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Abstract

In this paper we apply Y. Meyer’s G-norm for image processing prob-
lems. We use a definition of the G-norm as norm of linear functionals
on BV , which seems to be more feasible for numerical computation. We
establish the equivalence between Meyer’s original definition and ours and
show that computing the norm can be expressed as an interface problem.
This allows us to define an algorithm based on the level set method for its
solution. Alternatively we propose a fixed point method based on mean
curvature type equations. A computation of the G-norm according to
our definition additionally gives functions which can be used for denois-
ing of simple structures in images under a high level of noise. We present
some numerical computations of this denoising method which support this
claim.
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1 Introduction

Many image processing methods are based on a minimization of functionals
involving the bounded variation norm. It is widely accepted that the BV -space
is a good model for images, since it penalizes noise, while keeping important
information such as edges. For instance, denoising of images can be efficiently
done by minimizing the Rudin-Osher-Fatemi (ROF) functional [27]:

JROF (u) = λ‖u− f‖2L2(Ω) + |u|BV . (1)
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In the following |u|BV denotes the BV -seminorm (see [2, 14])

|u|BV := sup
φ∈[C∞0 (Ω)]2,‖φ‖L∞≤1

∫

Ω

u(x)∇·φdx, (2)

and ∇· denotes the divergence operator. Many variants of this functional are
known (see e.g. the recent work on Bregman iteration [23]), and the application
of the BV -space has been found useful not only for denoising, but for image
segmentation and deblurring and regularization of ill-posed problems. In image
segmentation a generalization of the ROF-functional leads to the Mumford-Shah
minimization [22].

The space of functions of bounded variation roughly contains sketches of an
image. The ROF-method decomposes a given image f into f = u + v, where u
is the minimizer of (1) and v is the residual. u is considered the cartoon-part,
while the remaining noise and texture is in the v-part. In image processing,
the cartoon u is considered to incorporate the most important information,
however, recently Y. Meyer [21] put emphasis on the v-part, since it contains
information about the texture part of the image. In [21] the G-norm was in-
troduced, as a norm that measures textural parts. The G-norm is basically the
dual norm of the BV -seminorm. It turns out that it is also extremely useful in
describing the structure of minimizers of (1) and related functionals. In par-
ticular, the optimality conditions can be expressed in a concise form involving
this norm. Besides this, several variational image decomposition methods have
been proposed using the G-norm as the norm for the error u− f instead of the
usual L2-norm – this is also known as Meyer-decomposition (see for instance
[3, 4, 19, 21, 32]).

However, one of the problems in dealing with the original definition of the
G-norm as in (3) is that it is difficult to compute. Instead in this paper we
use its definition as a norm of functionals on BV (6), from which the G-norm
of a function can be calculated by solving an optimization problem, which can
be handled by standard routines. Moreover, the optimization problem can be
rephrased as a problem only involving interfaces, see Subsection 2.1. This allows
us to apply the well known machinery of the level set method to this problem.

One of the main points in this paper is that this optimization not only gives
the G-norm, but also the function where the extremum in (6) is attained. This
extremal function contains much information about the image itself, and can be
used to extract features hidden in high noise, which can be used for denoising
of extremely degraded images. In Section 5 we present some of the astonishing
results.

2 G-norm

In the following we assume that either Ω = Rn, n ≤ 2 or Ω ⊂ Rn, n ≤ 2, is
a simply connected Sobolev extension domain. We denote by BV the Banach
space

BV := {u ∈ L1(Ω) | ‖u‖BV := ‖u‖L1 + |u|BV < ∞},
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with the BV -seminorm (2).
In the following we will deal with the G-norm, which is roughly the dual

norm of BV . It was introduced by Y. Meyer [21] for the case of Ω = Rn: Let
f ∈ L2(Rn), then the G-norm ‖.‖∗ is defined as

‖f‖∗ := inf{ ‖g‖L∞(Rn) |∇·g = f}, (3)

where the identity ∇· g = f has to be understood in the sense of distributions.
This definition was generalized to Ω being a bounded domain in [3]. In this

case nonzero constant functions have unbounded G-norm. Hence it is necessary
to include a normalization condition, namely f has to have zero mean. Let
f ∈ L2(Ω) with ∫

Ω

f(x)dx = 0, (4)

let ~n be the unit normal vector on the boundary, then the generalization of (3)
to bounded domain is

‖f‖∗ := inf{‖g‖L∞ |∇·g = f, g.~n = 0 on ∂Ω}. (5)

For our purposes it is more convenient to use a definition of ‖.‖∗ as a dual norm.
In the following we have to distinguish between the two cases Ω = Rn and Ω

being bounded. At first we show that definitions (3) and (5) can be rephrased
in the following form:

Lemma 2.1. Let f ∈ L2(Ω), n ≤ 2. If Ω is a bounded extension domain, let f
additionally satisfy (4). Then both (3) and (5) are equal to

‖f‖∗ := sup
u∈W 1,1(Ω),u6=0

∫
Ω

f(x)u(x)dx∫
Ω
|∇u|dx

= sup
u∈BV,u 6=0

∫
Ω

f(x)u(x)dx

|u|BV
(6)

Proof. A proof of the first equality can be found in [1]. For the second equality
note that any BV -function u can be approximated by smooth W 1,1-function
un such that ‖u − un‖L1 → 0 and |u|BV = limn→∞

∫
Ω
|∇un(x)|dx [2, Thm.

3.9]. Moreover by the continuous embedding of BV → L2 for such an approxi-
mation the sequence ‖ un

|un|BV
‖L2 is bounded and thus has a weakly convergent

subsequence, whose limit must be u
|u|BV

. Hence, the suprema are equal.

We are mainly using definition (6) for our purposes. The next lemma shows
that the supremum in (6) is attained at a BV -function:

Lemma 2.2. Under the same assumptions on Ω and f as in Lemma 2.1, the
supremum in (6) is attained at a BV -function:

‖f‖∗ = max
u∈BV (Ω),u 6=0

∫
Ω

f(x)u(x)dx

|u|BV
. (7)
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Proof. Let un ∈ BV be a maximizing sequence, then vn := un

|un|BV
is in BV ,

with |vn|BV = 1. If Ω is bounded, property (4) allows us to add constants to vn

without changing the value of the ratio in (7). Hence we can assume that each
vn has zero mean. By the continuous embedding into BV → L2, a sequence of
function with zero mean and bounded BV -seminorm has a weakly convergent
subsequence in L2. Moreover since the embedding from BV to L1, is compact,
the limit v of this subsequence is in BV , and by definition a maximizer. If
Ω = Rn, then by the continuous embedding vn is bounded in L2(Rn) and
hence has a weakly convergent subsequence. Its limit v is in L2(Rn), and by
weak convergence satisfies |v|BV ≤ 1. By continuous embedding [2, Thm 3.47]
v ∈ L1, hence v ∈ BV and by weak convergence it is a maximizer.

Note that for bounded domains condition (4) is essential, because if it does
not hold, the supremum in (6) is infinity, since we can add arbitrary constants
to u.

By definition the following fundamental inequality holds (cf. [21]): For any
f(x), u(x) ∈ L2(Ω) ∫

Ω

f(x)u(x)dx ≤ ‖f‖∗|u|BV (8)

If ‖f‖∗|u|BV < ∞ then equality holds if and only if u is a maximizer of (6).
Moreover it was shown in [15, 21] by the isoperimetric inequality that any L2-
function (which has zero mean in the case of a bounded domain) has bounded
G-norm:

‖f‖∗ ≤ C‖f‖L2 .

For Ω = R2 the constant C can be taken as C = 1
2
√

π
(see [15]), for bounded

domains it depends on the embedding constants of BV (Ω) → L2(Ω).

2.1 Level set formula

Using the coarea formula [2] G. Strang observed in [30] that the supremum in (6)
can be taken over characteristic functions in BV . This has been used in [5] and
[12] to construct minimizers for functionals defined for characteristic functions
by extending the problem to BV -functions and using appropriate thresholding.
For our purposes we go the opposite way: The optimization problem (6) can be
reduced to a problem only involving characteristic functions. In this way we are
reduced to an interface problem, which can be handled by the level set method.

For the optimization problem (6) the result of Strang can be formulated as
follows.

Lemma 2.3. Let u ∈ BV (Ω), u 6= 0 be such that
∫
Ω

f(x)u(x)dx

|u|BV
= λ,

Then for any ε there exists a µ such that the upper level set

χµ(x) := 1{x|u(x)≥µ}
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satisfies ∫
Ω

f(x)χµ(x)dx∫
Ω
|∇χµ(x)|dx

≥ λ− ε,

Proof. This has been shown in [30] as follows: u satisfies

Kf,λ(u) :=
∫

Ω

f(x)u(x)dx− λ

∫

Ω

|∇u(x)|dx = 0. (9)

By the coarea formula we can rewrite this as
∫ ∞

−∞
Kf,λ(χµ)dµ = 0.

Now suppose that the conclusion in the theorem does not hold, i.e., an ε exists
such that ∫

Ω
f(x)χµ(x)dx∫

Ω
|∇χµ(x)|dx

< λ− ε,

for all µ such that χµ 6= 0. Then we have

Kf,λ(χµ) < −ε

∫

Ω

|∇χµ(x)|dx.

Integration with respect to µ gives

Kf,λ(u) < −ε

∫

Ω

|∇u(x)|dx,

contradicting (9).

The following is a simple corollary of Lemma 2.3:

Corollary 2.4. The supremum in (6) can be restricted to characteristic func-
tions with finite perimeter. Moreover if u ∈ BV is a maximizer, i.e., it satisfies

‖f‖∗ =

∫
Ω

f(x)u(x)dx

|u|BV
,

then for almost all µ with nonempty level sets χµ(x) := 1{x|u(x)≥µ}, these level
sets satisfy

‖f‖∗ =

∫
Ω

f(x)χµ(x)dx

|χµ|BV
, (10)

In particular, the maximum in (7) is attained at a characteristic function.

Proof. Let u be a maximizer of (7) and χµ = 1{x|u(x)≥µ} be the characteristic
function of its µ-level set. From (8) and (9) with λ = ‖f‖∗ we get Kf,λ(χµ) ≤ 0
and

∫
Kf,λ(χµ)dµ = 0, thus Kf,λ(χµ) = 0 for almost every µ. If χµ(x) is

nonempty it must satisfy (10).
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Let us give some examples for the G-norm and extremal characteristic func-
tions. First we consider the one-dimensional case: Let Ω = I = [a, b] be an
interval and f ∈ L2(I) with

∫
I
f(x)dx = 0. From (5) we find that

‖f‖∗ = inf{ ‖F‖L∞ |F (x) =
∫ x

a

f(s)ds}

Now F (x) is a continuous function, which attains its maximum and minimum
on I. If c ∈ (a, b) is such that |F (c)| = maxx |F (x)|, then

‖f‖∗ = |F (c)| =
∫

I

f(x)χ(x)dx =

∫
I
f(x)χ(x)dx

|χ|BV
,

where χ(x) is either the characteristic function of the interval [a, c] or of [c, b]
depending on the sign of F (c). Hence in the one-dimensional case χµ in (10)
can be taken as a characteristic function of an interval with one endpoint at a
or b.

Another interesting example is the case Ω = R2 and f is a characteristic
function itself. Let f̂(x) = χC(x) be the characteristic function of the set C,
then the optimization problem (6) is

‖f‖∗ = sup
D,per(D)<∞

|C ∩D|
|∂D| .

This can be seen as a generalized isoperimetric problem. An extremal D has
maximal area relative to C with minimal perimeter. Recalling the fact that a
circle has maximal area with given perimeter, it is not surprising that if C = BR

is a circle with radius R, D can be taken as the same circle, yielding

‖χBR
‖∗ =

R

2
.

This has already been shown in [21]. Note that if we consider the G-norm of
this circle on a bounded domain the corresponding value of the norm is smaller,
because f has to be normalized with (4). In fact if BR is contained in Ω, where
Ω = BR2 is another circle and f(x) = χBR

(x) + c, with c = −R2π
|Ω| = −R2

R2
2
, then

the choice D = BR gives
∫
Ω

f(x)χµ(x)dx

|χµ|BV
=

R

2
(1− R2π

|Ω| ) <
R

2
. (11)

Taking D = BR gives only a lower bound on ‖f‖∗. That this is indeed the
optimal choice can be proven by definition (5), where gi(x) = xiw(|x|) with
w(r) = 1

2 (1 − R2

R2
2
) for 0 ≤ r ≤ R and w(r) = 1

2 (R2

r2 − R2

R2
2
) for R ≤ r ≤ R2

(compare [21]). Now ‖g‖L∞ gives an upper bound on ‖f‖∗, which coincides
with the lower bound, hence (11) holds.

Note however that the maximizing set D is not always identical with C. If
C is a square, then according to [30] the optimal set D is a rounded square.
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r

Figure 1: double-circle: two identical circles with radius = R and distance
between centers = d.

case 1 case 2 case 3

Figure 2: three possible solutions to the double-circle example. case 1 (left),
case 2 (middle), case 3 (right)

Another example is the case of two circles. Let C be the union of two circles
with radius r, whose centers are separated by a distance d > 2r, as shown in
Figure 1. If d is small enough then D is not identical with C. In fact taking D
as the convex hull of C, as in Figure 2 case 1 (left) gives a different value than
taking D as one of the circles (Figure 2 case 3) or taking D = C (case 2):

• case 1: |C∩D|
|∂D| =

2πr2

2πr + 2d
;

• case 2, 3: |C∩D|
|∂D| =

r

2
.

We assume that the optimal D is amongst these three cases. If this holds, then
the G-norm depends on the distance: If the centers of the circle are less than πr
apart, then case 1 is a better choice, whereas for d ≥ πr case 2 or case 3 are. In
this sense, the G-norm treats the two circles when close enough as one object,
while they are considered separated objects for d ≥ πr.

The last example also shows that the solution to the optimization problem
(6) is not unique, since both case 2 and case 3 give the same value.

2.2 Subgradient

In this section we relate the solution to the optimization problem (6) to the set
of subgradients of the functional mapping f → ‖f‖∗ for f ∈ L2. Before we
prove this we have to consider the set of plain images, which was defined in [15].
We use a slightly generalized definition:
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Definition 2.5. Let g ∈ BV (Ω). We say that g is a plain image if there exists
an f ∈ L2 such that

∫

Ω

f(x)g(x)dx = |g|BV , with ‖f‖∗ = 1. (12)

We denote by PI the set of plain images: PI := { g ∈ BV | g is a plain image}.
This is just another way of saying that g is a maximizer in (6) for some

function f . In [15] plain images are defined as those for which an f ∈ BV exists
such that (12) holds. There it is proven that these plain images equal the set of
cartoon-parts u in an ROF-decomposition [27] f = u+v with f ∈ BV . Following
this proof it is straightforward to see that g is a plain image in the sense of
Definition 2.5 if and only if g is the cartoon part u of a ROF-decomposition of
some function f ∈ L2.

Now we can relate the optimization problem (7) to the subgradient:

Theorem 2.6. Let F : L2(Ω) → R be the convex functional

F : f → ‖f‖∗
Let f 6= 0 and denote by ∂F (f) the subgradient of F at f . Then the set of
solutions to the optimization problem

u = argmax|v|BV =1

∫

Ω

f(x)v(x)dx. (13)

equals the set of plain images in the subgradient:

(13) ⇔ u ∈ ∂F (f) ∩ PI.

Proof. According to the definition, a function p is in the subgradient set [8, 33]
∂F (f) if and only if

‖g‖∗ ≥ ‖f‖∗+ < p, g − f > ∀g ∈ L2

Since g, f ∈ L2 we can identify a linear functional < p, . > with some function
p ∈ L2. Choosing g = λf for λ > 0 gives

(λ− 1)
(
‖f‖∗ −

∫

Ω

p(x)f(x)dx

)
≥ 0 ∀λ ≥ 0

hence a necessary condition for p to be in the subgradient set is
∫

Ω

p(x)f(x)dx = ‖f‖∗. (14)

Moreover, p ∈ ∂F (f) if and only if (14) hold and
∫

Ω

p(x)g(x)dx ≤ ‖g‖∗ ∀g ∈ L2 (15)

8



If u satisfies (13), then (14) holds for p = u and (15) holds by (8). If we take
f

‖f‖∗ in (14) if follows that u is a plain image. Conversely, let p ∈ ∂F (f) be
a plain image. We can identify p with an L2-function, which satisfies (14) and
(15). From (15) and (12) it follows that |p|BV ≤ 1. From (14) and (8) we get
|p|BV ≥ 1, thus |p|BV = 1. Since ‖f‖∗ is the maximum value in (13) and since
(14) holds, p must be a maximizer in (13).

Remark 2.7. The optimization problem (6) can also be interpreted as a segmen-
tation problem. Let us assume that f has zero mean (4). By Strang’s formula
the optimization problem is equivalent to an optimization over characteristic
functions χD, where D = {x|χD(x) > 0}

‖f‖∗ = max
χD∈BV

∫
Ω

f(x)χDdx∫ |∇χD|dx
= max

D

∫
D

f(x)dx

|∂D| (16)

=
1
2

| ∫
D

f(x)dx− ∫
Ω\D f(x)dx|

|∂D| .

We can think of the extremal set D in (6) as that one which separates the
domain Ω into two sets D, Ω \D, such that the difference between the integrals
of f over these two sets is large, while the perimeter of the interface ∂D is as
small as possible. From the basic inequality (8)

∫
f(x)χD(x)dx ≥ −‖f‖∗|∂D|

we can also deduce that the optimal D in (16) is a solution to the segmentation
problem, which has a more familiar form:

min
D

1
2

(∫

D

f(x)dx−
∫

Ω\D
f(x)dx

)
+ λ|∂D|,

where λ is chosen as λ = ‖f‖∗.
Remark 2.8. Let us remark that the G-norm is closely related to prescribed
mean curvature equations of the form:

∇· ∇u√
|∇u|2 + 1

= f(x) (17)

Such an equation comes up as Euler-Lagrange equation for an area functional
of the graph of u:

J(u) =
∫

Ω

√
1 + |∇u(x)|2dx +

∫

Ω

f(x)u(x). (18)

Equation (17) does not always have a solution, in fact a necessary condition for
solvability of (17) is ‖f‖∗ < 1. This can be seen from the inf - definition of
the G-norm (5). Considering the Dirichlet problem for equation (17), sufficient
conditions for solvability can be derived. Besides smoothness, these involve
on the one hand a relation of the curvature of the boundary of Ω and the
boundary values of f . Interestingly, a second ingredient is the condition (in our
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notation) ‖f‖∗ < 1. In this case the prescribed mean curvature equation allows
a differentiable solution. For the precise theorem see [13, Thm. 16.10].

It is unknown to the authors if a similar result holds for the corresponding
Neumann-problem with ∂

∂nf(x) = 0 on the boundary. It would be interesting
if in this case the condition on the boundary of ∂Ω is needed, or if ‖f‖∗ < 1
together with sufficiently smoothness on f suffices for a differentiable solution.

3 Duality Denoising

The G-norm is a central ingredient in characterizing minimizers of functionals
with BV -regularization. Let us give some examples. At first we state the well-
known optimality conditions of the ROF-functional (1). This functional has a
unique minimizer in BV . The ROF-image decomposition splits a given image
f into f = u + v, where u a minimizer of (1) is interpreted as the cartoon-part
of the image, whereas the residual v contains noise and texture. The optimality
conditions for JROF (u) are derived in [21]:

Theorem 3.1. If ‖f‖∗ ≤ 1
2λ , then the minimizer of JROF (u) is u = 0.

If ‖f‖∗ > 1
2λ , then the minimizer of JROF (u) u is nonzero and the ROF-

decomposition f = u + v is characterized by the conditions

‖v‖∗ =
1
2λ

(19)
∫

Ω

u(x)v(x)dx =
1
2λ
|u|BV (20)

Proof. See [21]

Note that since u 6= 0, by definition of ‖v‖∗ (20) is equivalent to

u = argmaxũ∈BV,ũ 6=0

∫
Ω

v(x)ũ(x)dx

|ũ|BV
. (21)

This means, that u can be recovered from the noise part v, which is supposed
to contain mostly noise. This observation is a main point for our denoising
algorithm.

The optimality condition has been extended to other functionals as well. An
alternative to the ROF-method is the BV −L1 decomposition, where f = u+v,
and u is a minimizer of

JL1(u) = λ‖u− f‖L1 + |u|BV . (22)

Note that in this case due to lack of strict convexity uniqueness of a minimizer
does not hold. The optimality conditions for this functional only involve the
signum-function sign(v): (see [25]).
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Theorem 3.2. Let u 6= 0 be a minimizer of (22), and suppose {x|u(x) = f(x)}
has measure zero and ‖sign(u− f)‖∗ > λ, then u satisfies

u = argmaxũ∈BV

∫
Ω

sign(v(x))ũ(x)dx

|ũ|BV
. (23)

If {x |u(x) = f(x)} has positive measure the optimality condition has to be
relaxed.

Instead of changing the norm in the fidelity term u− f , a different approach
was taken in [11], using an anisotropic BV -seminorm. For this model the BV -
norm |u|BV =

∫
Ω
|∇u|dx is replaced by:

|u|BVφ
:=

∫

Ω

φ(∇u)dx,

with a positively 1-convex function φ. Similar optimality conditions for the
ROF-model have been deduced, where the G-norm ‖.‖∗ is replaced by

‖f‖φ,∗ := sup
u∈BVφ

∫
Ω

f(x)u(x)dx

|u|BVφ

The optimality conditions for this model remain the same as for the ROF-model,
if in Theorem 3.1 the BV -norm |.|BV and the G-norm ‖.‖∗ are replaced by their
anisotropic variants, |.|BVφ

and ‖f‖φ,∗, respectively. In particular a nonzero
solution satisfies

u = argmaxũ∈BVφ

∫
Ω

v(x)ũ(x)dx

|ũ|BVφ

. (24)

3.1 Denoising

The optimality conditions in Theorem 3.1, (23), (24) have one common property:
The u-component of a decomposition can be recovered from the v-component
without knowledge of f or λ. This is somehow surprising, since the v-component
is supposed to contain only noise and texture and almost no signal. In Section 5
we give an example for the recovery of a signal from a v-component, which
visually seems to contain almost nothing but noise. Of course, a maximizer in
(21) is not unique since the level sets of a maximal u are maximizers as well (cf.
Corollary 2.4). But even though we might not be able to find all maximizers
we can at least expect to recover some level set of the original image u. The
numerical computations in Figure 12 also show that the computed level set
corresponds to main edges in the picture.

Note, however, that in theory this works only if we a-priori know that v
comes from an ROF- or equivalent decomposition. But since the optimization
problem (6) can be performed for any f , we can use this for denoising of any
image, simply by computing the maximizer u in (7).

The usefulness of the algorithm is, however, restricted by the condition, that
the result u should contain objects which are related to the image. Moreover a
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maximizer of (6) is not unique, since u can be multiplied by any nonzero scalar,
but again Corollary 2.4 indicates that we might be able to recover the main
edges of the image.

In this sense our method is not competing with traditional methods for
image denoising, where only little noise and much structure is present. If (6) is
applied to a standard image with very little noise, the result of the optimization
problem is a characteristic function which contains only basic information on
the image. This function cannot always be related to edges of features of the
image.

Instead, the results for the duality denoising are best for images which con-
tain almost no structure but only noise, and where the information behind the
noise is a very simple image (e.g a characteristic function). Roughly speaking
we think our method should be applied to a noise model of the form

f = simple image + large noise,

In Section 5 we give some numerical example, where the algorithm works well.
The simple images in these cases are characteristic functions, which are hidden
in noise, which can be larger then the information itself.

4 Numerical Computation

In this section we present some numerical algorithms to compute approximate
maximizers of the optimization problem (6), by solving the Euler-Lagrange
equations. First of all consider the functional for which an extremum is to
be found (we use

∫
Ω
|∇u|dx as a notation for |u|BV ):

E(u) :=

∫
Ω

f(x)u(x)dx∫
Ω
|∇u(x)|dx

(25)

A formal differentiation with respect to u gives the Gateaux-derivative

E′(u) =
1

|u|BV

(
f(x) +

∫
Ω

f(x)u(x)∫
Ω
|∇u(x)|dx

∇.
∇u(x)
|∇u(x)|

)
.

Here ∇. ∇u(x)
|∇u(x)| is the usual useful but sloppy notation for the subgradient of

the BV -seminorm. We want to find the maximum of E(u), hence we may
derive an evolution equation, following the steepest ascent (ut denoting the
time-derivative):

ut =
1

|u|BV

(
f(x) + E(u)∇.

∇u(x)
|∇u(x)|

)

The factor 1
|u|BV

is a constant in the space variable x and might be set to 1 by
an appropriate scaling.
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4.1 Level Sets

The preceding algorithm is one straightforward possibility. It does not take into
account any knowledge of the structure of the solution. However, by Strang’s
formula (Corollary 2.4) we know that a solution to the optimization problem (6)
is a characteristic function. Using this we can apply the well-known formalism of
the level set method [26] to calculate the interface of this characteristic function.
As usual in the level set method, we define the interface of the characteristic
function as the zero-level set of an additional function φ. For a given subdomain
D ⊂ Ω, we define the level set function φ(x) on Ω as

φ(x) =





< 0 x ∈ D,
= 0 x ∈ ∂D,
> 0 x ∈ Dc.

(26)

Using the one-dimensional Heaviside function H and delta function δ, which are
defined as

H(φ) =
{

0 if φ ≤ 0
1 if φ > 0 , δ(φ) = H ′(φ), (27)

the volume integral of function f over D can be written as the integral over the
whole domain Ω

∫

D

f(x) dx =
∫

Ω

f(x)(1−H(φ(x))) dx, (28)

and the perimeter can be obtained as

per(∂D) = |∂D| =
∫

Ω

δ(φ(x))|∇φ(x)| dx. (29)

Thus, the optimization problem with energy (25) can be written as an optimiza-
tion problem over level set functions:

‖f‖∗ = sup
φ

Ẽ(φ)

Ẽ(φ) :=

∫

Ω

f(x)(1−H(φ)) dxdy
∫
Ω

δ(φ)|∇φ| dxdy
. (30)

The gradient of Ẽ(φ) can be found from E by the identity Ẽ(φ) = E(H(−φ)),
thus:

Ẽ′(φ) = −E′(H(−φ))|∇φ|
By rescaling we get the following evolution equation for the level set function φ

φt = |∇φ|
[
Ẽ(φ(t))

(
∇ · ∇φ

|∇φ|
)
− f

]
. (31)

The steady state solution of (31) will be at least a local extremum of (30).
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For the level set method we do not assume that the zero level set of φ is
inside Ω. In fact, from (10) it follows that we have to look for the supremum
over all characteristic functions and not only those which are supported in Ω.
It is important to note that by definition of the BV -norm the perimeter of
a characteristic set is the length of ∂D ∩ Ω, so the boundary of Ω does not
contribute to the perimeter. Therefore one should not use Dirichlet boundary
condition on φ, but homogeneous Neumann boundary conditions.

Another point in the level set algorithm is that the normalization condition
(4) is not really needed. The question, whether to normalize f or not depends
on whether we want to compute the G-norm on a bounded (5) or on the whole
domain (3). If f is supported in Ω, then both cases work fine. However, if this is
not the case and f is not normalized, then the level sets of φ can disappear over
the boundary of ∂Ω, because nothing prevents φ from having its zero contour
outside Ω. This does not happen if f is normalized, and for images this is the
correct way to proceed.

For the level set algorithm it is crucial to have a good initial guess, because
the algorithm may get stuck in a local extremum. For example if f is the
characteristic function of two separated circles, a local extremum is the case
where u is taken as the characteristic function of one of these circle. If the
initial guess is not too far away from this extremum it will converge towards it,
although the global minimum might be different.

4.2 Initial guess

We suggest a heuristic method to find a good initial guess. Again this is based on
Strang’s formula. Suppose we have a reasonably good candidate for a maximum
of E(u). Then Lemma 2.3 tells us, that by looking at the upper level sets of u,
χµ(x) := H(u − µ), we can find a function, which has a value E(χµ) as good
as E(u) or even better. Hence, it seems reasonable to choose as an initial guess
for the level set algorithm the interface of χµ, where χµ is that upper level
set, which has maximum value E(χµ). This yields the following level set scan
algorithm:
Level set scan:

1. Given u, take a finite number of values µi, i = 1 . . . k, µi ∈ [min(u), max(u)]

2. For i = 1 to k
Set χµi = H(u− µi) (upper level set at u = µi)
Compute E(χµi)

end

3. Set χµ := argmaxi=1...k(|E(χµi)|)
Note that we compute the perimeter numerically, so in order to obtain reliable
results, we reject characteristic functions, which are too small or too large. We
only maximize over those functions χµi whose area is within 95% − 5% of the
total area of the computational domain Ω and whose perimeter is larger than a
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small threshold. In this way we avoid level-sets which contain only few pixels.
The reason for this is that a numerical error in the perimeter leads to a large
relative numerical error in E (and thus unreliable result) if the perimeter is
small.

For our numerical computations we observe that the algorithm is rather
robust in the selection of the number of levels µi . We used 100 values to test
for.

What remains to discuss is how to find – in a simple way – an input function
u for the level set scan. We use the solution to the Poisson equation

∆u = f, (32)

with zero Neumann boundary conditions. (Note that we assume that f has zero
mean, so a solution exists). The reason for this choice comes from the analogy to
the corresponding optimization problem for the H1- norm. In fact, the solution
to (32) is proportional to an extremum of the functional u →

R
Ω f(x)u(x)dx

(
R
Ω |∇u|2dx)1/2 .

Summing up, the procedure is of the following kind:

1. Solve the Poisson equation (32) for u

2. Perform a level set scan on the solution u

3. The output of the level set scan is an initial guess to the evolution equation
(31).

4.3 Fixed point algorithm

The level set approach gives a quite precise description of the interface we are
looking for. It performs well, if f is a simple function itself, such as a char-
acteristic function. However, the problem of local minima is inherent to this
algorithm. We therefore suggest a second method, which does not rely on the
level set evolution, and which seems to work better for complicated functions
f , such as images. The main idea is to solve the equations for the steady
state of the optimization problem: Replacing the BV -norm by its well-known
ε-regularization the steady state solution satisfies

∇.
∇u(x)√

ε2 + |∇u(x)|2 =
1
λ

f(x)

λ =

∫
Ω

f(x)u(x)dx∫ |∇u(x)|dx

Solving this equation iteratively gives the following sequence un, λn, defined by

λn−1 =

∫
Ω

f(x)un−1(x)dx∫ |∇un−1(x)|dx
(33)

∇.
∇un(x)√

ε2 + |∇un−1(x)|2 =
1

λn−1
f(x) (34)
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As initial guess we use u0 the solution to the Poisson equation (32). After
a number of iterations, we can perform a level set scan on un to find a final
solution χµ from the upper-level sets of un.

Of course, this algorithm has many variants. For instance λn can be kept
fixed for a couple of u-iterations, which amounts to solving the nonlinear elliptic
equation in (33) by a iterative fixed-point method. Note that in our case the
choice of ε in (34) does not play a role, since by an appropriate scaling u → εũ,
ε can be set to 1. The values of u(x) are not important, what is important are
its level sets. So the scaling does not affect the outcome of the algorithm.

There is a crude variant of this algorithm, where λn is not computed by
the ratio (34), but is chosen as geometrically increasing sequence. This has the
effect that if λn is larger than ‖f‖∗ a solution un to Equation (33) does not
exist, but will diverge to infinity. However, although the values of un diverge,
its level sets seem to be stable over a long period of iteration. So performing
such an iteration together with a stopping criterium and a level set scan still
gives reasonable results.

5 Numerical Implementation and Results

In this section we discuss the numerical implementation of the algorithms and
present some result. Let us focus on the level set approach: the evolution
Equation (31) can be rewritten as

φt + f |∇φ| = Ẽ(φ(t))κ|∇φ|, (35)

where κ denotes the curvature of the zero level set of φ. In the level set frame-
work (cf. [24]), the left hand side of (35) is a motion in normal direction with
time-independent speed f(x, y), which is hyperbolic, and the right hand side is
a curvature-dependent term, which is parabolic.

The hyperbolic term can be viewed as a Hamilton-Jacobi part. Let H(φx, φy) =

f
√

φ2
x + φ2

y. We can approximate this by the Lax-Friedrichs scheme [7]

Ĥ = H

(
φ+

x + φ−x
2

,
φ+

y + φ−y
2

)
− αx

(
φ+

x − φ−x
2

)
− αy

(
φ+

y − φ−y
2

)
, (36)

where αx and αy can be simply chosen as αx = αy = maxx,y |f(x, y)|, and
φ±x , φ±y can be approximated by first-order forward/backward difference

(φ±x )i,j ≈ (D±
x φ)i,j = ±(φi±1,j − φi,j),

(φ±y )i,j ≈ (D±
y φ)i,j = ±(φi,j±1 − φi,j),

or by higher order ENO (cf. [28, 29]) or WENO schemes (cf. [16, 17, 20]).
The parabolic term Ẽ(φ(t))κ|∇φ| can be discretized by central differencing
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schemes

κ = ∇ · ∇φ

|∇φ| ≈ D−
(

D+φ

|D+φ|
)

≈ D−
x


 D+

x φ√
(D+

x φ)2 + (D+
y φ)2 + δ2


 + D−

y


 D+

y φ√
(D+

x φ)2 + (D+
y φ)2 + δ2


 ,

|∇φ| ≈
√

(D0
xφ)2 + (D0

yφ)2 ≈
√(

φ+
x + φ−x

2

)2

+
(

φ+
y + φ−y

2

)2

.

A tiny value δ2 (e.g. ≈ 10−6) is added in computing κ to avoid the singularity
occurring at |∇φ| = 0. Note that in the last approximation a higher order
scheme for φ±x and φ±y (from the computing of numerical Hamiltonian term),
gives a more accurate |∇φ|.

Once |∇φ| is obtained, we can get Ẽ(φ) by numerical integration (e.g., the
trapezoidal scheme)

Ẽ(φ) ≈

∫

Ω

f(x)(1−Hε(φ)) dx
∫
Ω

δε(φ)|∇φ| dx
.

After discretizing the spatial derivative terms, either first order forward Euler
or higher order Runge-Kutta (cf. [28]) time discretization can be used to advance
the time evolution. Since (35) contains both hyperbolic Hamilton-Jacobi term
and parabolic term, the combined CFL condition is given by (cf. [24])

∆tn

(
2maxx,y |f(x, y)|

h
+

4 maxx,y Ẽ(φ(tn))
h2

)
< 1, (37)

where h = min(∆x, ∆y) and tn+1 = tn + ∆tn.
In our numerical experiments we use first order forward Euler scheme for

time and first order D± for spatial difference. The results show that this is good
enough for our problems. One important thing to be added to the numerical
part is the reinitialization of level set function φ. To get a good approximation
of the perimeter, it is recommended to choose φ as the signed distance function
to its 0-isocontour. Since (35) does not guarantee that φ maintains this property
we add a reinitialization step after each φn. As in [31], we use the reinitialization
equation {

φτ + S(φn)(|∇φ| − 1) = 0,
φ(τ = 0) = φn,

(38)

where S(φ) is a sign function and is numerically smeared out as

S(φn) =
φn

√
(φn)2 + (∆x)2

. (39)
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A high order scheme should be used for the reinitialization part. In practice,
we use WENO + TVD Runge-Kutta scheme and only update (38) one step for
every φn.

For level-set methods special care has to be taken for the evaluation of the
Heaviside function H(φ) and the delta function δ(φ) in (30). A general way to
overcome this problem in numerical implementation is smearing H(φ) (cf. [24]).
For example, we define the smeared-out Heaviside function as

Hε(φ) =





0 φ < −ε,
1
2 + φ

2ε + 1
2π sin

(
πφ
ε

)
−ε ≤ φ ≤ ε,

1 φ > ε,

(40)

where ε is a tunable parameter that determines the size of the bandwidth of
numerical smearing (a typical good choice is ε = 1.5∆x). Then the correspond-
ing derivative is the first-order accurate smeared-out approximation of delta
function

δε(φ) =





0 φ < −ε,
1
2ε + 1

2ε cos
(

πφ
ε

)
−ε ≤ φ ≤ ε,

0 φ > ε,

(41)

Another C∞ regularization of H and δ was introduced by Chan and Vese in [6]:

H2,ε(φ) =
1
2

(
1 +

2
π

tan−1

(
φ

ε

))
, δ2,ε(φ) =

1
π

ε

φ2 + ε2
. (42)

The difference of δ2,ε to δε is that its support is global, not only around φ = 0.
Because of its simplicity we use (40) with ε = 1.5∆x for our numerical

computations. For a more sophisticated approach to the approximation of Dirac-
function we refer to the recent work [10].

The numerics of the fixed point algorithm in Subsection 4.3 is fairly simple.
The corresponding equation (34) can be solved by standard finite differences
or finite elements on a rectangular grid. The computation of |∇un| and the
BV -norm can be done as for the ROF-method [24]. The fixed point iteration
is stopped as soon as the value of the functional to be maximized λn = E(un)
becomes stationary, i.e. the iteration is stopped when the criteria

| |λn − λn−1|
λ0

| ≤ h (43)

with a small h holds. After that a level set scan gives the final result.

5.1 Numerical results

In this part we present some results we obtained with the algorithm described
above.

Example 1: we start from a simple example. Here f is the normalized
characteristic function f = χBR − c, of a circle as mentioned above in (11). The
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domain Ω is a 128× 128 pixel square (in the examples which follow, we use the
same domain if not specified otherwise), (x0, y0) is the center of the domain and
we choose the radius R = 20. This leads to a normalization constant c ∼ −0.08.
The theoretical G−norm from (11) is ‖f‖∗ = 9.2. (Although (11) was obtained
for the case Ω being a circle we believe that it also holds in this case). We
choose φ0 by the level set scanning method as stated in Subsection 4.2 and use
the level set method (31) to compute the final result shown in Figure 3. We can
see that the initial guess φ0 is almost same as the optimal solution φ as we need.
The computed G-norm is 9.12, with a small numerical error which we believe is
due to the grid size. To show this, in Figure 4 we use two finer grids to compute
the G-norm of this circle and get ‖f‖∗ = 9.17 for h = 0.5 and ‖f‖∗ = 9.20 for
h = 0.25. The latter one matches the theoretical result very well.
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(c): φ vs. f
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(d): G−norm vs. iteration

Figure 3: Example 1. (a): 0-isocontour of f , radius R = 20, inner=0.92, outer=-
0.08; (b): contour of φ0 vs. f ; (c) contour of φ vs. f ; (d) Ẽ(φn) vs. n.

Example 2: we take f as a normalized characteristic function of a square
with width L = 40 and use the level set method. The result is shown in Figure
5. Again we can see that the initial guess φ0 is very close to the final answer
φ. We state here that although we used about 2600 iterations to get the steady
state (where |Ẽ(φn)− Ẽ(φn−1)| < 10−6), we can also stop at few hundred steps
since the change of Ẽ(φn) is only about 0.1, which is very small compared to
the grid size ∆x = ∆y = 1. This conclusion also applies to Example 1.
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Figure 4: Example 1. circle from Figure 3, finer grids. G-norm Ẽ(φn) vs. n.
Left: h = 0.5 (256 × 256 grid), ‖f‖∗ = 9.17; right: h = 0.25 (512 × 512 grid),
‖f‖∗ = 9.20.

Example 3: in this example we consider a double-circle experiment, where
f is a normalized characteristic function of two circles whose radii are both r
and the distance between two centers is d, as shown in Figure 1.

We take the radius of the circles r = 18, after normalization we find that
the solution to (6) is the convex hull of the circles (case 1 in Figure 2) if d is
less than about 50, and case 2 and case 3 in Figure 2 are the maximizers if the
distance d is larger than 50. We take two values of d. Figure 6 shows the result
for d1 = 44 < 50, the optimal φ is then the one stated in case 1. Figure 7 shows
the result for d = 64 > 50, the optimal φ is the one stated in case 2.

Example 4: in this example we try to compute the G−norm on ”real”
images. Given f as gray level image data, we normalize it to mean 0 and
perform two tests. The results are shown in Figure 8 and 9 for a shape image
(Example 4.1) and a fingerprint image (Example 4.2). In Figure 10 we show
the corresponding level sets for the fixed-point algorithm. It can be seen, that
the results for the finger image coincide in both cases. However, for the shape
image the fixed-point iteration gives a slightly different result. However, the
corresponding G-norm is close to the one from the level set approach, with
about 1% difference. In our opinion the reason for the different result comes
from the fact that the level set method got stuck in a local minimum.

Denoising Example 5: We now turn to apply our algorithms to the denois-
ing case. In Figure 11 we show the data for this case. This image was computed
as the v-component of an ROF-decomposition for the well-known Lenna image
with Gaussian random noise. All the high-level information was extracted and
the remaining image contains mostly noise and texture. However, note that by
(21) in principle u can be extracted from v without knowledge of the original
image or the parameter λ. We applied the fixed-point algorithm to the image
in Figure 11 and found the result shown in Figure 12. This shows the computed
characteristic function (as a black and white image), which is a maximizer of
(6) for f = v. This is an astonishing result, since in the data Figure 11 hardly
any information can be seen, yet in the computed result in Figure 12 the Lenna-
image can be clearly perceived. In this case our algorithm clearly beats human

20



(a): f

20 40 60 80 100 120

20

40

60

80

100

120

(b): φ0 vs. f

−100

0

10

10

20

20

20

30

30

30

40

40

40

4050

50

50

50
20 40 60 80 100 120

20

40

60

80

100

120

−1
0

0

0

10

10

20

20

20

30

30

30

40

40

404050

50

50

5060

60

60

60

(c): φ vs. f
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Figure 5: Example 2. (a): 0-isocontour of f , width L = 40, inner=0.902,
outer=-0.098; (b): contour of φ0 vs. f ; (c) contour of φ vs. f ; (d) Ẽ(φn) vs. n

perception.
We also tried to process Figure 11 with the level set approach, but the

results were rather poor for two reasons: 1. Using a bad initial guess the level
set iteration seems to get stuck in local minima. 2. Computing an initial guess
by solving the Poisson equation and performing a level set scan only gives a very
ragged result, with lots of small regions which could not be used as an initial
guess because of non-smoothness. Probably a more advanced pre-processing
can give a suitable initial guess, but we leave this topic to future work.

Let us mention, that a simpler variant of the fixed-point algorithm also
gives reasonable results for this case. With the fixed-point algorithm the main
edges can already be seen after one iteration. Indeed as the first iteration is
a Poisson-equation solver ∆−1f (with data f) even this simple linear method
reveals some structures within the noisy image. The resulting image is shown in
Figure 13. However, it should be noted that there is still some noise is present
after applying the Poisson solver. Moreover the differences in the gray levels are
very small and can only be seen after scaling the image to e.g 256 gray levels.
This indicates that the important information on the image is not contained in
the gray values of the filtered image ∆−1f but in its level sets. The conclusion
is that the Poisson solver together with a level-set scan is an simple method
which might be good enough in some cases to find an initial guess. However,
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(c): φ vs. f
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Figure 6: Example 3.1 double circle experiment. d = 44, r = 18.

the results are not very regular due to noise (and hence cannot always be used
as initial guess for a level-set iteration for instance) and since the gray-levels
are very close, a level-set scan might give a wrong result. So for a more reliable
result it is important to perform more iterations.

Furthermore we should report, that after many iterations of the fixed-point
method the images deteriorates again as it becomes more noisy. In our opinion
numerical errors are to blame for this, and it might be related to the ill-posedness
of the problem. The effect of this so-called semiconvergence [9] is well-known
for ill-posed problems, and can be treated simply by stopping the iteration
after a fixed time, according to some stopping criteria. Although this is an
important issue and there exists quite an extensive theory on stopping criteria
and parameter choice rules (see e.g. [9]), for the sake of brevity we do not
address the ill-posedness in this work. As a rule of thumb we stop the iteration
after the stopping criteria (43) with h = 10−3 is fulfilled or at most at 10 to 20
iterations.

The results of applying our algorithm to Figure 11 are that good, because
we know in advance that the input to the algorithm is the v-component of the
ROF-decomposition. If the input is any function, the output u is not always
related to features in the image. However, we still can apply the method to
noisy images, and use it as a denoising method. The denoising method works
well, if the exact image is simple - e.g. the characteristic function of a simple
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Figure 7: Example 3.2 double circle experiment. d = 64, r = 18.
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Figure 8: Example 4.1 normalized shape image. mean 0.
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(c): φ vs. f
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Figure 9: Example 4.2 normalized finger image. mean 0.
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Figure 10: Example 4.1 and 4.2 using fixed-point iteration
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geometric structure, and the noisy image contains a high level of Gaussian noise.
This is done in the Examples 6–9, Figures 14–17. Here the exact image was a
characteristic function of a circle or a square, and the data were highly noisy.
In all these cases the left picture contains the noisy data, the center picture
shows the result of the fixed-point algorithm, and the right hand side the exact
solution.

Denoising Examples 6–7: In Example 6 we used a characteristic function
of a circle and added Gaussian noise. The L2-norm of the noise is about 700%
the norm of the exact data, so hardly anything can be seen in the data Figure 14
(left). Nevertheless our method still gives a reasonable approximation or the
circle. Example 7 is the same but with the characteristic function of a square as
an exact image. Again, the computed result is almost the exact image, except
that the corners are rounded. But the result is to be expected, since the rounded
square is the extremal set.

Denoising Examples 8–9: Examples 8 and 9 are inspired by Equation (23).
Note that for the L1-BV decomposition u can be found from the sign-function
of sign(v), which contains even less information than v. Hence, it should be pos-
sible to extract information, for noisy binary (or black and white) images. To
create the data for Example 8 we used the same exact solution (a characteristic
function of a circle) as in Example 6, then added a high amount of Gaussian
noise, and then we applied the sign-function to obtain a noisy binary black and
white image, seen in Figure 16 on the left. Note that these data have only two
gray levels, but still Figure 16 in the center shows that our method can extract
the exact image quite precisely. In Example 9 the same procedure was applied
to the square example similar to Example 7.

Let us note that similar results can be found by using the anisotropic version
of the BV -norm (24), as explained in Section 3. For instance, using the norm
|u| =

∫ |ux| + |uy|dx gives results, where the corners of rectangles lined up
with the coordinate axes are not rounded. Hence this method is favorable for
rectangular objects with no rounded boundaries.

Concerning the question of complexity of our algorithms it can be said, that
each iteration of the fixed-point algorithm, level-set iteration and the level-set
scan can be done quite fast all in the order of O(n), where n is the number of
pixels. In our test examples we always used images up to size 512× 512 pixels,
and in these cases about 20 fixed-point iterations were enough.

Finally, let us mention that the idea of reconstructing the cartoon part u from
the noise part v = f − u is possible for other variational image decomposition
methods as well. For linear filter method such as Tikhonov regularization with
an H1-norm this can be done easily by solving a Poisson equation – as can be
seen from the optimality conditions. For the ROF-method we are faced with
the nonlinear optimization problem (21) as discussed in this paper. A similar
reconstruction can also be done for the Meyer-decomposition. In this case the
optimality conditions [18] indicate that a problem like (21) has to be solved
twice with different functions f . It is not clear if such a reconstruction can be
performed for a method like the Bregman iteration [23]. In this case the cartoon
part of the k-th iterate uk is not directly coupled to the error f − uk by some
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Figure 11: Example 5: Data

Figure 12: Example 5: Result

Figure 13: Example 5: Result after one iteration
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Figure 14: Example 6: Input-data, Result, Exact Solution

Figure 15: Example 7: Input-data, Result, Exact Solution

Figure 16: Example 8: Input-data, Result, Exact Solution
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Figure 17: Example 9: Input-data, Result, Exact Solution

optimality condition, but depends also on the previous iterates.

6 Conclusion

We presented two algorithms for computing the G-norm. The methods are
based on two observations: The dual representation (6) is the basis for our
computation, while Strang’s formula Corollary 2.4 is somehow used as stabi-
lization, since we can restrict the optimization problem to the much smaller set
of characteristic functions. Our algorithms can be used as a form of denoising,
where almost no visual information is contained in the data. The result show
this method can extract features which are hardly visible to the human eye.
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