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Abstract. The piecewise constant Mumford-Shah segmentation model [17]
has been rediscovered by Chan and Vese [6] in their award-winning paper
in the context of region based active contours. The work of Chan and Vese
demonstrated many practical applications thanks to their clever numer-
ical implementation based on the celebrated level-set approach of Osher
and Sethian [18]. In the current work, we propose a I'’-convergence for-
mulation to the piecewise constant Mumford-Shah segmentation model,
and demonstrate its efficient implementation by the iterated integration
of a linear Poisson equation.

1 Introduction: The Mumford-Shah Segmentation Model

The celebrated Mumford-Shah segmentation model [17] is built upon a generic
mixture image model into which the edge feature is explicitly incorporated as
n [10]. Consider the following image generation model:

F—>u@>uo,

where in the reverse order, ug denotes an observed image, n an additive Gaussian
noise field, and u piecewise smooth (or cartoonish) image patches consistent with
a given edge layout I'.

From Bayesian point of view [10, 16], segmentation is to estimate the posterior
probability

p(I u| o), or equivalently, p(uo | u, I")p(u, I') /p(uo).
In the Markovian setting [7], the joint prior can be expressed by
p(u, I') = p(u | I')p(I).

Thus by putting aside the constant p(ug) and working with the energy function
(or the logarithmic likelihood function) E = —log p, one obtains the structure of
the Mumford-Shah model up to an ineffectual constant:

E[lNu|u]=E[l'l+ Eu| '+ Eluo | u, I].
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The full Mumford-Shah model [15,17] is in fact explicitly expressed by:

E[lu | u] = olength(I") + 0 |Vul|*dx + )\/ (u — uo)?dr,
o\r Q

where dx = dz1dxs denotes the area element of a 2-D domain 2.
For images made of piecewise homogeneous stochastic patches, only their
constant averages can be identified as the cartoonish pieces, i.e.,

u(z) = C; x €, and 2, en(2|I).

Here the notation ({2 | I') denotes the partitioning of the entire image domain
2 given an edge layout I, or the collection of connected components of 2\ I
topologically speaking. The original Mumford-Shah model is then reduced to the
piecewise constant model, or simply, the reduced Mumford-Shah model:

E[(C!s), I | ug] = olength(I') + A Z / (u(z) — C;)?dx.
Qien(Qr)’ %

Mathematically this reduced model can be obtained as a proper asymptotic limit
of the full Mumford-Shah model when the parameters of the latter tend to the
infinite, as discussed in the original paper of Mumford and Shah [17]. Recently
in their award-winning paper [6,21], Chan and Vese rediscovered this model in
the context of region based active contours. As in [6], in the current paper, we
shall mainly focus on the 2-phase model to illustrate our primary contributions:

E|Cy,C_, T | ug) :alength(F)—!—A/ (u(z)—0+)2dz+/\/ (u(x) — C_)3dx,

Q; _

(1)
where I' partitions (2 into the interior {2, and exterior {2_. As remarkably
demonstrated by Chan and Vese [6,21], such a 2-phase model has already wit-
nessed numerous intriguing applications in astronomy and medicine.

Chan and Vese have successfully implemented the above model using the
celebrated level-set computing technology as invented and continuously advanced
by Stan Osher and James Sethian [18]. Multiphase computational frameworks
have also been developed by Chan and Vese [21], and lately by Lie, Lysaker, and
Tai [13].

The current work is complementary to the above level-set approach. Inspired
by the I'-convergence approximation to the full Mumford-Shah model developed
by Ambrosio and Tortorelli [1], we propose a new I'-convergence formulation of
the reduced Mumford-Shah model, and its robust and fast computational im-
plementation. As in the work [1], our approach overcomes the fundamental the-
oretical and computational difficulties resulting from the free-boundary nature
of the Mumford-Shah model (both the full and the reduced). The computation
is reduced to the iterated integration of a linear Poisson equation, which can be
easily and efficiently implemented in Matlab in a uniform code, without extra
intermediate processing steps (e.g., normal extension and reinitialization) [21].



The organization of the paper goes as follows. Section 2 briefly reviews the
essence of the I'-convergence approximation to the full Mumford-Shah model.
In Section 3, we introduce our new I'-convergence approximate model to the
reduced (i.e., piecewise constant) Mumford-Shah model. Efficient computational
schemes and examples of generic test images are presented in Section 4.

2 TI'-Convergence Approximation to the Full M.-S. Model

I'-convergence has its rigorous mathematical definition in metric spaces [1].
For our application, the plainest intuition behind could be best revealed by
phase-field modelling of superconductors, as in the the works of Nobel Laure-
ates Ginzburg and Landau [11]. In this section we shall briefly explain the core
idea in terms of approximation theory.

In the I'-convergence setting [1,8,14], a curve I' (in 2-D) is instead repre-
sented by a 2-D function z = z.(z1,22) € [0, 1], depending upon a small scale
parameter €. The energy associated with such a phase field z is defined as

Y
Le[z]:/ e|Vz|2d:E—|—/ udoc.
0 e} 4e

Since € < 1, under any finite energy bound, the second term demands the phase
field z = z.(x1,z2) to be as close to 1 as possible almost everywhere on the
image domain (2.

In addition, suppose that along certain narrow bands (intended to be the
e-neighborhoods of a curve I') the field z sharply drops down to zero. Then
physically the graph of z looks more like a canyon. Denote the medial line of
the canyon by I'. Then the entire I'-convergence machinery is built upon the
following remarkable approximation result:

L.[z] ~ length(I"). (2)

Rigorous mathematical analysis is more involved but a qualitative glimpse is not
very far beyond the level of Advanced Calculus as presented below.
Applying the generic inequality 2AB < A2 + B2, one has

1
Le[z]z/ |Vz||z—1|dx:—/ Vul,  w=(1—2)
2 2 (9]

where the graph of w = (1—2)? looks like a set of walls. Most contributions to the
integral come from a narrow band along I" since w is flat away from it. Assuming
that I is smooth, the narrow tubular neighborhood can then be parameterized
by the tangential (arc length) and normal coordinates s and n. Since w remains
almost constant along the tangential direction, we have |Vw(s,n)| ~ [dw/dn],

and
1 € 1|0w 1
5/9|Vw| _w/l"/—eil% dndS—/FQTV(w(S,-))ds.



For any fixed s, the total variation TV(w(s,-) along the normal direction is
ideally 2, since each shoulder of the wall contributes 1 (by ascending from 0 to
1 and then descending from 1 to 0). Hence we have shown qualitatively that

L.[z] > length(I").

Assisted with a suitable ordinary differential equation [1], one can further show
that the lower bound can indeed be approached by some sequence of z’s.

Notice that the above analysis crucially relies upon the assumption that z
does touch down to the zero along I'. But the energy form L[z] alone does not
guarantee it. Thus in Ambrosio and Tortorelli’s approximation [1], it is explicitly
enforced through the second term of the Mumford-Shah model:

E.[z] —J</!25|Vz|2d:c—|—/9%dz> —I—B/Q22|Vu|2d:c—|—/\/9(u—u0)2d:c.

Along the jump (edge) set I', Vu is not classically defined, or remains very large
(or expensive) even after discrete sampling or continuous blurring. Thus the
second term forces z to touch down to zero along I" to bound the total energy.

3 TI'-Convergence Form of the Reduced M.-S. Model

For the reduced (piecewise constant) Mumford-Shah model, the lack of the gra-
dient term loses the control factor that forces the field z to drop near edges. In
the current paper, therefore, we propose a proper variation of Ambrosio and Tor-
torelli’s original formulation for the full Mumford-Shah model [1]. As in Chan
and Vese [6], we shall primarily focus on the 2-phase model, and multiphase
extensions can be similarly accomplished as in Vese and Chan [21], and in par-
ticular, in the recent work of Lie, Lysaker, and Tai [13].

To explicitly enforce the 2-phase separation without turning to the gradient
information Vu, we propose to replace the original phase field energy by

L] = /Q (9e|w|2+ %) da.

The range of z is restricted within [—1,1]. Since € < 1, a bounded energy will
force z =1 or z = —1 almost everywhere. Following the similar inequality in the

preceding section, one has
3 3 3 3 ¢
L[z] > —/ V2|1 — 22|dz = —/ V(-2 )|de ~ —/ / TV (w)dnds,
4 Jo 4 Ja 3 4JrJ-c

where w = w(z) = 2(1 — 22/3) is a monotone function on z € [—1,1], and the
local curvilinear coordinates have been applied along the transition medial line
(where z = 0), as in the preceding section. Since w(—1) = —2/3 and w(1) = 2/3,
one has TV(w(z(s,-))) = 4/3 locally along each s-normal line. Thus we have
qualitatively established the lower bound:

L.[z] > length(I").



Further elaborate study shows that the hyperbolic tangent transition:

z(s,n) = tanh (%)

can approach the lower bound in an exponential rate. Thus L.[z] is indeed a
good approximation to the length of I'.
In the ideal scenario of two pure phases, one then defines their associated
regions separately:
2y ={zxeN]|z==+1}.

The associated indicator functions are ideally given by

1, (z) = (1;“)2, 1_(z) = (1;Z>2.

(The square is mainly for computational stability in case that z strays away from

[—1,1].) Then,
/Qi (ug — Cy)?dx = /Q (1 :;: Z)2 (ug — Cy)?dz.

In combination, we thus propose to approximate the reduced Mumford-Shah
model (1) by the following I'-convergence energy:

242
E.z,Cy,C_ |ug) = o [, (96|Vz|2 + %) dz+
2 a2
Mo (555)" (wo = Cp)%dz + X [, (57) (w0 — O*)de(' )
3
One intends to minimize the energy by some optimal phase field z and means
C’i’s.

Notice that all the four terms involve the field function z, but only the last
two contain the mean fields C1’s. Denote the sum of the last two terms by the
“conditional” energy E[C,C_ | ug, z] given any z. Then the standard property
of weighted least square approximation explicitly yields the conditional optima.

Theorem 1 (Optimal Means). Given any square integrable phase field z on
a finite domain {2, as long as z is not constant, the optimal means C+’s to a
given image uq in terms of E[C,C_ | ug, 2] are given by:

fn(l + 2(2))?uo(z)dz
Cy =Cilz] =
+ = Ol T, £ 2(2))2de

On the other hand, by the direct method of Calculus of Variations based on
minimizing sequences [9], one can establish the existence of minimizers to (3).

(4)

Theorem 2 (Existence of Optimal Phase Fields). Let ug be a square inte-
grable image given on a bounded domain (2. Then there exists an optimal triple
(z*,C%,C*) which achieves the minimum energy of Ec[z,Cy,C_ | ug] among
the admissible class of Sobolev phase fields [9].



To compute an optimal minimizer, one could apply the conditional mean
field formulae (4) to reduce the triple energy E.[z,C4,C_ | ug] to an energy
solely depending upon z:

Eclz [uo] = Ec[z, Cy[z], C-[2] | o).

But this energy is no longer quadratic in z and complexities multiply due to the
denominators involving z.

Thus in practice, one employs the alternating minimization technique pre-
vailing in multivariable optimization problems [8,20]. For given z™ at step n,
one computes the optimal means C = Cy[z"] by the formulae (4), and then
updates 2" to 2"+ by treating C’s as known and minimizing

Elz | up,Cy,C]=0 [, (96|Vz|2 + %) dr+
Mo (132)2 (uo — C1)%dx + X [, (17)2 (up — C_)*dz.
(5)

4 Fast and Robust Numerical Implementation; Examples

Computationally, the optimization problem (5) is solved via its Euler-Lagrange
equation. Write e = ug — C'+ as the residuals on (21, which are independent
of z since Cy are given. Let 4 = A\/(40). Then the Euler-Lagrange equation of
E [z | up,Cy,C_] is given by

1— 2
0= —9eAz — % + ped (14 2) — pe? (1 — z), (6)
€

with the Neumann adiabatic boundary condition. One further rewrites it to:

22

2 2 2 2 <
—9¢Az + <326 + plel +e)> z = pes — pei + EO
or simply —9eAz + R(z)z = f(z) with R and f denoting the corresponding

terms. The latter can be solved iteratively by having the z’s in R and f frozen:
Zm T Zm41 t _9€Azm+l + Rmzm-i—l = fmu (7)

where R,, = R(z,,) > 0 and f,,, = f(zm). Thus at each step it suffices to
solve this linear Poisson equation on z,t1(x1,22), which can be implemented
efficiently in Matlab due to many fast elliptic solvers. Our computational ex-
periments show that even ordinary Guass-Jacobi type of iteration schemes [12]
lead to fast and robust convergence, including starting from any random initial
guess.

The following flow summarizes our entire algorithm:

by(7)
+1
— Zm-i—l

N ZnJrl

=2 2 (o em] - |t E
The examples in the next section have all been generated from this algorithm.
Below we briefly discuss how to properly choose the parameters in the model.



(a) The I'-convergence parameter e should be in the order of O(h), where h
denotes the grid scale of a discrete image domain, for example € = 4h.

(b) Generally o (or the tension parameter) is of order O(1), while the fitting
Lagrange multiplier A should be inversely proportional to the variance of
the Gaussian noise embedded in the observed image ug [2-5,19].

In Figure 4, we have demonstrated the performance of our new model and al-
gorithm on three generic test images: peppers, the Milky Way, and the Pathfinder
on the Mars by NASA (USA). For the images of peppers and the Pathfinder,
we have shown the I'-convergence output z’s, while for the Milky Way in the
middle, the zero level curve (i.e., the sharp transition curve) of the output z
has been superimposed upon the original image ug. (The associated Movies and
Matlab codes are available from the author upon request.)

Fig. 1. Left: three generic images uo’s: peppers, the Milky Way, and the Pathfinder
landed on the Mars (NASA, USA); Right: the output z’s or their zero-level curves.
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