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Abstract

We propose a very efficient numerical algorithm for minimizing certain curvature de-
pendent functionals that appear in a variety of well known variational models of image
processing and computer vision. It has many applications, such as image inpainting,
image segmentation, and surface fairing in computer graphics. The proposed algorithm
is generalized to a level set algorithm that has better resolution while keeping the same
formal complexity. As an example, we apply our technique to a shape reconstruction
problem based on Euler’s elastica.

1 Introduction
Many important models of image processing and computer vision involve curvature de-
pendent functionals. In segmentation, the Kass, Witkin, Terzopoulos method [17] of
snakes originally calls for minimizing an active contour energy that involves integrating
curvature squared along the curve. In segmentation with depth, the 2.1D Sketch model of
Nitzberg, Mumford, and Shiota [24] involves the integral of a function of the curvature
along the free discontinuity set. In the image inpainting application of Bertalmio et. al.
[4], Chan et. al. [7] proposed generating the missing image information in the inpainting
domain by minimizing Euler’s elastica energy along image isophotes; see also [1, 3, 5]
on image inpainting and [6, 12] for other curvature dependent functional approaches to
this problem. Finally, in computer graphics, curvature dependent functionals have been
proposed for surface denoising and smoothing [9, 28, 29].
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2 Background
One of the most successful techniques for minimizing variational models in image pro-
cessing that involve unknown contours has been the level set method of Osher and
Sethian [26]. Once the energies in question are written in terms of a level set repre-
sentation for the unknown curves, optimality conditions (Euler-Lagrange equations) can
be obtained in terms of the level set function, and a gradient descent procedure can be
carried out. This involves solving non-linear, degenerate, fourth order parabolic PDE
and can be computationally very expensive. Another popular approach is generally re-
ferred to as the phase field method, in which the unknown curve will be computed and
identified as the smooth transition region between two order parameter. Typically in this
formulation, a stiff potential appears as part of the energy functional. The stiffness of the
system and the need to resolve the narrow transition layer result in a stringent stability
condition for the corresponding numerical algorithms.

In this paper we propose an efficient algorithm based on threshold dynamics (also
known as diffusion generated motion) that seems to bypass the computational bottle-
necks of the aforementioned approaches. The idea is to alternate the solution of a linear
parabolic PDE, such as the heat equation, and thresholding to generate geometric motion
of interfaces. The original idea is due to Merriman, Bence, and Osher [20, 21, 22], who
proposed a technique for approximating the motion by mean curvature of an interface
by alternating the solution of the heat equation (i.e. convolution by the Gaussian kernel)
and thresholding. Convergence was proved by Evans [14], and by Barles and Georgelin
[2]. There have been various generalizations of their method [19, 30, 31, 32], including
to other curvature dependent velocities, and a highly accurate version was developed by
Ruuth in [27]. These offer an alternative to level set based techniques that require the
solution of nonlinear second order equations.

Motivated by the Merriman, Bence, Osher scheme, and also partially by [15, 33],
recently Esedoglu and Tsai proposed a technique for minimizing the piecewise con-
stant versions of the Mumford-Shah segmentation functional that were introduced by
Chan and Vese [8, 35]. This new algorithm involves alternating the solution of a linear
parabolic PDE and simple thresholding. It leads to a very efficient minimization of Chan
and Vese’s Mumford-Shah energies.

In this paper, we propose a efficient thresholding algorithm for minimizing the Eu-
ler’s elastica energy [7]. The energy is of the form:

∫

C

κ2 + β dσ. (1)

where C is a curve, dσ is the length element, and κ is the curvature of the curve. This
type of term typically appears in more elaborate models such as the 2.1D sketch model
of [24].

Central to our approach is the recent results of Grzibovskis and Heintz [16], who
have discovered a convolution-thresholding scheme for Willmore flow. Willmore flow is
gradient descent for the following energy:

W (Σ) =

∫

∂Σ
H2 dσ (2)

2



where ∂Σ is the boundary of Σ ⊂ R
N (i.e. a closed hypersurface) and H is its mean

curvature. When Σ is a region in the plane, energy (2) reduces to (1) with β = 0 and
C = ∂Σ.

3 The proposed algorithms
As a first step in bringing threshold dynamics to bear upon higher order image process-
ing and vision models, we use energy (1) to reconstruct missing (or occluded) parts of
boundaries of shapes. Let D be the image region, and let the given image be binary, i.e.
it is a shape: f(x) = 1Ω(x), where Ω ⊂ D. Let D̃ be a subdomain of D with nice
boundary where image (i.e. shape) information is known to be missing. To generate the
(possibly) missing part of the observed shape Ω in D̃, one can use the following model,
which is a much simplified version of the Nitzberg-Mumford-Shiota (NMS) model:

min
Σ s.t. Σ∩D̃c=Ω∩D̃c

∫

∂Σ
κ2

Σ + β dσ. (3)

A level set based implementation of the NMS model was carried out in [36], and a diffuse
interface (i.e. phase field) implementation appears in [11] following previous work by
March and Dozio in [18].

To minimize (3) we alternate the dynamics of Grzibovskis and Heintz that decreases
∫

∂Σ κ2 dσ, and the standard MBO scheme that decreases
∫

∂Σ β dσ. This involves, in
particular, deriving the two dimensional analogue (i.e the analogue for planar curves) of
the algorithm in [16], which is originally formulated for two dimensional surfaces in

� 3 .
Also, we keep part of the boundary ∂Σ that lies in D̃c fixed.

The algorithm has the following form: Let Gt(x) be the Gaussian kernel in two
dimensions:

Gt(x) =
1

4πt
e−

|x|2

4t

. Fix a number α ∈ (0, 1), and a δt > 0. Starting with an initial guess Σ0 ⊂ D with
Σ ∩ D̃c = Ω ∩ D̃c, repeat the following steps for n = 1, 2, 3, . . .:

1. A step of Grzibovskis and Heintz’s algorithm: Set

Γ1 =
{

x : 2αG√
δt
∗ 1Σn

(x)

− 2G
α2

√
δt
∗ 1Σn

(x) + 1 − α ≥ 0
}

.

2. A step of standard MBO algorithm: Set

Γ2 =
{

x : Gβδt ∗ 1Γ1
(x) ≥

1

2

}

.

3. Fidelity step: Set

Σn+1 =
(

Γ2 ∩ D̃
)

∪
(

Ω \ D̃
)

.

3



where 1S(x) denotes the characteristic (i.e. indicator) function of a set S. Each step
of the algorithm given above can be generalized so that the convolutions are performed
with any rotationally symmetric kernel. In our computations, we use a scaled version of
the compactly supported kernel

K(r) = C0 · 1[−1,1]e
1

1−r2

in Step 1 as an attempt to eliminate the effect of the exponential tail of Gt(x) when two
interfaces are close to each other. The convolutions are implemented via the fast Fourier
transform.

It is actually possible to generalize the above algorithm so that the interface is repre-
sented by a continuous function, while maintaining its simplicity and efficiency. Repre-
senting the interface by a continuous (or better) function has the important advantage that
the geometry of the interface is not degraded after the thresholding step is performed: the
characteristic function of a set (e.g. one that only takes one of the two values 0 or 1 at ev-
ery grid point) does not allow for interpolation and thus cannot attain subgrid resolution.
The resulting algorithm is more similar to but still very distinct from a conventional level
set implementation of the geometric motion involved. We observe that if we use a Lips-
chitz continuous level set function φ(x) such that Ω = {φ ≥ 0}, then the characteristic
function 1Ω(x) can be represented as H(φ), where H(ξ) :

�
→

�
is the conventional

Heaviside function:

H(ξ) =

{

0 if x ≤ 0,
1 if x > 0.

Hence, in the convolution steps, the convolution of a kernel Gt with 1Ω is equivalent
to Gt ∗ H(φ). Let u be the resulting function. We observe that u is continuous and the
thresholding step is to project the values of u onto the 0, 1; that is u(x) = H(u(x)−0.5).
Therefore, instead of the projection, we can perform a fast reinitialization step so that
u(x)−1/2 is reshaped into the signed distance function to ∂Ω. This enable us to perform
the convolution step as stated again. In summary, a continuous interface version of the
diffusion generated motion can be written as:

1. Convolution: u(x) = Kα ∗ H(φ(n)(x))

2. Reinitialize: φ(n+1)(x) = reinit(u − /12).

The real difference between the two versions of our algorithm lies in their discretiza-
tions on uniform Cartesian grids. The order of accuracy of a typical quadrature on a
Cartesian grid for the integration of a piecewise smooth function is first order in the
mesh size h. In [10], Engquist et al. investigated a regularization technique related to
the Heaviside function H . According to their result, it is possible to obtain second order
accuracy (O(h2)) in the quadrature for the convolution step, if one regularizes H(x) by
Hε(h,φ(x))(x) with a suitably chosen ε(h, φ(x)) defined in the paper. Hε(x) = H(x) for
|x| > ε/2 and is 1/2+x/ε for |x| ≤ ε/2. The reinitialization step keeps a locally O(h2)
approximation to ∂Ω(n+1), and formally keeps the complexity of the original method if
one uses a fast reinitialization technique such as one of the fast sweeping schemes, see
[34] and the references therein. We point out, however, that this approach does not im-
prove the formal analytical error that comes from the asymptotics: it does not improve
on the convergence rate with respect to the time variable of standard thresholding based
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algorithms such as the Merriman, Bence, Osher scheme. On the other hand, accuracy in
time is less of an issue for the applications considered in this paper, since the accuracy
of the dynamics is not important as long as an accurate stationary state is attained.

4 Numerical Results
Numerical results with our proposed algorithms are very encouraging. Here we present
our results on the two examples that have been extensively used in the literature. In
our simulations, we used a compactly supported kernel and the continuous interface
version of our algorithm. In our simulations, the algorithm (and its level set version)
requires about 15 or 20 iterations for computations that typically take tens of thousands
of iterations with standard methods.

Figure 1 shows an experiment where the missing part of a disk is to be reconstructed.
The occluding region (i.e. region D̃ in model 3) is the upper left quarter square. The
left hand image shows the recovered boundary when only the length of the boundary
contour is minimized. The right hand image shows the result obtained when Euler’s
elastica model (3) is used. In both cases, the computation was started with random initial
data in domain D̃, and took only about 20 iterations to complete.

Figure 2 shows the same experiment as in Figure 1, this time using a “broken bar” as
the given image, and the middle square shown with random initial data as the occluding
region D̃. Once again, the left image shows the completion obtained by minimizing only
the length of the contour, whereas the right hand image shows the result of minimizing
Euler’s elastica model (3). As is well known, the elastica model prefers to connect junc-
tions on either side of the occluding region, despite the wide separation. The algorithm
proposed in this paper requires only about 15 iterations to reach the fixed points shown,
starting from random initial data in D̃.

There is an important point that needs to be discussed concerning the numerical ex-
ample of Figure 2. The initial curve in this computation has two connected components.
During the course of the evolution these two parts of the curve get close to each other
and at some point are observed to merge into a single connected componenet. This
merger involves a topological change. Exactly at the time of this topological change,
there are singularities in the curve that from a naive point of view would suggest that the
configuration has infinite energy. (The correct interpretation would be that the energy
of this configuration is the limit of energies of smooth approximating configurations,
which would be finite). Immediately after the topological change, as the curve – which
now consists of one connected component – starts to straighten itself out, correspond-
ing energies can be arbitrarily high. This observation raises the possibility that in fact
the topological change might not take place if the computation is repeated using more
localized (i.e. narrower) kernels. In other words, the merger that we observed might be
due to the fact that the computation was carried out with a relatively wide kernel, giving
us rather diffuse interfaces. Clearly, this is a very important issue that deserves to be
investigated further.
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Figure 1: Reconstructed edge contour by minimizing length (left image) and Euler’s elastica based model (3).
The upper left hand square is the occluding (or damaged) region D̃ in the model. About 20 iterations of our
proposed algorithm were required.

5 Conclusion
We introduced an efficient algorithm for minimizing shape functionals related to the
Euler’s Elastica model. Our algorithm uses convolutions of the characteristic function of
a shape with a smooth kernel to generate a consistent approximation to the front velocity.
We further proposed a continuous interface algorithm for diffusion generated motion
that has the same formal complexity in each iteration as our first algorithm. This level
set method preserves more geometrical information of the shape and thus improves the
resolution of the first algorithm. Finally, we demonstrated that our proposed algorithm
yields results resembling those computed by the exisiting level set methods. A detailed
analysis on the scaling and convergence of our algorithm and generalization will be
reported by the authors in a forthcoming paper.
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