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Abstract. The aim of this paper is to derive a general theory for the averaging of hetero-
geneous processes with stochastic nucleation and deterministic growth. We start by generalizing
the classical Johnson-Mehl-Avrami-Kolmogorov theory based on the causal cone to hetereogeneous
growth situations. Moreover, we relate the computation of the causal cone to a Hopf-Lax formula
for Hamilton-Jacobi equations describing the growth of grains. As an outcome of the approach we
obtain formulae for the expected values of geometric densities describing the growth processes, in
particular we generalize the standard Avrami-Kolmogorov relations for the degree of crystallinity.

By relating the computation of expected values to mesoscale averaging, we obtain a suitable
description of the process at the mesoscale. We show how the variance of these mesoscale averages
can be estimated in terms of quotients of the typical length on the micro- and on the mesoscale.
Moreover, we discuss the efficient computation of the mesoscale averages in the typical case when
the nucleation and growth rates are obtained from mesoscopic fields (such as e.g. temperature).

Finally, we give a short outlook to possible extension such as polycrystalline growth, which turns
out to be rather straight-forward when starting from our general framework.
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1. Introduction. Nucleation and growth processes arise in a variety of natu-
ral and technological applications (cf. [12] and the references therein), such as e.g.
solidification and phase-transition of materials (cf. e.g. [49]), semiconductor crystal
growth (cf. [37]), biomineralization (cf. e.g. [48]), DNA replication (cf. e.g. [29]).
The mathematical modelling of such processes can, roughly speaking, be divided into
two parts:

• Models focussing on the geometric growth of objects, such as a part of theory
of free boundary problems (cf. e.g. [1, 19, 45] and [44] as a collection of
references), often completely disregarding nucleation phenomena or even the
presence of multiple objects (e.g. crystals). Usually, such models are moving
boundary problems with a law for the growth of a phase boundary in normal
direction.
• Models focussing on the kinetics of nucleation, often completely disregarding

the geometric aspect of the growth processes. Usually such models are mean-
field or rate equations, often without spatial dependence (cf. e.g. [2, 4, 10,
26, 28, 32]).

The aim of this paper is to bridge between these two type of models, the mi-
croscopic front growth and the macroscopic average of many nuclei, by introducing
mesoscale models that locally average the microscopic models in presence of a large
number of grains. The special way of averaging allows to describe systems with a
very high number of grains (for which it is impossible to simulate the growth of every
single grain), but still provides information about local averages for geometric quan-
tities such as contact interface densities. The starting point of averaging procedures
are the global spatial averages derived by Kolmogorov [32], Avrami [2], and Johnson
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and Mehl [31] for constant growth rates and simple nucleation laws. These global
averages have later been extended to time-dependence of the nucleation and growth
process and certain other effects (cf. [11, 22, 23, 35]). First steps towards heteroge-
neous nucleation and growth processes have been made in [40], who derived a system
of local rate equations by formal arguments, whose solution is actually close to the
local averages we shall derive in this paper. The computation of local averages has
been applied for the first time with partly formal arguments by the authors in the
context of polymer crystallization (cf. [7, 8, 9, 34]). In this paper we shall derive such
a local averaging approach in a mathematically rigorous way for an important and
rather general class of nucleation and growth models and derive new error estimates
for the averaged quantities.

The setup of this paper is the following: we shall consider a nucleation process
in time and space, which is a stochastic Poisson process with rate α = α(x, t). This
nucleation process generates a sequence of random variables Xk ∈ Rd and Tk ∈ R+

describing the spatial location and time of the k-th nucleation event. The k-th nucleus
shall be represented by the set Θk(t). Moreover, we assume that the growth of a nuclei
occurs with a nonnegative normal velocity G(x, t), i.e., the velocity of boundary points
is determined by

V = Gn on ∂(
⋃

k

Θk(t)), (1.1)

where n is the unit outer normal. We shall consider the growth from a spherical
nucleus from an infinitesimal radius R→ 0.

Without further notice we shall assume that α and G are bounded and continuous
functions on Rd × [0, T ] with

g0 := inf
x∈Rd,t∈[0,T ]

G(x, t), G0 := sup
x∈Rd,t∈[0,T ]

G(x, t). (1.2)

Moreover, we assume that G Lipschitz-continuous with respect to the spatial variable
x.

As mentioned above, the case of particular interest is a three-scale situation in
the growth process with respect to space, i.e., there exist

• A macroscale corresponding to a length L, in which the whole process takes
place.
• A microscale corresponding to the length ` := G0T related to typical grain

sizes obtained in the interval [0, T ]
• A mesoscale corresponding to a length λ such that ` << λ << L, which

marks the finest resolution for the description that is of practical importance.
The paper is organized as follows: In Section 2 we shall introduce the causal

cone, which describes the set of nucleation events leading to coverage of a point by
the grains, and relate it to Hopf-Lax formulae for the solution of Hamilton-Jacobi
equations modeling the growth. In Section 3 we introduce the stochastic model of the
nucleation process and compute expected values of some random geometric measures
such as the phase function and nucleation numbers. The efficient computation of
approximations to these expected values in typical multiscale situations is discussed
in Section 4. Section 5 is devoted to the estimation of variances of these random
variables and perform a mesoscale averaging, which allows to bound the variances in
terms of the relative scale `

λ . Finally, we discuss some extensions such as crystalline
growth in Section 6.
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Fig. 1.1. Sketch of macro- (L), meso- (λ), and microscale (`) in a nucleation and growth
process.

2. Causal Cone and Hopf-Lax Formula. In this section we shall define the
growth model in detail and verify its well-posedness. Moreover, we establish the
connection between the total phase and the ”freely grown grains”, i.e., the objects
obtained for a single nucleation. Finally, we introduce the causal cone, which we
relate to Hopf-Lax-type formula backward in time.

2.1. The Growth Model. We start with a weak formulation of the growth
model provided by the level set method. For this sake we assume that the nucleation
times Tk and the nucleation locations Xk are given and fixed (i.e., we investigate
single realizations of the stochastic nucleation process), such that 0 = T1 ≤ T2 ≤ ...
Then we consider the following growth model: The function φ is determined as the
unique continuous viscosity solution of

∂φR

∂t
+G|∇φR| = 0 in Rd ×

(
(0, T )−

⋃

k

{Tk}
)
, (2.1)

subject to the initial condition

φR(x, 0) = bBR(X1)(x) ∀x ∈ Rd (2.2)

and the intermediate conditions

φR(x, Tk) = min{bBR(XK )(x), lim
t↑Tk

φR} ∀x ∈ Rd. (2.3)

Here R > 0 is a fixed radius and bΩ denotes the signed distance function to a set Ω,
i.e.,

bΩ(x) =

{
−d(x, ∂Ω) if x ∈ Ω,
d(x, ∂Ω) else,

with d being the Hausdorff-distance. It is well-known that the computation of a
viscosity solution for (2.1) is a weak formulation of the above geometric front-growth
model (1.1) (cf. [3]) and the evolution of the phase is determined by

ΘR(t) = { x ∈ Rd | φR(x, t) < 0 }. (2.4)
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We shall define the evolution with infinitesimal nucleation radius as the limit for
R→ 0, i.e.,

Θ(t) := lim
R→0

ΘR(t). (2.5)

In order to prove the existence of the limit, we employ a Hopf-Lax formula, which
yields a quasi-explicit formula for the solution of (2.1):

Proposition 2.1. Let φR be the unique viscosity solution of (2.1) in a time
interval (Tk−1, Tk). Then

φ(x, t) = inf{ φ(y, Tk−1) | y ∈ Rd, ∃ξ ∈W 1,∞([Tk−1, t]) : ξ(Tk−1) = y, ξ(t) = x,

|ξ̇(s)| ≤ G(ξ(s), s), s ∈ (Tk−1, t) }

for all t ∈ (Tk−1, Tk).
Proof. The result follows from a standard Hopf-Lax formula (cf. [24]).
A consequence of the Hopf-Lax formula for the viscosity solution is a representa-

tion formula for the phase ΘR:
Lemma 2.2. For t ∈ [Tm, Tm+1), the phase ΘR(t) is determined by

ΘR(t) =
⋃

k≤m
{ x ∈ Rd | ∃y ∈ BR(Xk), ∃ξ ∈ W 1,∞([Tk, t]) : ξ(Tk) = y,

ξ(t) = x, |ξ̇(s)| ≤ G(ξ(s), s), s ∈ (Tk, t) }.

Proof. We have x ∈ ΘR(t) if and only if φR(x, t) < 0, which holds if and only if
one of the following two statements is true:

(i) ∃ξ ∈ W 1,∞([Tm, t]) : ξ(Tm) = Xk, ξ(t) = x, |ξ̇(s)| ≤ G(ξ(s), s), for a.e.
s ∈ (Tm, t).

(ii) ∃ξ ∈W 1,∞([Tm, t]) : ξ(Tm) ∈ limτ↑Tm ΘR(τ), ξ(t) = x, |ξ̇(s)| ≤ G(ξ(s), s), for
a.e. s ∈ (Tk, t).

We may now inductively apply the above argument to ξ(Tk) and so on, which finally
implies the above represenation of ΘR(t).

The result in Lemma 2.2 allows to derive a representation formula for the limit
phase Θ(t):

Theorem 2.3. The limit in (2.5) exists and the phase Θ(t) is determined by

Θ(t) =
⋃

k

{ x ∈ Rd | ∃ξ ∈W 1,∞([Tk, t]) : ξ(Tk) = Xk, ξ(t) = x,

|ξ̇(s)| ≤ G(ξ(s), s), s ∈ (Tk, t) }

Proof. From (2.2) we may conclude that ΘR(t) ⊂ ΘR̃(t) for R < R̃ and thus,
Θ(t) = ∩RΘR(t), which yields a well-defined limit. Consequently, for x ∈ Θ(t) and
R > 0 arbitrary, there exists kR ∈ N and ξR ∈W 1,∞([TkR , t]) such that

ξR(TkR) = XkR , ξ
R(t) = x, | ˙ξR(s)| ≤ G(ξR(s), s), s ∈ (TkR , t).

Since the number of nuclei is countable, there exists a subsequence (Rj) such that

kRj = k for some k ∈ N. Moreover, for this subsequence (ξR
j

) is uniformly bounded
in W 1,∞([Tk, t]) and therefore, there exists a subsequence converging in the weak-

* topology (without restriction of generality (ξR
j

) itself) to ξ. Using the compact
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embedding of W 1,∞([Tk, t]) into C([Tk, t]) we may conclude that ξR
j

(Tk) → Xk.
Hence, the limit xi satisfies ξ(Tk) = Xk, ξ(t) = x, and

|ξ̇(s)| ≤ G(ξ(s), s), s ∈ (Tk, t),

which implies

Θ(t) ⊂
⋃

k

{ x ∈ Rd | ∃ξ ∈ W 1,∞([Tk, t]) : ξ(Tk) = Xk, ξ(t) = x,

|ξ̇(s)| ≤ G(ξ(s), s), s ∈ (Tk, t) }.

Vice versa, if x is an element of the set on the right-hand side of this inclusion, then
ξ(Tk) ∈ BR(Xk) for any R and therefore x ∈ ∩R>0ΘR(t), which implies equality of
the sets.

2.2. The Freely Grown grains. Given the nucleation events (Xk, Tk), we can
also define the evolution of a freely grown single grain Ωk(t), which nucleates in Xk at
time Tk and then grows with normal velocity G on ∂Ωk(t). Using the same technique
as in the previous section, we may conclude that

Ωk(t) = { x ∈ Rd | ∃ξ ∈ W 1,∞([Tk, t]) : ξ(Tk) = Xk, ξ(t) = x,

|ξ̇(s)| ≤ G(ξ(s), s), s ∈ (Tk, t) } (2.6)

for t ≥ Tk and Ωk(t) = ∅ for t < Tk.
It seems obvious that the total phase Θ(t) is the union of the freely grown grains,

but this statement is not true for general growth laws like mean curvature motion.
In our case, this statement holds and is a simple consequence of the representation
formulae for Θ(t) and Ωk(t).

Corollary 2.4. The equality Θ(t) =
⋃
k Ωk(t) holds for all t ∈ R+.

Subject to the Hopf-Lax formula, Corollary 2.4 is a rather simple result, but it
clarifies a discussion going on the literature on modelling crystallization processes for
a long time (cf. [23, 47]), whether it makes sense to use freely grown grains (which
do not correspond to physical objects in general) or not. Our result just states that
from a rigorous mathematical viewpoint, it is equivalent to take the union of the freely
grown or the union of the real grains to obtain the phase. Of course, we cannot expect
this result to be true for more general growth laws, like curvature-dependent velocity.
We will discuss such cases and their difficulties in Section 6.

For the freely grown grains, we can somehow revert time, i.e., derive a condition
whether x ∈ Ωk(t) for fixed x ∈ Rd and t ∈ R+.

Proposition 2.5. For (x, t) ∈ Rd ×R+, the following two statements are equiv-
alent:

(i) x ∈ Ωk(t).
(ii) There exists η ∈ W 1,∞([0, t − Tk]) such that η(t − Tk) = Xk, η(0) = x,
|η̇(s)| ≤ G(ξ(s), t− s), s ∈ (0, t− Tk).

Proof. The assertion follows immediately from the above Hopf-Lax-formula and
a transformation of the time variable from s to t− s, and the use of the new variable
η(s) := ξ(t− s).

2.3. The Causal Cone. So far, we have taken a Lagrangian approach and
looked at the evolution of the grain away from the location they nucleated. Alterna-
tively, we can use an Eulerian approach, i.e., fix a time t and a location a spatial x,
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and investigate under which condition the point x will be covered by the phase Θ(t)
at time t. This investigation is simplified significantly by the results of the previous
section, which allow to look at the freely grown grains.

Looking at the possible nucleation events for which x ∈ Θ(t) leads in a natural
way to the causal cone defined by

C(x, t) := { (y, s) ∈ Rd×[0, t] |Nucleation of grain Ω at y at time s implies x ∈ Ω(t) }.
(2.7)

Here Ω(t) denotes a freely grown grain, and due to (2.4) x ∈ Ω(t) implies that x is an
element of the crystalline phase at time t. Motivated by Corollary 2.4 and Proposition
2.5 we introduce the set

C0(x, t) := { (y, s) ∈ Rd × [0, t] | ∃ξ ∈W 1,∞([s, t]) : ξ(t) = x, ξ(s) = y,

|ξ̇(τ)| ≤ G(ξ(τ), τ), τ ∈ (s, t) } (2.8)

From Proposition 2.5 we know that χ(x, t) = 1 if and only if (Xk, Tk) ∈ C0(x, t) for
some k, and hence,

C0(x, t) = C(x, t). (2.9)

Due to the change of the time direction, we may consider the causal cone as the
space-time region covered by a grain growing backward in time with the given growth
rate G.

The representation of the causal cone via the Hopf-Lax formula allows some im-
mediate conclusions on its geometric structure:

Proposition 2.6. The causal cone C(x, t) can be decomposed in the form

C(x, t) =
⋃

s∈[0,t]

E(x, t; s),

with E(x, t; s) ⊂ Rd being a closed bounded set for each s ∈ [0, t], E(x, t; t) = {t} and

E(x, t; s1) ⊃ E(x, t; s2), if s1 ≤ s2.

Proof. Let

E(x, t; s) = { y ∈ Rd | (y, s) ∈ C(x, t) }.

Then the above decomposition for C(x, t) clearly holds, and for any sequence yk ∈
E(x, t; s) converging to y ∈ Rd there exist motions ξk with ξk(s) = yk, ξk(t) = x,
and |ξ̇k(τ)| ≤ G(ξk(τ), τ) ≤ supG. Hence, the sequence ξk is uniformly bounded in
W 1,∞([s, t]) and hence there exists a subsequence (without restriction of generality ξk
itself) and someW 1,∞([s, t]) such that ξ̇k → ξ̇ in the weak-* topology of L∞([s, t]) and,
by compact embedding, ξk → ξ uniformly in C([s, t]). With this kind of convergence
we may conclude

|ξ̇(τ)| ≤ lim inf
k
|ξ̇k(τ)| ≤ lim

k
G(ξk(τ), τ) = G(ξ(τ), τ)

and x = ξk(t)→ ξ(t), yk = ξk(s)→ ξ(s). With the uniqueness of the limit we deduce
ξ(s) = y and ξ(t) = x. Thus, ξ is an admissible motion for y, which implies that
y ∈ E(x, t; s) and consequently, the closedness of E(x, t; s).
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Now let |y − x| > (t − s) supG. Then for each ξ with ξ(s) = y and |ξ̇(τ)| ≤
G(ξ(τ), τ) we have

|ξ(t)− ξ(s)| ≤ |
∫ t

s

G(ξ(τ), τ) dτ | ≤ (t− s) supG,

and hence ξ(t) 6= x. Consequently, y /∈ E(x, t; s), which implies the boundedness of
E(x, t; s).

Finally, let y ∈ E(x, t; s2) and let ξ be an admissible motion with ξ(s2) = y and
ξ(t) = x. Then, for any s1 ≤ s,

ξ1(τ) :=

{
y if τ ≤ s2

ξ(τ) if τ > s2

is an admissible motion (since ξ̇1 = 0 or ξ̇1 = ξ̇) with ξ1(s1) = y, ξ2(t) = x and hence,
x ∈ E(x, t; s2).

Proposition 2.6 shows that C(x, t) has indeed the geometric structure of a cone in
space-time with center (x, t). By standard comparison principles for ordinary differ-
ential equations, one can show that each admissible motion ξ satisfies

g0|t− s| ≤ |ξ(s) − ξt| ≤ G0|t− s|.

Hence, the causal cone lies between two linear cones, i.e.,

{ (y, s) | |y − x| ≤ g0(t− s) } ⊂ C(x, t) ⊂ { (y, s) | |y − x| ≤ G0(t− s) }. (2.10)

2.4. Arrival Times and Nucleation Events. Due to the above reasoning we
can define a ”maximal” nucleation time S at y leading to coverage of x at time t, i.e.,

S(y;x, t) = sup{ s ≥ 0 | (y, s) ∈ C(x, t) } if (y, 0) ∈ C(x, t).

We shall set S(y;x, t) = 0 if (y, 0) /∈ C(x, t), since in this case a nucleation at y will
never create a grain covering x at time t.

The Hopf-Lax formulas used to derive the causal cone offer the possibility to
interpret maximal nucleation times from a geometric optics point of view (cf. [5]).
Note that S(y;x, t) corresponds to the time, when a front starting at x at time t and
travelling (in negative time direction) with the Hamiltonian H(x, t, p) := G(x, t)|p|
arrives at y. It is well-known (cf. [42]) that (fixing x and t), the arrival time σ = t−S
is a (positive) viscosity solution of the eikonal equation

G(y, σ(y))|∇σ(y)| = 1, σ(x) = 0. (2.11)

Lemma 2.7. For fixed y ∈ Rd, the arrival time ψ(x, t) := S(y;x, t) is a viscosity
solution of

∂ψ

∂t
−G|∇ψ| = 0, ψ(y, t) = t. (2.12)

Proof. We can rewrite the definition of the arrival time as

−S(y;x, t) = inf{ −s ≤ 0 | (y, s) ∈ C(x, t) }
= inf{−S(y; y, s) | ∃ ξ ∈ W 1,∞([s, t]) : ξ(t) = x, ξ(s) = y,

|ξ̇(τ)| ≤ G(ξ(τ), τ), τ ∈ (s, t)}.
7



The latter is exactly a Hopf-Lax formula for the function η(x, t) := −S(y;x, t), i.e., η
is the viscosity solution of

∂η

∂t
+G|∇η| = 0, η(y, t) = −t

and thus, ψ = −η is the viscosity of (2.12)
We can now consider a subset of the causal cone, namely the set of nucleation

events which give a freely grown grain which arrives at x exactly at time t. From
geometric intuition it seems clear that this set is just the boundary of the causal cone.
The proof is again based on the Hopf-Lax formula:

Theorem 2.8. With the above assumptions and notation, the following properties
are equivalent:

(i) S(y;x, t) = s.
(ii) (y, s) ∈ ∂C(x, t).

(iii) y ∈ ∂E(x, t; s).
Proof. We start by showing that (i) implies (ii). Let S(y;x, t) = s, then (y, s) ∈

C(x, t), but (y, τ) /∈ C(x, t) for any τ > t and therefore (y, s) cannot be in the interior
of C(x, t), thus it lies on the boundary.

As a second step we verify that (iii) implies (i). Let y ∈ ∂E(x, t; s), then by
definition of the arrival time, S(y;x, t) ≥ s. Now assume S(y;x, t) > s, then there
exists s0 > s and an admissible motion ξ such that ξ(t) = x, ξ(s0) = y. Let |z − y| ≤
R := g0(s0 − s). If we continue ξ(τ) = y + τ−s0

s−s0 (z − y) for τ ∈ [s, s0], then we obtain

an admissible motion (|ξ̇| ≤ |z−y|
s−s0 ≤ g0 ≤ G(ξ, τ)) with ξ(s) = z. Consequently,

BR(y) ⊂ ∂E(x, t; s), which contradicts y ∈ ∂E(x, t; s).
Finally, we show that (ii) implies (iii). Assume that (y, s) ∈ ∂C(x, t) and assume

there exists a ball BR(y) ⊂ E(x, t; s) with positive radius around y. If (y, s0) ∈ C(x, t)
for any s0 ≥ 0, then by analogous reasoning as above we can extend a motion ξ such
that (z, τ) ∈ C(x, t) for |z − y| ≤ g0(s0 − τ), and this is an open neighbourhood of
(y, s). Hence, (y, s) /∈ ∂C(x, t). If (y, s0) /∈ C(x, t) for any s0 ≥ s, then the arrival
time S attends a local maximum in BR(y), i.e., S(z;x, t) ≤ s = S(y;x, t) and hence
σ(z) ≥ σ(y) for all z ∈ BR(0) for the solution of the eikonal equation (2.11). Since
positive viscosity solutions of the eikonal equation do not attain a minimum in a
convex domain by a strong maximum principle (cf. [20]), the latter is a contradiction.

Using further properties of the eikonal equation (2.11) we obtain some information
on the properties of the boundaries in a geometric measure theory sense:

Proposition 2.9 ([6]). For almost every s ∈ (0, t), the set ∂E(x, t; s) has finite
Hausdorff-measure Hd−1 and the set ∂C(x, t) has finite Hausdorff-measure Hd.

2.5. Examples. In the following we give some examples of the causal cones for
special growth rates.

Example. The simplest case of a growth model uses a constant growth rate
G(x, t) ≡ G0. In this case, from the above Hopf-Lax formula, we have

C(x, t) = { (y, s) ∈ Rd × R+ | ∃ξ ∈W 1,∞([s, t]) : ξ(t) = x, ξ(s) = y,

|ξ̇(τ)| ≤ G0τ ∈ (s, t) }.

Due to the bound on the growth rate, each (y, s) ∈ C(x, t) satisfy

|y − x| = |ξ(s)− ξ(t)| ≤
∫ t

s

|ξ̇(τ)| dτ ≤ G0(t− s).
8



Fig. 2.1. Illustration of the causal cone C(0, 1) for growth rate G(x, t) = 0.5x1 + 0.5.

Vice versa, if |y−x| ≤ G0(t− s), then ξ(τ) := y+ τ−s
t−s (x− y) is an admissible motion

(|ξ̇(τ)| = G0) and hence, (y, s) ∈ C(x, t). This shows that the causal cone is exactly a
linear cone given by

C(x, t) = { (y, s) ∈ Rd × R+ | |y − x| ≤ G0(t− s) }.

Example. For the case of a spatially homogeneous growth rate G(x, t) ≡ G1(t)
the causal cone has been computed explicitely by Eder [22, 23]. It is easy to see that
C(x, t) remains a linear cone, in this case with a radius that does not necessarily grow
linearly in time,

C(x, t) := { (y, s) ∈ Rd × R+ | |y − x| ≤
∫ t

s

G1(τ) dτ }.

Example. In [41], the growth of a grain with a time-homogeneous growth rate
G(x, t) ≡ G2(x) has been considered for linear functions G2(x) = ax+ b and spatial
dimension d = 2 ( a ∈ R2, b ∈ R+). Without restriction of generality one can assume
that a = (a1, 0), and by solution of a problem in the calculus of variation, analogous
to [41] the causal cone is obtained as

C(x, t) := {(y, s) ∈ Rd × R+ |

(y1 − x1 +
a0

b
− b

a0
cosh(a0(s− t)))2 + (y2 − x2)2 ≤ (

b

a0
sinh(a0(s− t)))2},

i.e., the sections E(x, t; s) are still spherical, but the radius is growing in time and
the center is shifting. For a special choice (p = q = 0.5) the resulting causal cone is
illustrated in Figure 2.1.
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3. Models for Stochastic Nucleation. In the following we consider the nucle-
ation process is random in space and time, and as a consequence the whole nucleation
and process will be stochastic and occur on an underlying probability space (Φ,A,P)

The nucleation process is modelled as a stochastic marked point process (MPP,
cf. [13, Section 2.10]) N defined as a random measure on the class of Borel sets
B(R+)× B(D) given by

N =

∞∑

n=1

εTn,Xn ,

where
• D is a compact subset of Rd, the physical space
• Tn is an R+-valued random variable representing the time of birth of the
n−th nucleus,
• Xn is a D-valued random variable representing the spatial location of the

nucleus born at time Tn,
• εt,x is the Dirac measure on B(R+) × B(D) such that for any t1 < t2 and
B ∈ B(D),

εt,x([t1, t2]×B) =

{
1 if t ∈ [t1, t2], x ∈ B,
0 otherwise .

By computing

N(A×B) = ]{Tn ∈ A,Xn ∈ B}, ∀ A ∈ B(R+), B ∈ B(D)

we obtain the (random) number of nuclei born during the time interval A in the region
B.

We will assume in the following that the nucleation process in the free space is a
space-time inhomogeneous Poisson process with intensity

ν0(dx× dt) = P (N(dx× dt) = 1) = α(x, t) dx dt (3.1)

independent of the past history. The nucleation rate α(x, t) is a given deterministic
field, also known as the free space intensity. The

On the other hand, let us denote by Ω(t;Xn, Tn) the set covered at time t by
the grain nucleated at Tn in Xn and growing freely (according to the above growth
model), and again by

Θ(t) =
⋃

Tn≤t
Ω(t;Xn, Tn)

the region union of the random grains, which is now a random closed set (RACS).
The well known theory of Choquet-Matheron [33] shows that it is possible to

assign a unique probability law associated with a random closed set Ξ ⊂ Rd on the
measurable space (F , σF ) of the family of closed sets in Rd endowed with the σ-
algebra generated by the hit-or-miss topology, by assigning its hitting function HΞ.
The hitting function of Ξ is defined as

HΞ : K ∈ K 7→ P(Ξ ∩K 6= ∅).

More precisely, we define a random closed set Ξ as a random object

Ξ : (Φ,A,P)→ (F , σF ).
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Moreover, we denote by K the family of compact sets in Rd.
In our case, using the above analysis of the growth process, it is possible to

show [17] that a unique probability measure PΘ can be associated with the germ-
grain process Θ = Θ(t), t ∈ R+. From now on, in a canonical sense, we shall denote
by P this probability measure, and by E (respectively V), expectations (respectively
variances) with respect to this probability, whenever they exist as finite values.

3.1. Stochastic Geometric Measures. In the following we discuss the quan-
titative description of the geometric process Θ, which can be obtained in terms of
mean densities of volumes, surfaces, edges, and vertices (at the respective Hausdorff
dimensions), based on the analysis in [14, 43]. Let Θ(t) be a d−dimensional random
closed set having boundary of Hausdorff dimension d− 1, with integer d.

The mean local volume density and mean local surface density , respectively, of
the random closed Θ(t) at point x are defined by

ρ(x, t) := lim
r→0

E[Hd(Θ(t) ∩ Br(x))]

Hd(Br(x))
(3.2)

SV (x, t) := lim
r→0

E[Hd−1(∂Θ(t) ∩ Br(x))]

Hd(Br(x))
, (3.3)

provided that the limits exist and are a.e. finite.
It is easy to see that

ρ(x, t) = HΘ(t)({x}) = P({x ∈ Θ(t)}) = E(χ(x, t)), x ∈ E,
where HΘ(t)({x}) is the hitting function for the singleton K = {x}.

In practice, no further nucleation may occur in the space already occupied, the
actual birth rate will be given by

ν(dx × dt) = P (N(dx× dt = 1|Θ(t−)) = α(x, t)(1− χ(x, t−)) dx dt,

where Θ(t−) =
⋃
s<t Θ(s) and χ(x, t−) = sups<t χ(x, s). The corresponding (deter-

ministic) measure defined by the expected values

Λ([0, t]×B) := E[N([0, t]×B)], t ≥ 0, B ∈ B(D),

is the (deterministic) intensity measure of the nucleation process N .
Using the above definitions and continuity of ρ in time we obtain the identities

Λ(dt× dx) = E[N(dt× dx)]

= E[ν(dt × dx)]

= E[α(x, t)(1 − χ(x, t−)) dt dx]

= α(x, t)E[(1 − χ(x, t−))]dt dx

= α(x, t)(1− ρ(x, t))dt dx.

We can also associate a local density to the nucleation process N given by

L(x, t) := lim
Hd(B)→0

E[N([0, t]×B)]

Hd(B)

= lim
Hd(B)→0

∫
B

∫ t
0
α(y, s)(1− ρ(y, s)) ds dy

Hd(B)

=

∫ t

0

α(x, s)(1− ρ(x, s)) ds.

11



Below it will be convenient to use extended densities, which are obtained by
considering all nuclei born with the free space intensity and the corresponding freely
grown grains. Note that we have shown above that the union of the freely grown
crystals still equals Θ(t). The mean extended volume density ρ∗(x, t) is defined by

∫

B

ρ∗(x, t) dx = E


∑

Tj≤t
Hd(Ω(t;Xj , Tj) ∩ B)




for any B ∈ B(Rd). Since we have x ∈ Ω(t;Xj , Tj) if and only if (Xj , Tj) ∈ C(x, t),
we obtain

E


∑

Tj≤t
Hd(Ω(t;Xj , Tj) ∩ B)


 = E[

∫

B

N(C(x, t)) dx] =

∫

B

E[N(C(x, t))] dx,

and thus, since the nucleation is a Poisson process with intensity α

ρ∗(x, t) = E[N(C(x, t))] =

∫

C(x,t)
α(y, s) d(y, s) =

∫ t

0

∫

E(x,t;s)

α(y, s) dy ds. (3.4)

Correspondingly we may define the mean extended surface density S∗(x, t) by

∫

B

S∗(x, t) dx = E


∑

Tj≤t
Hd−1(∂Ω(t;Xj , Tj) ∩ B)




. for any B ∈ BRd .

3.2. The Volume Density. It seems obvious that ρ will be influenced by the
nature of the nucleation and growth processes. However, the probability that the
point x is not covered by time t may be expressed in terms of the probability that no
nucleation event occurs inside the causal cone (see also [9] ),

p(x, t) := 1− ρ(x, t) = P(x /∈ Θ(t))

= P[no nucleation event in C(x, t)] = P[N(C(x, t)) = 0], (3.5)

where p is called the porosity. Since the nucleation process is a Poisson-process, we
have

p(x, t) = e−ν0(C(x,t)) = e−ρ∗(x,t)

and hence,

ρ(x, t) = 1− e−ρ∗(x,t). (3.6)

For small free volume density ρ∗, the first order terms on the right-hand side dominate
and thus, ρ(x, t) ≈ ρ∗(x, t). For increasing ρ∗, there is an obvious saturation effect
yielding ρ(x, t) << ρ∗(x, t). This relation can also be express as an evolution equation
for the (volume) density:

∂ρ

∂t
(x, t) = (1− ρ(x, t))

∂ρ∗
∂t

(x, t). (3.7)
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For small free volume density ρ∗, the first order terms on the right-hand side dominate
and thus, ρ(x, t) ≈ ρ∗(x, t). For increasing ρ∗, there is an obvious saturation effect
yielding ρ(x, t) << ρ∗(x, t). We mention that equation (3.7) can be derived under
rather general conditions in terms of hazard theory (cf. [16]), it turns out that the
hazard rate can be identified as

h(x, t) := − ∂

∂t
ln p(x, t) =

∂ρ∗
∂t

(x, t).

We finally consider the nucleation density n defined via

∫

B

n(x, t) dx = E[Λ([0, t)×B)], ∀ B ∈ B(Rd).

From the above computation of Λ in terms of ρ and α we obtain the nucleation density
n as

n(x, t) =

∫ t

0

(1− ρ(x, s))α(x, s) ds. (3.8)

Note that the nucleation density satisfies

∂n

∂t
= (1− ρ)α = (1− ρ)

∂n∗
∂t

,

where n∗ is the free nucleation density given by

n∗(x, t) =

∫ t

0

α(x, s) ds.

This relation between the nucleation densities of the real process and the free process
is an analogue to the relation (3.7) between the volume densities of the real and free
process.

4. Computation of the Evolving Volume Density. We now turn our at-
tention to the computation of the volume density, respectively its time evolution via
partial differential equations. Above we already derived the relation (3.7) between
the real and free volume densities, and as an obvious next step we therefore consider
the time derivative of the free volume density ρ∗.

Proposition 4.1. Let ρ∗ be defined by (3.4) and let the standard assumptions
on the nucleation and growth rates be satisfied. Then ρ∗ is continuously differentiable
with respect to t and

∂ρ∗
∂t

(x, t) = G(x, t)

∫ t

0

∫

∂E(x,t;s)

α(y, s) dHd−1(y) ds. (4.1)

Proof. With the arrival times defined above, we have E(x, t; s) = {y | S(y;x, t) ≥
s}. Then, (3.4) and a change of integration order yield

ρ∗(x, t) =

∫ t

0

∫

{y | S(y;x,t)≥s}
α(y, s) dy ds

=

∫

Rd

∫ S(y;x,t)

0

α(y, s) ds dy.

13



Due to the regularity of the functions involved, we can simply compute the time
derivative (using the standard formula for derivatives of parameter-dependent inte-
grals) as

∂ρ∗
∂t

(x, t) =

∫

Rd

∂S

∂t
(y;x, t)α(y, S(y;x, t)) dy

= G(x, t)

∫

Rd
|∇xS|(y;x, t)α(y, S(y;x, t)) dy,

where we have inserted (2.12) that is satisfied by S almost everywhere. Finally, the
co-area formula (cf. [25, Thm. 3.2.12]) implies with Proposition 2.9 that

∂ρ∗
∂t

(x, t) = G(x, t)

∫ t

0

∫

{y | S(y;x,t)=s}
α(y, s) dHd−1(y) ds

= G(x, t)

∫ t

0

∫

∂E(x,t;s)

α(y, s) dHd−1(y) ds.

The result of Proposition 4.1 can be interpreted as a generalized Steiner formula
(cf. [30]) or as a shape derivative of a volume integral on a moving domain (cf. [21]),
but under our very general regularity assumptions it does not follow from the known
results. Note that the extended surface density is appearing the evolution formula as

S∗(x, t) =

∫ t

0

∫

∂E(x,t;s)

α(y, s) dHd−1(y) ds.

Finally, we consider a special example corresponding to the case originally intro-
duced by Kolmogorov [32]:

Example. Let G(x, t) = G0 and α(x, t) = α0 be constant. In this case the
causal cone has been determined as an example above and since α is constant we
obtain

ρ∗(x, t) =

∫

C(x,t)
dΛ(y, s) = α0|C(x, t)| =

ωdα0G
d
0

d+ 1
td+1,

where ωd is the volume of the unit ball in Rd. Abbreviating γ =
ωdα0G

d
0

d+1 , we conclude
from (3.6) that

ρ(x, t) = 1− exp (−γtd+1), (4.2)

which widely is known as (Johnson-Mehl-) Avrami-Kolmogorov formula (cf. [18, 23,
27, 38, 46, 50] and the references therein).

4.1. Differential Equations in Spatial Dimension One. For nucleation and
growth processes in spatial dimension one (d = 1) one can easily show by a comparison
result for ordinary differential equations that

E(x, t; s) = [a(x, t; s), b(x, t; s)],

where a(x, t; t) = b(x, t; t) = x and

∂a

∂s
(x, t; s) = G(a(x, t; s), s),

∂b

∂s
(x, t; s) = −G(b(x, t; s), s), ∀ s ∈ [0, t].
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Hence, the free volume density is given by

ρ∗(x, t) =

∫ t

0

∫ b(x,t;s)

a(x,t;s)

α(y, s) dy ds

and its time derivative is (due to Proposition 4.1) given by

∂ρ∗
∂t

(x, t) = G(x, t)

∫ t

0

[α(a(x, t; s), s) + α(b(x, t; s), s)] ds

We now define the functions

v(x, t) :=

∫ t

0

α(a(x, t; s), s) ds,

w(x, t) :=

∫ t

0

α(b(x, t; s), s) ds.

The first derivatives of v can be computed as

∂v

∂t
(x, t) := α(a(x, t; t), t) +

∫ t

0

∂α

∂y
(a(x, t; s), s)

∂a

∂t
(x, t; s) ds

= α(x, t) +

∫ t

0

∂α

∂y
(a(x, t; s), s)

∂a

∂t
(x, t; s) ds,

∂v

∂x
(x, t) :=

∫ t

0

∂α

∂y
(a(x, t; s), s)

∂a

∂x
(x, t; s) ds.

Now we have

∂

∂s

∂a

∂t
(x, t; s) =

∂G

∂y
(a(x, t; s), s)

∂a

∂t
(x, t; s),

∂

∂s

∂a

∂x
(x, t; s) =

∂G

∂y
(a(x, t; s), s)

∂a

∂x
(x, t; s),

i.e., both ∂a
∂t (x, t; .) and ∂a

∂x (x, t; .) are solutions of the same linear ordinary differential
equation. From the relation a(x, t; t) = x we deduce (by differentiating with respect
to x and t) that

∂a

∂x
(x, t; t) = 1,

∂a

∂t
(x, t; t) = −∂a

∂s
(x, t; t) = −G(x, t).

Hence, the initial value for ∂a
∂x (x, t; .) is just a multiple of the initial value for ∂a

∂t (x, t; .)
and by uniqueness of solutions, we conclude

∂a

∂t
(x, t; s) = −G(x, t)

∂a

∂x
(x, t; s), ∀ s ∈ [0, T ].

Together with the above relations for ∂v
∂t and ∂v

∂x this finally yields the partial differ-
ential equation

∂v

∂t
+G

∂v

∂x
= α in Rd × (0, T )
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with initial value v(x, 0) = 0. By analogous reasoning for b we can derive the equation

∂w

∂t
−G∂w

∂x
= α in Rd × (0, T )

with initial value w(x, 0) = 0.
We now summarize the equations we have derived so far. If we insert the above

formula for ∂ρ∗
∂t and the definitions of v and w into (3.7), we end up with the closed

system

∂ρ

∂t
= G(1− ρ)(v + w) ρ(., 0) = 0

∂v

∂t
+G

∂v

∂x
= α v(., 0) = 0

∂w

∂t
−G∂w

∂x
= α w(., 0) = 0

(4.3)

for ρ, v, and w. Note that this system of partial differential equations generalizes the
system of rate equations derived by Schneider et. al. [40] in the one-dimensional case,
which can be rewritten as

∂ρ

∂t
= G(1− ρ)(v + w) ρ(., 0) = 0

∂v

∂t
= α v(., 0) = 0

∂w

∂t
= α w(., 0) = 0.

(4.4)

At a suitable space and time scaling it can indeed be shown that (4.4) is a limit of
(4.3) for small growth rate G and large nucleation rate α (cf. [7]).

4.2. Approximation of the Volume Density in Mesoscopic Fields. We
now consider a multi-dimensional situation, where the computation of the volume
density can be rather involved due to the possibly complicated structure of the causal
cone. For the sake of simplicity we restrict our attention to the case d = 3 (but
analogous and even simpler reasoning is possible for d = 1, 2, too). The causal cone
C(x, t) can be computed by a single simulation of growth process backward in time
and subsequent integration of the nucleation rate α over C(x, t). However, for general
growth rates G such an approach for the computation of the averaged quantities is
rather inefficient. In order to determine the values of ρ on a grid, one has to compute
the causal cone separately for each grid point if the grid fineness is larger than ` (since
the causal cones are disjoint). On the other hand, a grid fineness smaller than ` would
lead to an unreasonably high number of unknowns, in particular if one is interested
in mesoscopic approximations.

We investigate a typical multiscale situation, where the nucleation and growth rate
are derived from meso- or macroscopic fields, for example as functions of temperature
as in solidification and phase-change processes (cf. e.g. [8, 49]). Consequently we
assume

sup
(x,t)

|∇G(x, t)| ≤ CGG0

λ
=
CG
T

(
`

λ

)
, sup

(x,t)

|∇α(x, t)| ≤ Cαα0

λ
=
Cαα0

TG0

(
`

λ

)

(4.5)
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for some constants CG, Cα ∈ R+ of order one, where α0 is assumed to be the max-
imal value of the nucleation rate α. Since the spatial variation of G is small on the
microscale related to the diameter of the causal cone, it seems natural to derive an
approximation by ignoring this variation, i.e., we define

C1(x, t) := {(y, s) ∈ Rd × R+ | ∃ξ ∈W 1,∞([s, t]) : ξ(t) = x, ξ(s) = y,

|ξ̇(τ)| ≤ G(x, τ), τ ∈ (s, t)}. (4.6)

The approximation C1(x, t) is a linear cone, more precisely

C1(x, t) = {(y, s) ∈ Rd × R+ | |y − x| ≤
∫ t

s

G(x, τ) dτ}.

Correspondingly we define the first-approximation to ρ and ρ∗ as

ρ1(x, t) := 1− exp(−ρ1
∗(x, t)), ρ1

∗(x, t) :=

∫

C1(x,t)

α(y, s) d(y, s). (4.7)

We start by computing the evolution of ρ1
∗: First of all, since

ρ1
∗(x, t) =

∫ t

0

∫

|y−x|≤
R t
s
G(x,τ) dτ

α(y, s) dy ds

=

∫ t

0

∫ R
t
s
G(x,τ) dτ

0

∫

S3

α(x + rν, s) r2 dν dr ds,

we obtain from the transport theorem that

∂ρ1
∗

∂t
(x, t) = G(x, t)

∫ t

0

∫

S3

α (x+R(x, t, s) ν, s) (R(x, t, s))
2
dν ds,

with R(x, t, s) :=
∫ t
s
G(x, τ) dτ . Now define

ϕ1(x, t) :=

∫ t

0

∫

S3

α (x+R(x, t, s) ν, s) (R(x, t, s))
2
dν ds,

then we can compute a further time derivative as

∂ϕ1

∂t
(x, t) = 2G(x, t)

∫ t

0

∫

S3

α (x+R(x, t, s) ν, s) R(x, t, s) dν ds+

G(x, t)

∫ t

0

∫

S3

∇α (x+ R(x, t, s) ν, s) · ν (R(x, t, s))
2
dν ds

Since we expect the gradient of α0 to be small at the spatial scale corresponding to
the size of the causal cone, we ignore the second integral for the moment and take a
closer look at the first part, namely

ϕ2(x, t) = 2

∫ t

0

∫

S3

α (x+R(x, t, s) ν, s) R(x, t, s) dν ds,

with time derivative

∂ϕ2

∂t
(x, t) = 2G(x, t)

∫ t

0

∫

S3

α (x+R(x, t, s) ν, s) dν ds+

2G(x, t)

∫ t

0

∫

S3

∇α (x+R(x, t, s) ν, s) · νR(x, t, s) dν ds
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Taking again the first term only, we have

ϕ3(x, t) := 2

∫ t

0

∫

S3

α (x+R(x, t, s) ν, s) dν ds

and

∂ϕ3

∂t
(x, t) = 2

∫

S3

α (x+R(x, t, t) ν, t) dν +

2G(x, t)

∫ t

0

∫

S3

∇α (x+R(x, t, s) ν, s) · ν dν ds.

Since R(x, t, t) = 0 we obtain the identity

2

∫

S3

α (x+R(x, t, t) ν, t) dν = 2α (x, t)

∫

S3

dν = 8πα(x, t).

It seems reasonable to ignore all the gradient terms and to define an approximation
ρ0 as the solution of the system of differential equations

∂ρ0

∂t
= (1− ρ0)

∂ρ0
∗

∂t
= G(1− ρ0)

∂ψ1

∂t
,

∂ψ1

∂t
= Gψ2,

∂ψ2

∂t
= Gψ3,

∂ψ3

∂t
= 8πα,

(4.8)

with homogeneous initial values for all variables. Here the variables ψj are thought
of as approximations to φj . Note that (4.8) is the three-dimensional case of the rate
equations proposed in [40].

In order to compare the extended volume ρ∗ and the approximation ρ1
∗, ρ

0
∗ in

a reasonable way, we rescale the extended densities by a typical size α0`
dT , i.e., we

consider the rescaled variables

ρ̃∗ :=
ρ∗

α0`3T
, ρ̃k∗ :=

ρk∗
α0`3T

.

In the same way we rescale the variables φj and ψj to

ϕ̃j :=
φj

α0`3−jT
, ψ̃j :=

ψj
α0`3−jT

.

We start by estimating the difference between ϕ̃3 and ψ̃3, using the estimats for
G and ∇α, as

|ϕ̃3(x, t) − ψ̃3(x, t)| = 1

α0T
|2
∫ t

0

G(x, τ)

∫ τ

0

∫

S3

∇α(x +R(x, τ, s)ν, s) · ν dν ds dτ |

≤ 2CαG0

λT
|
∫ t

0

∫ τ

0

∫

S3

dν ds dτ | = 4πCαG0t
2

λT
.
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For the difference between ϕ̃2 and ψ̃2 we can derive a similar estimate, taking into
account that the error consists of two terms, namely the ignored integral involving
∇α and the integral of ϕ̃3− ψ̃3. By a simple application of the triangle inequality we
obtain

|ϕ̃2(x, t) − ψ̃2(x, t)| = 1

`
|
∫ t

0

G(x, τ)(ϕ̃3(x, τ) − ψ̃3(x, τ)) dτ |

+
1

α0`T
|2
∫ t

0

G(x, τ)

∫ τ

0

∫

S3

∇α(x +R(x, τ, s)ν, s) · ν R(x, τ, s) dν ds dτ |

≤ 4πCαG
2
0t

3

3λ`T
+

4πCαG
2
0t

3

3λ`T
=

8πCαG
2
0t

3

3λ`T
.

By completely analogous reasoning we deduce

|ϕ̃1(x, t)− ψ̃1(x, t)| ≤ 2πCαG
3
0t

4

3λ`2T

and, finally,

|ρ̃1
∗(x, t) − ρ̃0

∗(x, t)| ≤
2πCαG

4
0t

5

15λ`3T
≤ 2πCα

15

`

λ
.

Hence, the additional error made when ignoring the terms with ∇α in the derivatives
is of first order with respect to the relative scale `

λ .
A natural next step is to estimate the difference between ρ∗ and ρ1

∗. For this sake
we inspect the causal cone section E(x, t; s). For each y ∈ E(x, t; s) we can find an arc
ξ such that ξ(t) = x, ξ(s) = y, and

|ξ̇(τ)| ≤ G(ξ(τ), τ) ≤ G(x, τ) +
CGG0

λ
|ξ(τ) − x|.

Since on the other hand, we have G(ξ(τ), τ) ≤ G0, we can estimate |ξ̇(τ)| ≤ G0 and
hence, |ξ(τ) − x| ≤ G0(t − τ). Inserting the latter estimate on the right-hand side
above, we obtain

|ξ(s)− x| ≤
∫ t

s

|ξ̇(τ)| dτ ≤ R(x, t, s) +
CGG

2
0(t− s)2

2λ
:= R+(x, t; s).

This shows that E(x, t; s) ⊂ B(x;R+(x, t, s)), where B(x;R) denotes the ball around
x with radius R. By similar reasoning we can deduce the inclusion E(x, t; s) ⊃
B(x;R−(x, t, s)) with

R−(x, t, s) = R(x, t, s)− CGG
2
0(t− s)2

2λ
.

Hence, the relative volume between E(x, t; s) and B(x,R(x, t, s)) can be estimated by

|E(x, t; s) \B(x,R(x, t, s))| + |B(x,R(x, t, s)) \ E(x, t; s)|

≤ 4π

3
(R+(x, t; s)3 −R(x, t; s)3)

≤ 2πCGG
2
0(t− s)2

λ
R+(x, t; s)2 ≤ 2πCGG

2
0(t− s)2

λ

(
G0(t− s) +

CG`G0(t− s)
2λ

)2

.
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With the integral representations of ρ∗ and ρ1
∗ we can further estimate

|ρ∗(x, t) − ρ1
∗(x, t)|

≤ 1

α0`3T
|
∫ t

0

(∫

E(x,t;s)

α(y, s) dy ds−
∫

B(x,;R(x,t,s))

α(y, s) dy

)
ds|

≤ 1

`3T
|
∫ t

0

2πCGG
4
0(t− s)4

λ

(
1 +

CG`

2λ

)2

ds|

≤ 2πCG
5

(
1 +

CG`

2λ

)2
t

T

`

λ
≤ 2πCG

5

(
1 +

CG`

2λ

)2
`

λ

From the triangle inequality we obtain the following result:

Theorem 4.2. Let G and α satisfy (1.2) and (4.5). Then, with the above
definitions of ρ∗ and the approximation ρ0

∗ as above, the estimate

∥∥ρ̃∗ − ρ̃0
∗
∥∥
∞ ≤

2πCα
15

[
1 + 3

(
1 +

CG`

2λ

)2
]
`

λ
(4.9)

holds.
Theorem 4.2 confirms that ρ0

∗ is indeed a first-order approximation of the extended
volume density ρ∗. The difference in the volume densities can be estimated by

∥∥ρ− ρ0
∥∥
∞ ≤

∥∥∥e−ρ∗ − e−ρ0
∗
∥∥∥
∞
≤ (α0`

3T )
∥∥ρ̃∗ − ρ̃0

∗
∥∥
∞ .

Note that the constant α0`
3T is a bound for the number of nucleations in a microscale

cell in the time interval [0, T ], which is usually small or of order one.

5. Variance and Mesoscale Averaging. In the following we discuss the vari-
ance of the random variable χ(x, t) := IΞ(t)(x), taking the values 0 or 1 only, and
the variance of a local averaging on a mesoscale, which yields error estimates for
corresponding mesoscale quantities.

5.1. Variance of the Volume Density. The volume density ρ(x, t) is the ex-
pected value of the random variable χ(x, t). Hence, χ(x, t)2 = χ(x, t) and we obtain
for the local variance

v(x, t) = E[χ(x, t)2]− E[χ(x, t)]2 = E[χ(x, t)] − E[χ(x, t)]2 = ρ(x, t)(1 − ρ(x, t)).

Since ρ(x, t) ∈ [0, 1], we conclude that ρ(x, t)(1 − ρ(x, t)) ≤ 1
4 and hence, we have

derived the following result:

Theorem 5.1. For each (x, t) ∈ Ω × [0, T ], the random variable χ(x, t) has a
variance v(x, t) ∈ [0, 1

4 ].

In general, we cannot expect a very low variance at a single point x, but we
may expect a lower variance for local spatial averages of χ. Given A ⊂ Ω, we have
introduce the random variable

mA(t) :=
1

|A|

∫

A

χ(x, t) dx.

Due to the linearity of the integral we conclude E[mA(t)] =
∫
A
ρ(x, t) dx. The variance
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of mA can be estimated (in a pessimistic way) via the Cauchy-Schwarz inequality

E
[
(mA(t)− E[mA(t)])2

]
= E

[(
1

|A|

∫

A

(χ(x, t)− ρ(x, t)) dx

)2
]

≤ 1

|A|E
[∫

A

(χ(x, t) − ρ(x, t))2 dx

]

=
1

|A|

∫

A

v(x, t) dx ≤ 1

4
.

Clearly, with such a pessimistic estimate the variance is not decreased, since we have
not introduced information about the possible dependence or independence of the
random variables χ(x, t) at different locations. This will be done in the following
section within a local averaging procedure.

5.2. Error Estimates for Mesoscale Averaging. In the following we shall
consider local averages of the volume density at the mesoscale. We assume that
λ = 3N` with ` ≥ G0T . We perform the local averaging over a cell

A(z) = {z}+ [−λ
2
,
λ

2
]d, (5.1)

i.e., we are interested in the average volume density

ρ̂(z, t) := mA(z)(t). (5.2)

The local cell A(z) can be decomposed into subcells

Ai = {zi}+ [− `
2
,
`

2
]d, i = 1, . . . (3N)d, (5.3)

such that the interior of Ai and Aj are pairwise disjoint and

A(z) =
⋃

i

Ai.

Now define random variablesXi(t) := mAi(t). From the results of the previous section
we know that E[Xi(t)] =

∫
Ai
ρ(x, t) dx and that the variance of Xi(t) can be estimated

via V[Xi(t)] ≤ 1
4 .

Lemma 5.2. Let 0 ≤ t ≤ T and |zi − zj |1 ≥ (d + 2
√
d)λ. Then the random

variables Xi(t) and Xj(t) are independent.

Proof. Let xi ∈ Ai and xj ∈ Aj . Then, |zi− zj |1 ≥ (d+ 2
√
d)λ implies |xi−xj | >

2G0T and hence, from (2.10) we can conclude that C(xi, t) ∩ C(xj , t) = ∅ and since
χ(x, t) only depends on the nucleation in C(x, t), we may conclude that χ(xi, t) and
χ(xj , t) are independent. Since xi ∈ Ai and xj ∈ Aj are arbitrary, we may also
conclude that the integrals of χ with respect to xi ∈ Ai and with respect to xj ∈ Aj
are independent, and thus, Xi(t) and Xj(t) are independent.

Theorem 5.3. Let the nucleation and growth process satisfy the standard as-
sumptions and let ` = G0T < λ. Then we have

V[ρ̂(z, t)] ≤ 1

4Nd
=
M(d)d

4

(
`

λ

)d
, ∀(z, t) ∈ Ω× [0, T ],
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with M(d) being any real number such that k(d) ≥ d+ 2
√
d

Proof. Due to Lemma 5.2 we can find (M(d))d disjoint index sets

Ik ⊂ {1, . . . , (M(d)N)d}

such that

{1, . . . , (M(d)N)d} =

Md⋃

k=1

Ik, |Ik | = Nd,

and such that Xi and Xj are independent if i ∈ Ik and j ∈ Ik for some k. Now we
define random variables Yk :=

∑
i∈Ik N

−dXi(t). The mean value of Yk is given by

E[Yk] = E

[∑

i∈Ik
N−dXi(t)

]
=
∑

i∈Ik

1

Nd|Ai|

∫

Ai

ρ(x, t) dx =
1

|Bk|

∫

Bk

ρ(x, t) dx.

Since the Xi are independent for i ∈ Ik with variance bounded by 1
4 we obtain

V[Yk] = V

[∑

i∈Ik
N−dXi(t)

]
= V

[∑

i∈Ik
N−dXi(t)

]
= N−2d

∑

i∈Ik
V[Xi(t)] ≤

1

4Nd
.

With the above notation, we have

ρ̂(z, t) = (M(d))−d
(M(d))d∑

k=1

Yk

and hence,

V[ρ̂(z, t)] = (M(d))−2dV




(M(d))d∑

k=1

Yk


 ≤ (M(d))−d

(M(d))d∑

k=1

V[Yk] ≤ 1

4Nd
,

which completes the proof.
Note that with the Chebyshev inequality, Theorem 5.3 implies

P

[∣∣∣∣∣
1

A(z)

∫

A(z)

(χ(x, t) − ρ(x, t))dx

∣∣∣∣∣ > ε

]
≤ M(d)d

4ε2

(
`

λ

)d
.

The variance estimate can also be interpreted in a different way, since ` = G0T yields
a certain time dependence of the estimate. In particular we obtain

V[ρ̂(z, T )] ≤ M(d)d

4

(
G0T

λ

)d
,

and therefore we have to expect that the variance grows in time like T d.

6. Extensions. In the following we consider some possible extensions of the
mesoscale averaging to further situations of interest. We shall not develop a detailed
theory for these cases, but only outline the major analogies and differences to the
growth considered above.
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6.1. Anisotropic Growth. In anisotropic growth, which appears for many ma-
terials with an underlying crystal structure such as metals or semiconductors, the form
of the normal velocity G in the growth model (1.1) has to be changed to

G = H(x, t, n), H : Rd ×R+ × Sd → R+,

where Sd is the unit sphere in Rd. Such growth situations appear e.g. for d = 2
on crystalline substrates, where the dependence of H is determined by the under-
lying crystal structure of the substrate. The function H can be extended to a one-
homogeneous function on Rd ×R+ × Rd via

H(x, t, p) := |p|H(x, t,
p

|p| ).

We shall assume that H(x, t, .) is a convex function for all (x, t). In this case, the
level set formulation of the growth model is given by Ω(t) = {φ(., t) ≤ 0} for φ being
the viscosity solution of the Hamilton-Jacobi equation

∂φ

∂t
+H(x, t,∇φ) = 0.

For convex Hamiltonian H , one can still derive a Hopf-Lax formula (cf. [24]) of the
form

φ(x, t) = inf{ φ(y, 0) | ∃ξ ∈W 1,∞([0, t]) : ξ(t) = x, ξ(0) = y,

|ξ̇(τ)| ≤ sup
|ν|=1

H(ξ(τ), τ, ν), τ ∈ (0, t) }. (6.1)

The causal cone can be defined in the same way as in the isotropic growth situation
above, and using (6.1) one can also derive an analogous Hopf-Lax representation of
the causal cone as

C(x, t) = { (y, s) ∈ Rd × R+ | ∃ξ ∈W 1,∞([s, t]) : ξ(t) = x, ξ(s) = y,

|ξ̇(τ)| ≤ sup
|ν|=1

H(ξ(τ), τ, ν), τ ∈ (s, t) }.

The basic ideas and results of mesosale averaging such as the Avrami-Kolmogorov
formula remain unchanged in the anisotropic setting, the only difference is the slightly
more complicated computation of the causal cone.

6.2. Polycrystalline Growth. A challenging example in modern semiconduc-
tor processing is the growth of polycrystalline structures on amorphous substrates
(cf. e.g. [39]). In these processes, a crystalline material is deposited on an amorphous
substrate and crystals nucleate randomly. Since the material is crystalline, each nu-
clei has a special orientation, which is a random variable in the nucleation process.
Hence, nucleation should be modeled as a Poisson process in D×R+×Sd with a rate
α = α(x, t, ν) for ν ∈ Sd.

The initial orientation of the nuclei determines the subsequent anisotropic growth
of the crystal, i.e., the level set formulation of the growth of the j-th grain becomes
Ωj(t) = {φj(., t) ≤ 0}

∂φj
∂t

+Hν(x, t,∇φj) = 0,
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with Hamiltonian (respectively normal velocity for the front growth) depending on
the initial orientation. Thus, the growth of a grain nucleated at (X,T ) will in general
be different for different values of the random variable ν. Since the nucleation event
is now described by a random variable on Rd×R+×Sd, we have to define the causal
cone as a subset of this larger set, i.e.,

C(x, t) := {(y, s, ν) ∈ Rd × R+ × Sd | Nucleation of grain Ω at y at time s

with orientation ν implies x ∈ Ω(t)}. (6.2)

The mesoscale averaging can then be performed by analogous reasoning as above
and one obtains that (3.7) holds with

ρ∗(x, t) = E[N(C(x, t))] =

∫

C(x,t)
α(y, s, ν) d(y, s, ν)

=

∫

Sd

∫ t

0

∫

E(x,t;s,ν)

α(y, s, ν) dy ds dν, (6.3)

with the section

E(x, t; s, ν) = { y ∈ Rd | (y, s, ν) ∈ C(x, t) }.
Again, the major change in the mesoscopic averaging occurs with respect to the causal
cone, which is now an object of higher dimension and consequently more difficult to
compute.

Example. In order to make the above statements more concrete, we consider
a special case of cubic anisotropy with constant growth rate α(x, t, ν) ≡ α0. We
assume that the nucleating grain is an infinitesimally small cube with main axis in
direction ν (and its unit normals ν⊥1 , ν⊥2 ), and that the growth appears with a constant
velocity G0 in the directions of the main axis, so that the grain remains a cube until
impingement. More precisely, a freely grown grain Ωk nucleated at location Xk, time
Tk, and orientation νk is given by

Ωk(t) = { x ∈ Rd | |x−Xk|νk ≤ G0(t− Tk) },
where the anisotropic norm |.|ν is given by

|y|ν = max{|y · ν|, |y · ν⊥1 |, |y · ν⊥2 |}.
As a consequence we can compute the causal cone

C(x, t) = {(y, s, ν) ∈ Rd × R+ × S3 | |x− y|ν ≤ G0(t− s)}
and its sections

E(x, t; s) = {(y, ν) ∈ Rd × R+ × S3 | |x− y|ν = G0(t− s)}.
With (6.3) we derive in this special case

ρ∗(x, t) =

∫

Sd

∫ t

0

∫

E(x,t;s,ν)

α(y, s, ν) dy ds dν = 4πα0

∫ t

0

8G3
0(t− s)3 ds = 8πα0G

3
0t

4.

Hence, the degree of crystallinity can be computed explicitely as

ρ(x, t) = 1− exp
(
−8πα0G

3
0t

4
)
, (6.4)

which is the polycrystalline equivalent of the classical Avrami-Kolmogorov formula
(4.2).
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(Birkhäuser, Basel, 2003).

[20] F.Da Lio, Remarks on the strong maximum principle for viscosity solutions to fully nonlinear
parabolic equations, Comm. Pure Appl. Anal. 3 (2004), 395-415.

[21] M.Delfour, J.P.Zolesio, Shapes and Geometries (SIAM, Philadelphia, 2001).
[22] G.Eder, Crystallization kinetic equations incorporating surface and bulk nucleation, ZAMM 76

(1996), S4, 489-492.
[23] G.Eder, Fundamentals of structure formation in crystallizing polymers, in K.Hatada,

T.Kitayama, O.Vogl, eds., Macromolecular Design of polymeric Materials (M.Dekker, New
York, 1997), 761-782.

[24] L.C.Evans, Partial Differential Equations, Graduate Studies in Mathematics 19 (AMS, Provi-
dence, RI, 1998).

[25] H.Federer, Geometric Measure Theory (Springer, Berlin, Heidelberg, New York, 1969).

25



[26] F.Gibou, C.Ratsch, R.E.Caflisch, Capture numbers and scaling laws in epitaxial growth, Phys.
Rev. B 67 2003, 155403.
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[50] M.C.Weinberg, D.P.Birnie, V.A.Shneidman, Crystallization kinetics and the JMAK equation,

J. Non-Crystalline Solids 219 (1997), 89-99.

26


