20), ~m∗(y) = argmin E[~m|~mJ ,M ].

3. Compute the jitter by

s∗(y) =
{

~mJ−~m∗

M , M(y) 6= 0
0n−d, M(y) = 0

.

4. Dejitter the image by s∗:

u∗(z) = u∗(x, y) = uJ(x + s∗(y), y).

In the next section, we discuss how to apply the above general framework to the practical
application of 2-D image dejittering, for which n = 2, and d = 1.

12



4 Application to Image Dejittering and Examples

Let ΩR,H = (−R,R)× (0,H) denote a typical 2-D display domain, and an image defined on ΩR,H

be denoted by v(x, y) ≥ 0 with x ∈ (−R,R) and y ∈ (0,H). A typical jitter can be modeled by a
random map,

s = (0,H) → R, y → s(y).

As in Eqn. (12), assume that s(y)’s are i.i.d.’s of Gaussian type N (0, σ2) with p.d.f.,

p(s(y) = a) =
1√
2πσ

e−
a2

2σ2 , for any fixed y.

Then, a jittered image vJ is defined as

vJ(x, y) = v(x− s(y), y) ≥ 0. (29)

In practice, both vJ and v are indeed only displayed or available on a finite domain ΩR,H . It
is then necessary to specify the boundary filling mechanism when |s(y)| 6= 0. Depending on the
situation, the filled-in data at the boundaries could be (i) random, (ii) generated by Neumann
flat extension, or (iii) generated by other mechanisms such as symmetric extension. To avoid such
complications, as well as to illustrate the application of the general theory developed above, we
assume that the image domain is an ideal horizontal stripe ΩH = (−∞,∞) × (0,H) (as in [23])
and that there exits some R > 0, such that

suppΩH
v ⊆ ΩR,H , and v ∈ BV +(ΩH). (30)

Then, vJ in (29) is always well-defined regardless of s(y). Finally, by zero-padding, both v and vJ

on ΩH are extended to the entire plane R2, and denoted by u and uJ respectively. The jitter s is
also naturally extended from (0,H) to R1 by i.i.d. sampling. Then,

uJ(z) = uJ(x, y) = u(x− s(y), y), ∀z = (x, y) ∈ R2,

and (30) implies that u ∈ BV +
c (R2).

Notice that
∫

R2 |u(z)|dz =
∫
ΩH

|v(z)|dz, and∫
R2

|D u| =
∫

ΩH

|D v|+
∫

∂ΩH

|fv|dH1 < ∞,

where ∂ΩH = (R1 × {0}) ∪ (R1 × {H}) denotes the lower and upper boundaries, dH1 the 1-
dimensional Hausdorff measure, and fv = Tr(v) the trace of v along ∂ΩH [13].

Thus, we are able to apply the general framework in the previous sections for the dejittering of
uJ (and consequently for vJ). Define accordingly,

m(y) =
∫

R
xu(x, y)dx, mJ(y) =

∫
R

x uJ(x, y)dx, and

M(y) =
∫

R
uJ(x, y)dx

(
=

∫
R

u(x, y)dx
)
.
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The dejittering model (20) becomes to minimize

E[m|mJ ,M ] =
∫

R
|D m|+ µ

2

∫
R

1
M2

(mJ −m)2dy, (31)

where µ = λ
σ2 . Eqn. (31) is a regularized weighted (by M−2) least-square problem. If M were a

constant, this equation would become precisely the 1-D version of the celebrated TV restoration
model of Rudin-Osher-Fatemi [21].

For most digital devices, one has u ∈ [0, 1] or [1, 255] (8-bit). Then, the compactness of u
ensures M ∈ L∞(R). As long as mJ ∈ L2(R, 1

M2 dy), all the three conditions (A1), (A2) and (A3)
of Theorem 2 are naturally satisfied. The optimal estimator m∗ = argmin E[m|mJ ,M ] therefore
must exist uniquely.

In terms of numerical computations, there have been quite a few effective methods in the
literature for models like (31), e.g., [3, 4, 21, 26]. One frequently adopted approach is based upon
the formal Eular-Lagrange equation of (31),

D

[
D m(y)
|D m(y)|

]
+

µ

M2(y)
(mJ(y)−m(y)) = 0, (32)

or equivalently,

M2(y)D
[

D m(y)
|D m(y)|

]
+ µ(mJ(y)−m(y)) = 0. (33)

It is evident from the last equation that M(y) = 0 implies m(y) = mJ(y), which further leads to
m(y) = 0 because of the assumption (A2) in Theorem 2. As common in the literature [7, 21, 26],
a regularization parameter ε > 0 can be introduced to replace |Dm(y)| in the denominator by
|Dm|ε =

√
ε2 + |Dm|2 in (33). The nonlinear equation (33) can be solved iteratively by the lagged

diffusivity fix-point method as in Acar and Vogel [1]. We refer to the remarkable monograph of
Vogel for more details on the effective computations of models like (31)-(33), including discussions
on the selection of the weighting parameter µ.

Numerical Examples

Finally, we demonstrate the computational performance of the new dejittering model through some
typical examples. Notice that our model naturally applies to color images as well [2, 5].

The first example in Fig. 3 shows a synthetic piecewise constant image u, its jittered version
uJ , and the dejittered image u∗ via our new model based upon moment regularization. Since most
images in the real world are often noisy, in Fig. 4 we have tested the robustness of our new model
in the presence of intensity noises. The dejittered image in (c) clearly confirms such robustness,
thanks to the averaging (or lowpass filtering) nature of moment integrals. In Fig. 5 and Fig. 6, via
a standard test image in image processing, we have explicitly demonstrated the moment sequence
from our dejittering model: the ideal moment m(y), the jittered moment mJ(y), and the optimally
estimated moment m∗(y). Finally, Fig. 7 shows the performance of the model on another standard
test image of “Barbara” in image processing.

5 Conclusion

Motivated by the image dejittering problem in contemporary imaging science, the current paper
introduces the notion of slicing moments of BV functions (or images), and studies their mathemat-
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(a) (b) (c)

Figure 3: (a) ideal image u, (b) jittered image uJ , (c) dejittered image u∗ via moment regularization.

(a) (b) (c)

Figure 4: in the same order as Fig. 3, but with intensity Gaussian white noise; the dejittered
estimation in (c) shows the robustness of our model to the perturbation of intensity noises.

ical properties and regularization techniques. Under the Bayesian rationale for general restoration
problems, the regularities of the slicing moments lead to a variational dejittering model that in-
volves weighted least-square optimization and the total variation Radon measure. The existence
and uniqueness of the optimal solutions, as well as the associated computational approaches are all
explored under the most general settings and assumptions. In practice, our novel dejittering model
introduces dimensionality reduction and gains remarkable computational efficiency.

Our future work will focus on improving the model to achieve maximal degrees of accuracy,
performance, and computational efficiency.

Acknowledgments

We thank Stan Osher and Tony Chan for their constant inspirations and encouragement on this
emerging field of mathematical image and vision analysis.

References

[1] R. Acar and C. R. Vogel. Analysis of total variation penalty methods for ill-posed problems.
Inverse Prob., 10:1217–1229, 1994.

[2] J.-F. Aujol and S.-H. Kang. Color image decomposition and restoration. Journal of Visual
Communication and Image Representation (to appear), 2005.

[3] A. Chambolle and P. L. Lions. Image recovery via Total Variational minimization and related
problems. Numer. Math., 76:167–188, 1997.

15



(a) (b) (c)

Figure 5: dejittering a standard test image of peppers via moment regularization.

0 100 200
60

70

80

90

100
(a)

0 100 200
60

70

80

90

100
(b)

0 100 200
60

70

80

90

100
(c)

Figure 6: the associated moment profiles corresponding to the images in Fig. 5.

[4] T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal-dual method for total variation-
based image restoration. SIAM Journal on Scientific Computing, 20:1964–1977, 1999.

[5] T. F. Chan, S.-H. Kang, and J. Shen. Total variation denoising and enhancement of color
images based on the CB and HSV color models. J. Visual Comm. Image Rep., 12(4):422–435,
2001.

[6] T. F. Chan, S. Osher, and J. Shen. The digital TV filter and non-linear denoising. IEEE
Trans. Image Process., 10(2):231–241, 2001.

[7] T. F. Chan and J. Shen. Image Processing and Analysis: variational, PDE, wavelets, and
stochastic methods. SIAM Publisher, Philadelphia, 2005.

[8] T. F. Chan and J. Shen. Variational image inpainting. Comm. Pure Applied Math., in press,
2005.

[9] T. F. Chan, J. Shen, and L. Vese. Variational PDE models in image processing. Notices Amer.
Math. Soc., 50:14–26, 2003.

[10] I. Daubechies. Ten lectures on wavelets. SIAM, Philadelphia, 1992.

16



(a) ideal image u (b) jittered image uJ (c) dejittered image u*

Figure 7: The performance of the new model on the standard test image of “Barbara.” Dejittering
images with rich textures has been a challenging task for PDE (or diffusion) based methods [14, 23].

[11] G. B. Folland. Real Analysis - Modern Techniques and Their Applications. John Wiley &
Sons, Inc., second edition, 1999.

[12] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Trans. Pattern Anal. Machine Intell., 6:721–741, 1984.

[13] E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984.
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