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Abstract

We propose in this paper minimization algorithms for image restoration using dual function-
als and dual norms. In order to extract a clean image u from a degraded version f = Ku + n
(where f is the observation, K is a blurring operator and n represents additive noise), we impose
a standard regularization penalty Φ(u) =

∫

φ(|Du|)dx < ∞ on u, where φ is positive, increasing
and has at most linear growth at infinity. However, on the residual f − Ku we impose a dual
penalty Φ∗(f −Ku) < ∞, instead of the more standard ‖f −Ku‖2

L2 fidelity term. In particular,
when φ is convex, homogeneous of degree one, and with linear growth (for instance the total
variation of u), we recover the (BV, BV ∗) decomposition of the data f , as suggested by Y.
Meyer [32]. Practical minimization methods are presented, together with theoretical, experi-
mental results and comparisons to illustrate the validity of the proposed models. Moreover, we
also show that by a slight modification of the associated Euler-Lagrange equations, we obtain
well-behaved approximations and improved results.

Keywords: image restoration; image decomposition; BV duality, functional minimization.

1 Introduction

Let Ω be an open, bounded and connected subset of R
2, with Lipschitz boundary ∂Ω. For two

dimensional images, Ω is in general the interior of a rectangle in the plane. Assume f : Ω → R

is a given image. Since at every pixel the light intensity has finite energy, it is natural to assume
that f ∈ L∞(Ω). And since L∞(Ω) ⊂ L2(Ω) for bounded Ω, it is not too restrictive to assume
that f ∈ L2(Ω). Let us assume the linear degradation model f = Ku + n, where f, u : Ω → R

are the degraded and the clean unknown images respectively, K : L2(Ω) → L2(Ω) is a linear and
continuous operator, and n represents additive noise of zero mean. The problem of recovery of the
unknown image u, given f and given this degradation model, is known to be an ill-posed problem.
Therefore, regularization techniques as a-priori smoothness on the unknown u are usually imposed
in a minimization approach, of the form

inf
u

E(u) = R(u) + λF (f − Ku), (1)

where the first term R(u) acts as a regularization term (usually depending on spatial derivatives
of the unknown u), F (f − Ku) acts as a fidelity term, and λ ≥ 0 is a tuning parameter. The
behavior of functionals R and F is chosen function of the a-priori smoothness assumptions on u
and function of the noise statistics. The standard case is when R(u) depends on the gradient
Du of u (and possibly on its discontinuity set Su), and if additive Gaussian noise of zero mean is
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observed, then F (u) = ‖f − Ku‖2
L2(Ω). These cases include the Mumford and Shah model [35] for

computing optimal piecewise-smooth approximations u of f and the models of D. Geman, S. Geman
and collaborators [21], [22], [23], [24] in the non-convex case, or the total variation minimization
of Rudin, Osher and Fatemi [38], [39] in the convex case. Other related models and analysis in
a variational approach include Acar-Vogel [2], Chambolle-Lions [13], Aubert and collaborators [7],
[41]. In the PDE approach, we mention the Perona-Malik equation [37] (λ = 0), as well as the
anisotropic smoothing Catté et al. [12], L. Alvarez et al. [4], and subsequent papers.

More recently, Y. Meyer on one side [32], and D. Mumford - B. Gidas [34] on the other side
advocated the use of generalized functions as distributions in dual spaces for modeling images
with oscillations, such as natural images, noise, texture, oscillatory patterns; thus proposing spaces
such as H−s(Ω) [34] and spaces that approximate the dual BV ∗(Ω) of the space BV (Ω) [32].
Such oscillatory images are better modeled if weaker (dual) norms are considered as penalty or
assumption, instead of the more standard ‖ · ‖2

L2(Ω) fidelity penalty.
Here, we follow the approach suggested by Y. Meyer of using duality to obtain weaker norms

to represent the oscillatory component v = f − Ku. When analyzing the Rudin-Osher-Fatemi
model [38] in the book manuscripts by Y. Meyer [32] and Andreu-Vaillo, Caselles and Mazón [1],
a dual functional Φ∗(v) of the total variation Φ(u) = |Du|(Ω) appears in the characterization
of minimizers, applied to the residual term v := f − Ku. We therefore propose in this paper
minimization models of the form

inf
u

{

Φ(u) + λΦ∗(f − Ku)
}

.

We will consider in particular the penalty u ∈ BV (Ω), or more generally of the form φ(|Du|)(Ω) <
∞, with φ convex and of linear growth (φ(t) = |t|, φ(t) =

√
1 + t2, φ(t) = log cosh(|t|), see [16]

for the notion of convex functions of measures), as well as non-convex potentials that we write as
Φ(u) =

∫

Ω φ(|Du|)dx for functions in W 1,1(Ω). In the convex, well-posed case, these include the
total variation minimization proposed by L. Rudin, S. Osher, and E. Fatemi [38]. Related recent
work is proposed by J.-F. Aujol and A. Chambolle [8], and by S. Levine [28], where the authors use
the duality given by the Legendre-Fenchel transform to solve cartoon and texture decomposition
models. However, our approach proposed here is different.

In [42], [43], [36], and Aujol et al. [10], other approximations to the (BV,G = Ẇ−1,∞) model
of Y. Meyer have been previously proposed. The use of the dual norm of the total variation has
also appeared in S. Kindermann et al.’s work [26], in a slightly different framework.

In the context of modeling oscillatory components by generalized functions, we refer to Y. Meyer
[32], D. Mumford and B. Gidas [34], and to [42], [43], [36]. Recently, in [27], the authors propose

practical methods for solving approximations to Meyer’s (BV,F = div(BMO) = ˙BMO
−1

) decom-
position model, while in [29], the authors generalize the models [42], [43], [36], [17] by proposing a
(BV,H−s) decomposition model and theoretical results based on duality. Finally, in Garnett et al.
[20] and Aujol-Chambolle [8], the (BV,E = Ḃ−1

∞,∞) decomposition model proposed by Y. Meyer is
also analyzed in theory and in practice for modeling decompositions into cartoon and texture.

For more properties and notations regarding characterization of minimizers by duality for the
Rudin-Osher-Fatemi model, we refer the readers to the book manuscripts [32] and [1]. A prelimi-
nary, short version of this work has been presented at the 2006 SPIE Electronic Imaging Conference
[14].

The outline of the paper is as follows: in the first part of Section 2 we give motivations and
we present the general (Φ,Φ∗) minimization model and properties, together with the associated
Euler-Lagrange equations. Section 2.1 is devoted to the particular case when Φ is defined to be the
total variation or the BV semi-norm. Here we further analyze the model of the form (BV,BV ∗),
we show existence of minimizers and provide a regularized version for which Uzawa’s method is
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convergent. Section 3 is devoted to variants of the proposed models in practice and to several
experimental results and comparisons for image decomposition, denoising and deblurring.

2 Description of the general model and properties

Following the terminology from [1], let E be a normed space, and let E∗ be its dual space. Let
Φ : E → [0,∞] be any function. Let us define Φ∗ : E∗ → [0,∞], by

Φ∗(v) = sup
{〈v, u〉

Φ(u)
: u ∈ E},

with the convention that 0
0 = 0, 0

∞ = 0. Here, 〈v, u〉 = v(u) denotes the duality pairing.
Note that Φ∗(v) ≥ 0 for any v ∈ E∗. Note also that the supremum is attained on the set of

u ∈ E such that 〈v, u〉 ≥ 0. We have the following Cauchy-Schwartz inequality

〈v, u〉 ≤ Φ∗(v)Φ(u) if Φ(u) > 0.

Let K : E 7→ E be a linear and continuous operator, with linear and continuous adjoint
K∗ : E∗ 7→ E∗ (we will assume later that E=E∗; also, usually, in inverse problems such as
deblurring, we may need to assume that KχΩ = χΩ). We wish to propose here image decomposition,
denoising and deblurring models of the form

inf
u∈E

{

Φ(u) + λΦ∗(f − Ku)
}

, (2)

where f ∈ E ⊂ E∗ is a given data and λ > 0 is a tuning parameter. We will choose Φ so
that Φ(u) < ∞ implies u is a piecewise-smooth function, with homogeneous regions and sharp
boundaries (sometimes called “cartoon” component); Φ∗ will have the role of attracting oscillatory
components of zero mean, v := f − Ku from f . Thus v could represent additive noise (when K is
the identity or for general blurring operator K), or v could represent the texture component (if K
is the identity).

To motivate the above model and its relation with the more standard one,

inf
u∈E

{

Φ(u) + λ‖f − Ku‖2
}

, (3)

we first need some preliminary remarks (valid in the case when Φ is convex, lower semi-continuous,
and positive homogeneous of degree one, in particular if Φ is a smoothing (semi) norm on E). We
follow [1], [32].

Definition 1. Let u ∈ E. We say that v∗ ∈ E∗ is a subgradient of Φ at u, and we write v∗ ∈ ∂Φ(u),
if and only if Φ(u) is finite and Φ(v) ≥ Φ(u) + 〈v∗, v − u〉, for any v ∈ E.

Theorem 1. [1] Assume that Φ is convex, lower semi-continuous and positive homogeneous of
degree 1. Then v∗ ∈ ∂Φ(u) if and only if φ∗(v∗) ≤ 1 and 〈v∗, u〉 = Φ(u).

Proof. If v∗ ∈ ∂Φ(u) then Φ(v) ≥ Φ(u) + 〈v∗, v − u〉,∀v ∈ E. By choosing v = 0 and v = 2u (using
Φ(0) = 0), we easily obtain that 〈v∗, u〉 = Φ(u). Furthermore, we obtain 〈v∗, v〉 ≤ Φ(v), for any
v ∈ E, thus Φ∗(v∗) ≤ 1. Conversely, if Φ∗(v∗) ≤ 1 (which implies Φ(v) ≥ 〈v∗, v〉 for any v ∈ E)
and Φ(u) = 〈v∗, u〉, we have Φ(v) − Φ(u) − 〈v∗, v − u〉 = Φ(v) − 〈v∗, v〉 ≥ 0, thus v∗ ∈ ∂Φ(u).
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Remark 1. Let us assume that E is a Hilbert space, with inner product 〈·, ·〉 that induces the
norm ‖ · ‖ in (3), and that Φ is convex, l.s.c. and positive homogeneous of degree 1. If u is a
minimizer of (3), then this is equivalent with 2λK∗(f − Ku) ∈ ∂Φ(u), which by Theorem 1 gives
2λΦ∗(K∗(f − Ku)) ≤ 1 and 2λ〈K∗(f − Ku), u〉 = Φ(u). Thus, for instance if K is the identity
operator, then model (3), although it imposes that ‖f − u‖ must be finite and even small, we also
obtain that Φ∗(f − u) ≤ 1

2λ
< ∞ and this weaker condition, that does not penalize oscillations,

could be an alternative constraint on the oscillatory component f −u, or more generally on f −Ku.
This is in the spirit of Y. Meyer’s ideas [32], as we will see later.

For applications to image processing, we work with regularizations Φ as in [21], [22], [38], [7], [41].
We first define a continuous, even potential function φ : R → [0,∞), increasing on [0,∞) (possibly
non-convex), and with at most linear growth at infinity. In the convex case, φ(|Du|) is well defined
for u ∈ BV (Ω), convex and lower semi-continuous, as a convex function of measures (see Demengel-
Témam [16]), assuming two constants a > 0, b ≥ 0 exist, such that a|x| − b ≤ φ(x) ≤ a|x| + b for
any x ∈ R

2. In the non-convex case (well defined and well-posed only in the discrete setting), we
assume only 0 ≤ φ(x) ≤ a|x| + b and we formally work with u ∈ W 1,1(Ω) ⊂ BV (Ω) ⊂ L2(Ω) and
the distributional gradient Du, as a function in L1(Ω) × L1(Ω).

We consider (2) by letting E = E∗ = L2(Ω), 〈u, v〉 =
∫

Ω u(x)v(x)dx for u, v ∈ L2(Ω), and
defining

Φ(u) =

{ ∫

Ω φ(|Du|), if u ∈ BV (Ω),
+∞, if u ∈ L2(Ω) \ BV (Ω),

for convex φ,

and

Φ(u) =

{ ∫

Ω φ(|Du|)dx, if u ∈ W 1,1(Ω),
+∞, if u ∈ L2(Ω) \ W 1,1(Ω),

for non-convex φ.

We propose here the following general denoising, deblurring and decomposition model,

inf
u

{

∫

Ω
φ(|Du|)dx + λ

(

sup
w,

R

Ω
φ(|Dw|)dx 6=0

∫

Ω(f − Ku)wdx
∫

Ω φ(|Dw|)dx

)}

, (4)

as an alternative to the more standard one

inf
u

∫

Ω
φ(|Du|)dx + λ‖f − Ku‖2

L2(Ω). (5)

In practice, to computationally minimize the functional in (4), we formally apply Uzawa’s
method [18]: we define

L(u,w) =

∫

Ω
φ(|Du|)dx + λ

∫

Ω(f − Ku)wdx
∫

Ω φ(|Dw|)dx
for u,w ∈ W 1,1(Ω),

∫

Ω
φ(|Dw|)dx 6= 0,

and problem (4) formally becomes
inf
u

sup
w

L(u,w).

The main minimization steps formally are: start with initial estimates u = un, w = wn, n = 0.
Then for n ≥ 0, let

un+1 := arg min
u

L(u,wn),

wn+1 := arg max
w

L(un+1, w).
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To solve the above alternating minimization and maximization problems, we shall drive to steady
state the following evolutionary coupled system in the unknowns u = un+1, w = wn+1 (making φ
differentiable):

∂u

∂t
= K∗wn +

∫

Ω φ(|Dwn|)dx

λ
div
(

φ′(|Du|) Du

|Du|
)

,
∂u

∂~n

∣

∣

∣

∂Ω
(t, x) = 0, t > 0 (6)

∂w

∂t
= f − Kun+1 +

∫

Ω(f − Kun+1)wdx
∫

Ω φ(|Dw|)dx
div
(

φ′(|Dw|) Dw

|Dw|
)

,
∂w

∂~n

∣

∣

∣

∂Ω
(t, x) = 0 t > 0 (7)

where ~n denotes the exterior unit normal to ∂Ω. Equation (6) in u is a gradient descent and
equation (7) in w a gradient ascent.

Remark 2. In practice, we regularize φ at the origin if necessary: for instance, if φ(t) = |t|p,
0 < p ≤ 1, then we substitute it by φ(t) =

√

ǫ2 + |t|2p
, with very small ǫ > 0, and this also insures

that
∫

Ω φ(|Dw|)dx 6= 0 for any w ∈ W 1,1(Ω).

Remark 3. In practice, for the maximization process (7) in w, for fixed un+1, we start with an ini-
tial guess w such that

∫

Ω(f −Kun+1)wdx ≥ 0; then by selecting the correct time-step discretization

△t to compute a new w, we insure that the energy in w,
R

Ω
(f−Kun+1)wdx
R

Ω
φ(|Dw|)dx

, is increasing. There-

fore the condition
∫

Ω(f − Kun+1)wdx ≥ 0 remains satisfied. If △t is not optimally selected at
every iteration, then we can add the absolute value, thus working with the equivalent formulation

supw
|
R

Ω
(f−Ku)wdx|

R

Ω φ(|Dw|)dx
.

For comparison purposes, we also recall here the gradient descent for formally minimizing (5),

∂u

∂t
= 2λK∗(f − Ku) + div

(

φ′(|Du|) Du

|Du|
)

,
∂u

∂~n

∣

∣

∣

∂Ω
(t, x) = 0, t > 0. (8)

Experimental results and comparisons will be shown with the above models for image decom-
position, denoising and deblurring. We will also consider a rescaling of the descent speed in u, that
makes the differential operators better behaved in practice and speeds up the convergence.

We consider in the next subsection the case when φ defines the total variation for BV functions,
directly related and equivalent with Y. Meyer’s proposal.

2.1 The BV case

In the particular case E = E∗ = L2(Ω) and Φ(u) =
∫

Ω |Du| (total variation of u) if u ∈ BV (Ω)
(+∞ otherwise), models (3) and (5) become the Rudin-Osher-Fatemi models [38], [39]. When
K = I, the ROF model has been further analyzed by Y. Meyer in [32] obtaining a characterization
of minimizers similar with the one in Remark 1, but with Φ∗(·) = ‖ · ‖∗ defined in a different,
equivalent way. Moreover, it is suggested in [32] a more refined (BV,G) decomposition model, as
an alternative to the ROF model: infu∈BV (Ω){

∫

Ω |Du|+λ‖f−u‖∗}. As justified in [32] and as we will
see later, the norm ‖ · ‖∗ does not penalize oscillations, thus it is a more refined texture norm than
the L2(Ω) norm for modeling oscillations in images. In this paper we propose an alternative way for
solving in practice the (BV,G) Meyer’s model as an exact decomposition (with generalizations), by
directly using the definition of Φ∗. This is different from the earlier approximations to the (BV,G)
model from [42], [43], [9], [10], [6].

For equivalent definitions and properties of BV functions, we refer the reader to [19], [5], [1],
among other references.
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Definition 2. A function u ∈ L1(Ω) has bounded variation in Ω if

∫

Ω
|Du| := sup

{

∫

Ω
udivφdx : φ ∈ C1

c (Ω, R2), |φ| ≤ 1
}

< ∞.

We write u ∈ BV (Ω) to denote the space of functions of bounded variation, and |u|BV (Ω) :=
∫

Ω |Du|
is called the total variation of u.

BV (Ω) becomes a Banach space endowed with the norm ‖u‖BV (Ω) = ‖u‖L1(Ω) + |u|BV (Ω). If
u ∈ W 1,1(Ω), then |u|BV (Ω) =

∫

Ω |∇u|dx. Let us also recall the Poincaré-Wirtinger inequality in
two dimensions: there is a constant C > 0 such that for any u ∈ BV (Ω),

‖u − uΩ‖L2(Ω) ≤ C

∫

Ω
|Du|,

where uΩ =
R

Ω u(x)dx

|Ω| denotes the mean of u over Ω.
To consider the total variation of u, we define

Φ(u) =

{ ∫

Ω |Du| if u ∈ BV (Ω),
+∞ if u ∈ L2(Ω) \ BV (Ω).

(9)

Definition 3. For any v ∈ L2(Ω), we define

Φ∗(v) = sup
w∈BV (Ω)
|w|BV (Ω) 6=0

∫

Ω vwdx

|w|BV (Ω)

(

= sup
w∈BV (Ω)
|w|BV (Ω) 6=0

|
∫

Ω vwdx|
|w|BV (Ω)

)

≤ ∞. (10)

Let X :=
{

v ∈ L2(Ω) :
∫

Ω v(x)dx = 0
}

.

Lemma 1. Let v ∈ L2(Ω) such that Φ∗(v) < ∞. Then v ∈ X.

Proof. Take any fixed w ∈ BV (Ω) with |w|BV (Ω) 6= 0. Then for any constant c,

∫

Ω v(w + c)dx

|w + c|BV (Ω)
=

∫

Ω v(w + c)dx

|w|BV (Ω)
=

∫

Ω vwdx

|w|BV (Ω)
+ c

∫

Ω vdx

|w|BV (Ω)
≤ Φ∗(v) < ∞.

If
∫

Ω v(x)dx 6= 0, then by letting |c| → ∞ for c of the same sign with
∫

Ω v(x)dx we obtain a
contradiction. Therefore, v must be of zero mean in L2(Ω), thus v ∈ X.

The converse property is also true.

Lemma 2. Let v ∈ X. Then Φ∗(v) < ∞.

Proof. For any w ∈ BV (Ω) with |w|BV (Ω) 6= 0, and since v is of zero mean, we have:

∫

Ω v(x)w(x)dx

|w|BV (Ω)
=

∫

Ω v(x)(w(x) − wΩ)dx

|w|BV (Ω)
≤
∫

Ω |v(x)||w(x) − wΩ|dx

|w|BV (Ω)

≤
‖v‖L2(Ω)‖w − wΩ‖L2(Ω)

|w|BV (Ω)
≤ C‖v‖L2(Ω) < ∞,

where we have used the Cauchy-Schwartz and Poincaré-Wirtinger inequalities. Since this holds for
any w ∈ BV (Ω) with |w|BV (Ω) 6= 0, we obtain Φ∗(v) ≤ C‖v‖L2(Ω) < ∞.
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Remark 4. Any v ∈ X can be identified with a linear and continuous (bounded) form from
˙BV

∗
(Ω) ∩ L2(Ω). Here ˙BV (Ω) is the homogeneous version of BV (Ω) endowed with the norm

‖ · ‖ ˙BV (Ω) := | · |BV (Ω) (or the quotient space BV (Ω)/P0 where functions different by a constant are

identified), and ˙BV
∗
(Ω) is the space of distributions dual of ˙BV (Ω). We also have that for v ∈ X,

Φ∗(v) := sup
w∈BV (Ω), |w|BV (Ω) 6=0

∫

Ω vwdx

|w|BV (Ω)
= sup

w∈BV (Ω), |w|BV (Ω)≤1

∫

Ω
vwdx.

Note that not all elements of ˙BV
∗
(Ω) can be expressed in this way (for instance, see T. De Pauw

[15] for a characterization of the dual of SBV (Ω), of special functions of bounded variation). We
also note that we have ˙BV (Ω)∗ ∩L2(Ω) = Ẇ 1,1(Ω)∗ ∩L2(Ω). In conclusion, the general model (2),
when Φ is defined as in (9), can be called a ( ˙BV , ˙BV

∗
) model, and this model is equivalent with

the (BV,G) model proposed by Y. Meyer, as we will see next.

We introduce now the space G(Ω) [32], [6], [1].

Definition 4. We denote by G(Ω) the subset of L2(Ω) defined by

G(Ω) = {v ∈ L2(Ω), there is ~g ∈ L∞(Ω, R2), v = −div~g in D′(Ω), ~g · ~n|∂Ω = 0}.

Also, let us define, for v ∈ G(Ω),

‖v‖∗ := inf
{

‖ |~g| ‖∞: |~g| =
√

g1(x)2 + g2(x)2, v = −div(~g) in D′(Ω), ~g ∈ L∞(Ω)2, ~g · ~n|∂Ω = 0
}

.

(11)

Following [1] and [6], it is possible to show that ‖ · ‖∗ is convex, lower semi-continuous and
positive homogeneous of degree 1. Moreover, if ‖v‖∗ < ∞, then it is easy to show that the infimum
in (11) is attaint [3]. We also have the following facts:

(i) X = {v ∈ L2(Ω) : Φ∗(v) < ∞};
(ii) G(Ω) = X;

(iii) For any v ∈ X = G(Ω), we have ‖v‖∗ = Φ∗(v).

The proof of (i) is the direct consequence of Lemmas 1 and 2.
The proof of (ii) is shown by Aubert-Aujol [6]; one inclusion is obvious, while the other inclusion

is the direct implication of a result by Bourgain-Brezis [11].
The proof of (iii) is shown in Andreu-Vaillo et al. [1] by interesting techniques related to the

framework from the previous section.
In the original work of Y. Meyer and A. Haddad [32], [25], the case Ω = R

2 is considered,
and it is shown that the space of distributions G = {v = −div~g, ~g ∈ L∞(R2, R2)}, endowed with
the norm ‖v‖G = inf{‖~g‖L∞(R2,R2), v = −div~g}, is isometrically isomorphic to the dual space of
({u ∈ BV (R2),Du ∈ L1(R2)2}, | · |BV (R2)).

Example 1. Consider the sequence of oscillatory functions of zero mean on Ω = (0, 2π), fn(x) =
cos(nx) ∈ X. Then it is easy to verify that ‖fn‖∗ = 1

n
→ 0 as n → ∞ (similarly, it is easy to

verify in this case that sup{w∈BV (0,2π), |w|BV (0,2π)≤1}

∫ 2π

0 cos(nx)w(x)dx = 1
n
). Therefore, more and

more oscillations are not penalized by the ‖ · ‖∗ norm (which coincides with Φ∗(·) in the case of
the total variation). Therefore, small ‖ · ‖∗ norm or small Φ∗(·) encourages oscillations. However,
‖fn‖L2(0,2π) =

√
π > 0 and does not converge to zero as the number of oscillations becomes larger

and larger. Thus, it is natural to use ‖f − Ku‖∗ or Φ∗(f − Ku) as a penalty for oscillatory
components such as noise or texture, in a minimization approach.
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Theorem 2. Let f ∈ L2(Ω) and K : L2(Ω) → L2(Ω) be a linear and continuous operator, with
adjoint K∗, such that KχΩ = K∗χΩ = χΩ, and let λ > 0. Then there exist at least one solution u
of the minimization problem

inf
u∈BV (Ω)

F (u) = Φ(u) + λΦ∗(f − Ku), (12)

with Φ defined in (9).

Proof. Let ū = fΩχΩ, where fΩ is the mean of f over Ω. Then F (ū) = λΦ∗(f − fΩ) < ∞, since
f − fΩ is of zero mean. Therefore 0 ≤ infu F (u) < ∞, and there must be a minimizing sequence
un ∈ BV (Ω) such that infu∈BV (Ω) F (u) = limn→∞ F (un). We obtain that |un|BV (Ω) ≤ M , for all
n ≥ 0. Also, f − Kun ∈ L2(Ω) must be of zero mean, since Φ∗(f − Kun) < ∞. This implies
that

∫

Ω fdx =
∫

Ω Kundx =
∫

Ω unK∗χΩdx =
∫

Ω undx, thus each un has the same mean equal with
fΩ. By Poincaré-Wirtinger inequality, we deduce that ‖un‖L2(Ω) are uniformly bounded. Since Ω
is bounded, we also deduce that ‖un‖L1(Ω) are uniformly bounded, therefore the sequence un is
uniformly bounded in BV (Ω). Then there is a u ∈ BV (Ω) and a subsequence un converging to
u strongly in L1(Ω), weakly in L2(Ω) and weakly in BV − w∗(Ω). We also have that f − Kun

converges to f −Ku weakly in L2(Ω). In conclusion, by the lower semi-continuity of | · |BV (Ω) and
of Φ∗(·), we deduce that

F (u) ≤ lim inf
n→∞

F (un) = inf
w∈BV (Ω)

F (w),

thus existence of minimizers in BV (Ω).

Remark 5. If working on the entire plane as in [32], it is possible to show that there is no unique-
ness of minimizers [33].

Theorem 3. Let v ∈ X. The maximization problem

sup
w∈BV (Ω), |w|BV (Ω)≤1

∫

Ω
v(x)w(x)dx =: Φ∗(v) < ∞

has at least one solution w.

Proof. A maximizing sequence wn with finite energy must exist, since the supremum is finite.
We therefore have |wn|BV (Ω) ≤ 1. It is also sufficient to consider the restriction that wn have zero
mean. Then by Poincaré-Wirtinger inequality, we deduce that wn are uniformly bounded in L2(Ω),
then in L1(Ω) and finally in BV (Ω). Then there is a w ∈ BV (Ω) and a subsequence wn converging
to w strongly in L1(Ω), weakly in L2(Ω) and |w|BV (Ω) ≤ lim infn→∞ |wn|BV (Ω) ≤ 1. We obtain that
∫

Ω vwndx →
∫

Ω vwdx, thus the limit w is a solution of the maximization process.

Remark 6. In the related parallel work by Kindermann, Osher and Xu [26], the maximization in
Thm. 3 is also proposed. An interesting theoretical result of Strang [40] is used for the numerical
computation, that says that it is sufficient to consider maximizers w ∈ BV (Ω) among characteristic
functions of sets with finite perimeter.

2.1.1 A convergent Uzawa’s algorithm of regularized BV version

In practice, we use the gradient descent and ascent methods as given in (6)-(7) for the (BV,BV ∗)
model. However, we cannot directly apply Proposition 1.1, page 189 from Ekeland-Témam [18]
to show the convergence of Uzawa’s algorithm in this case. We show in this paragraph that the
general convergence result from [18] can be applied, if we regularize |u|BV (Ω) in the minimization
process in u by making the problem strictly elliptic (although this does not directly give a practical
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optimization method): we work on (a subspace of) H1(Ω) substituting |u|BV (Ω) by F1(u)+ ǫF2(u),

where F1(u) =
∫

Ω

√

ǫ + |Du|2dx (convex and Gâteaux-differentiable) and F2(u) = ‖Du‖2
L2(Ω) is the

H1 semi-norm; then we can apply the result from Ekeland-Témam [18].
Recall that f ∈ L2(Ω) with fΩ = 0 (without loss of generality), and consider the Hilbert spaces

V = ({u ∈ H1(Ω), uΩ = 0}, |u|H1(Ω)) and Z = L2(Ω). Let A = V ⊂ V (as a closed convex set of
V ), and the closed, convex and bounded set B = {w ∈ BV (Ω) : wΩ = 0, |w|BV (Ω) ≤ 1} ⊂ L2(Ω).

Let small fixed ǫ > 0, F1, F2 : V → R defined by F1(u) =
∫

Ω

√

ǫ + |Du|2dx and F2(u) = ‖Du‖2
L2(Ω).

Define the mapping Ψ : V → Z by Ψ(u) = f − Ku, where K is linear and continuous (bounded)
on L2(Ω), such that KχΩ = K∗χΩ = χΩ. Finally, define

L(u,w) = F1(u) + ǫF2(u) + λ

∫

Ω
(f − Ku)wdx = J(u) + λ〈w,Ψ(u)〉Z ,

and consider the optimization problem

inf
u∈A

{

sup
w∈B

L(u,w)
}

. (13)

Our aim is to approximate the solution u of the optimization problem (13), thus we want to
approximate a saddle point (u,w) of L, that must satisfy

J(u) + λ〈w,Ψ(u)〉Z ≤ J(v) + λ〈w,Ψ(v)〉Z , ∀ v ∈ A,

J(u) + λ〈w,Ψ(u)〉Z ≥ J(u) + λ〈ν,Ψ(u)〉Z , ∀ ν ∈ B.

The last relation implies
〈ν − w,Ψ(u)〉Z ≤ 0, ∀ν ∈ B,

which is equivalent with ([18] page 40)

w = ΠB(w + ρΨ(u)), ∀ρ > 0,

where ΠB is the projection in Z = L2(Ω), of B.
Uzawa’s algorithm constructs two sequences of elements un ∈ A, wn ∈ B, defined as: start with

any w0 ∈ B, then we calculate u0, then w1, u1, etc.
• wn being known, we determine un as the element of A which minimizes J(v) + λ〈wn,Ψ(v)〉Z .
• Then we define wn+1 = ΠB(wn + ρnΨ(un)), where ρn > 0 will be chosen later on.

Theorem 4. Under the assumptions in this subsection 2.1.1, the above Uzawa’s algorithm is con-
vergent in the following sense: un → u in V , where u is solution of problem (13) provided the ρn

satisfy 0 < ρ∗ ≤ ρn ≤ ρ′∗, ρ′∗ sufficiently small.

Proof. We follow the steps from [18]. From the assumptions, we have that A ⊂ V is a non-
empty closed convex set (actually equal with V ), and B ⊂ Z = L2(Ω) is non-empty, closed, convex
and bounded. Both functionals F1(u) and F2(u) are Gâteaux-differentiable, therefore J is also.
Moreover, since F1 is convex, then F ′

1 is “monotone”, in the sense that

〈F ′
1(u) − F ′

1(v), u − v〉V ≥ 0 ∀u, v ∈ A.

Also, F2 satisfies
〈F ′

2(u) − F ′
2(v), u − v〉 ≥ (=)2‖u − v‖2

V , ∀u, v ∈ A.

Combining these two inequalities, we obtain

〈J ′(u) − J ′(v), u − v〉V ≥ 2ǫ‖u − v‖2
V , ∀u, v ∈ A.

9



For any w ∈ B, the mapping u →
∫

Ω(f − Ku)wdx is convex and l.s.c. on A. Also, Ψ
is lipschitzian from A to Z, since ‖Ψ(u) − Ψ(v)‖Z = ‖Ku − Kv‖L2(Ω) ≤ ‖K‖‖u − v‖L2(Ω) ≤
C‖K‖‖D(u − v)‖L2(Ω) = C‖K‖‖u − v‖V , due to Poincaré inequality. We have thus shown that
all the assumptions necessary in the general Proposition 1.1, pages 189-190 from [18] are satisfied,
thus we conclude the required convergence.

3 Experimental results

In our experimental results for image denoising, image deblurring and cartoon and texture separa-
tion, we have applied the above introduced models, discretized by finite differences. We have also
considered the case when Φ is not convex. Moreover, with a minor modification of the gradient
descent, our nonlinear evolution PDE’s in the unknown u are numerically better behaved, giving
faster convergence and improved results. These are presented in the next section.

3.1 (BV, BV ∗) image denoising and decomposition results

We first consider the time-dependent system (6)-(7), with K = I and φ(|t|) = |t| (corresponding to
total variation), that can be made differentiable by working with φ(|t|) =

√

ǫ2 + |t|2 instead (this
is what we call the (BV,BV ∗) model).

Moreover, instead of (7), we also consider another gradient descending method in u (or rescaling
the descent speed, related with [30], [31]), for K = I,

∂u

∂t
= hǫ,p(|Du|)

[

∫

Ω |Dw| dx

λ
div

(

Du

|Du|

)

+ w

]

, (14)

where hǫ,p(|t|) > 0 and satisfies

hǫ,p(|t|) =

{

ǫ if |t| ≥ ǫ,

|t|p if |t| < ǫ, for some p ≥ 1.
(15)

This modification makes the divergence operator numerically better behaved when |Du| = 0, and
also gives faster convergence and improved results. Thus, we will use “the modified (BV,BV ∗)
model” when we compute u using equation (14).

We will show comparisons with the ROF model [38],

inf
u

F(u) =

∫

Ω
|Du| dx + λ

∫

Ω
|f − Ku|2 dx. (16)

To minimize (16) in practice, we also consider two gradient descending methods,

∂u

∂t
=

1

2λ
div

(

Du

|Du|

)

+ K∗(f − Ku) (called ROF model) (17)

∂u

∂t
= hǫ,p(|Du|)

[

1

2λ
div

(

Du

|Du|

)

+ (f − u)

]

(called modified ROF model when K = I). (18)

Our numerical computations use ∆x = ∆y = 1. For the computations which involve hǫ,p(t), we
use ǫ = 0.5 and p = 1.

We also show w as a by-product of the algorithm. The computed w depends on the number of
iterations and on the initial guess w0. We have tested as initial guess w0 the given data f (then
the computed w may look like a smoothed version of the data f), a rescaled version of f with small
values, or a random initial w0. We have observed that the computed image u does not depend on
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the initial w0, but the computed w at steady state may depend on the initial w0. For visualization
purposes only, in each figure, w has been rescaled to [0, 255], and to f − u or to f −Ku a constant
between [100, 125] has been added.

Let ū be the true image of size N × M , and u be the recovered image. To quantify how good
the recovered image is, and to choose the parameter λ, we use the root mean square error

rmse =

√

∑

i,j |ūi,j − ui,j|2

NM
.

Remark 7. In all our experimental results we have selected the parameter λ for each method such
that the best, smallest rmse is obtained (since in our artificial tests, the true image ū is known).
As suggested by one of the referees, it would be possible, when the noise level is known, to apply the
method from [8]; in other words, to numerically or experimentally link the variance σ2 of the noise
n, with the dual norm of the noise, Φ∗(n). We could consider random noise images of various
variances, for which we could estimate numerically their norm Φ∗. Having such information, λ
as a Lagrange multiplier could then be automatically selected (as in [1] for the ROF model), by
imposing a desired value Φ∗(f − Ku).

3.2 Non-convex potential Φ in a dual decomposition

Similarly, the decomposition model (4), with φ(t) non-convex function, can be minimized by the
algorithm given in (6)-(7). Here we will consider two choices (see [21], [22], [23], [24] for non-convex
regularizations):

φ(t) = |t|p, 0 < p < 1, (19)

and

φ(t) =
|t|q

1 + α|t|q , 0 < α < 1, q ≥ 1. (20)

Through out our numerical computations, we use p = 0.75 in (19) and α = 0.001 and q = 2 in (20).
We will use “nonconvex 1” when we refer to (6)-(7) computed using (19), and “nonconvex 2” when
we refer to (6)-(7) computed using (20). The experimental results with a non-convex potential for
denoising are improved over the ROF model, and we no longer see “geometry” in the v component.

We first present next our experimental results and comparisons for image denoising and decom-
position using both convex and non-convex potentials, and comparisons with the ROF model.

Figure 1 shows an image decomposition result into cartoon and texture, applied to a fingerprint
data, obtained by the (BV,BV ∗) model.

Figure 2 shows several images and their degraded versions, to be used in the restoration process;
we also give here the rmse for each degraded data f .

Figure 3 shows results and comparisons of denoising of the geometric synthetic image (b) using
the proposed models. Similarly, all models are compared on the noisy square image (f) in Figure 4.
For both such images, note that the ROF model gives smaller rmse than by using the (BV,BV ∗)
model. However, as a by-product of the (BV,BV ∗) model, we also show the obtained images w:
somehow surprisingly, w is a better denoised image, having the smallest rmse among all models
(these happen only for the synthetic images). In these cases, the initial w was the noisy data f .

Figures 5 and 6 show the same experimental results, now applied to the noisy real images of
Barbara (k) and Lena (h). In these cases, the (BV,BV ∗) models gave slightly better results than
using the ROF models. The use of the non-convex potentials in the general (Φ,Φ∗) models gave
similar results with the ROF model.
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f u v = f − u

Figure 1: Exact image decomposition into cartoon and texture using the (BV,BV ∗) minimization
model. Left: real fingerprint data. Middle: cartoon component u. Right: oscillatory component
v = f − u. λ = 0.01, 1000 iterations.

3.3 Image deblurring

We apply here the deblurring model (2) solved using (6)-(7), in the presence of blur, using φ(|t|) =
|t| (corresponding to total variation, that can be made differentiable by working with φ(|t|) =
√

ǫ2 + |t|2 instead). The blur operator Ku is given by a convolution with a 5× 5 blurring mask or
kernel k of the form:

1

273
·

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

The equation in u from (6) is discretized using a semi-implicit scheme, as in [7], [41], while
the discretization of the equation in w from (7) is done using a fully explicit scheme. We run 30
iterations in w, for every iteration in u. As before, we also have △x = △y = 1.

Below we give the number of iterations and rmse for our results, and comparisons with the
Rudin-Osher model [39], for synthetic and real data. The results obtained using the new model are
very similar with those obtained using the Rudin-Osher model (the new models did not produce
an improvement in quality for deblurring). We also show the final w obtained as a by-product of
the algorithm. The experimental results for deblurring are shown in Figures 7, 8 and 9.

4 Conclusion

We have considered here the exact decomposition model (BV,G) suggested by Y. Meyer [32], that
is equivalent with a cartoon + texture (BV,BV ∗ ∩ L2) model. Working directly with the dual-
ity definition for the texture norm, we have generalized this model and proposed several practical
algorithms based on Uzawa’s method for decomposition, denoising and deblurring of images. We
have also continued the analysis of such variational models. Experimental results show that in
some cases these exact decomposition models give slightly superior results to the more standard
Rudin-Osher-Fatemi models; in other cases, no qualitative improvement has been obtained. Thus,
although interesting mathematical and computational difficulties have been encountered, our pro-
posed algorithm for the exact (BV,G) model does not provide a big improvement over the existing
ones for image denoising or image deblurring.
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(a) original (b) noisy 0.1991 (c) blurry 0.0812219 (d) noise-blur 0.105052

(e) original (f) noisy 0.0780

(g) original (h) noisy 0.0392 (i) noisy & blurry 0.0364

(j) original (k) noisy 0.0495193

Figure 2: Original data images and their noisy and/or blurry versions f , together with the corre-
sponding root mean square errors (rmse).
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matics and Image Analysis (MIA ’06) for the invitation to participate to the conference and to con-
tribute to this special issue. The authors would also like to thank the two unknown referees for their
useful comments and suggestions that greatly helped to improve the presentation of the manuscript.
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u ROF f − u ROF λ = 0.0265

rmse 0.0514171086

u (BV,BV ∗) f − u (BV,BV ∗) w (BV,BV ∗) λ = 0.05

rmse u 0.0557836443
rmse w 0.0428309031

u mod. ROF f − u mod. ROF λ = 4.95

rmse 0.05776094

u mod. (BV,BV ∗) f − u mod. (BV,BV ∗) w mod. (BV,BV ∗) λ = 50

rmse 0.05681891

u nonconv. 1 f − u nonconv. 1 w nonconv. 1 λ = 8

rmse 0.05111486

u nonconv. 2 f − u nonconv. 2 w nonconv. 2 λ = 0.4

rmse 0.04810694

Figure 3: Comparison for denoising the geometric data (b).
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u ROF f − u ROF λ = 0.01

rmse 0.00526068034

u (BV,BV ∗) f − u (BV,BV ∗) w (BV,BV ∗) λ = 0.01

rmse u 0.00643450115
rmse w 0.002649

u mod. ROF f − u mod. ROF λ = 3.825

rmse 0.0058781

u mod. (BV,BV ∗) f − u mod. (BV,BV ∗) w mod. (BV,BV ∗) λ = 150

rmse 0.005767196

u nonconv. 1 f − u nonconv. 1 w nonconv. 1 λ = 10

rmse 0.00746253

u nonconv. 2 f − u nonconv. 2 w nonconv. 2 λ = 1

rmse 0.007092052

Figure 4: Comparison for denoising the square image (f).
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[36] S. Osher, A. Solé, L. Vese, Image decomposition and restoration using total variation mini-
mization and the H−1 norm, Multiscale Modeling and Simulation 1(3): 349 - 370, 2003.

[37] P. Perona, and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE
Transactions on PAMI, 12(7): 629-639, 1990.

[38] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys-
ica D 60: 259-268, 1992.

[39] L.I. Rudin and S. Osher, Total variation based image restoration with free local constraints,
Proceedings of IEEE ICIP-94, Vol. 1: 31-35, 1994.

[40] G. Strang, L1 and L∞ and approximation of vector fields in the plane, in “Nonlinear Partial
Differential Equations in Applied Science,” H. Fujita, P. Lax, and G. Strang, eds., Lecture Notes
in Num. Appl. Anal. 5 (1982) 273-288.

[41] L. Vese, A study in the BV space of a denoising-deblurring variational problem, Applied Math-
ematics and Optimization, 44(2): 131-161, 2001.

[42] L. Vese, S. Osher, Modeling Textures with Total variation Minimization and Oscillating pat-
terns in Image Processing, Journal of Scientific Computing, 19(1-3): 553-572, 2003.

[43] L.A. Vese, and S.J. Osher, Image Denoising and Decomposition with Total Variation Mini-
mization and Oscillatory Functions, Journal of Mathematical Imaging and Vision, 20: 7-18,
2004.

18



u ROF f − u ROF λ = 0.14

rmse 0.0425563939

u (BV,BV ∗) f − u (BV,BV ∗) w (BV,BV ∗) λ = 1500

rmse 0.0415789001

u mod. ROF f − u mod. ROF λ = 4

rmse 0.0474

u mod. (BV,BV ∗) f − u mod. (BV,BV ∗) w mod. (BV,BV ∗) λ = 1500

rmse 0.04524627

u nonconv. 1 f − u nonconv. 1 w nonconv. 1 λ = 120

rmse 0.04296311

u nonconv. 2 f − u nonconv. 2 w nonconv. 2 λ = 9

rmse 0.04297547

Figure 5: Comparison for denoising the Barbara image data (k).
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u ROF f − u ROF λ = 0.087

rmse 0.0219991021

u (BV,BV ∗) f − u (BV,BV ∗) w (BV,BV ∗) λ = 0.01

rmse u 0.0218940247

u mod. ROF f − u mod. ROF λ = 17.85

rmse 0.0237

u mod. (BV,BV ∗) f − u mod. (BV,BV ∗) w mod. (BV,BV ∗) λ = 1400

rmse 0.02336688

u nonconv. 1 f − u nonconv. 1 w nonconv. 1 λ = 110

rmse 0.02197276

u nonconv. 2 f − u nonconv. 2 w nonconv. 2 λ = 5

rmse 0.02260758

Figure 6: Comparison for denoising the Lena image data (h).
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u RO u (BV,BV ∗) w (BV,BV ∗)

λ = 13.5 λ = 24000
6000 iterations 1000 iterations

rmse 0.03262219 rmse 0.03408236

Figure 7: Deblurring of geometric image (c).

u RO f − Ku RO u (BV,BV ∗) f − Ku (BV,BV ∗) w (BV,BV ∗)

λ = 0.4 λ = 10, 000
6000 iterations 6000 iterations
rmse 0.0573248 rmse 0.06060835

Figure 8: Denoising-deblurring of geometric image (d).

u RO f − Ku RO λ = 1 1000 iterations

rmse 0.0268

u (BV,BV ∗) f − Ku (BV,BV ∗) w (BV,BV ∗) λ = 3.53

2000 iterations
rmse 0.02750182

Figure 9: Denoising-deblurring of Lena image (i).
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