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Abstract

The MBO scheme was originally proposed for solving equations from
motion by mean curvature. Recently, the MBO scheme was interpreted
as a splitting scheme for the phase field model and extended to image
segmentation problems. In this work, we combine the MBO scheme with
some piecewise constant level set methods (PCLSM) proposed recently.
The combined scheme is much more efficient compared to the schemes
used in the original PCLSM. Numerical experiments are given to demon-
strate this. Advantages and disadvantages are discussed for the combined
scheme.

1 Introduction

Recently, some piecewise constant level set methods (PCLSM) were proposed
in Lie-Lysaker-Tai [9, 10] for image segmentation and other interface problems.
These methods are closely related to the phase field models [5, 20, 21, 7, 1, 17,
18]. A scheme related to the phase field model for motion by mean curvature
is the MBO scheme of Merriman-Bence-Osher [15]. The MBO scheme [15] is
in fact a splitting scheme for the phase field models, see Esedouglu and Tsai
[6]. Using the relationship between MBO and the splitting scheme, the MBO
scheme was also extended to image segmentation in [15].
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The phase field models [5, 20, 21, 7, 1, 17, 18] and the piecewise constant
level set approaches [9, 10] are essentially trying to minimize some energy under
some constraints, c.f. (28) for the exact forms of the constraints. If a function
satisfies these constraints, the function must be a piecewise constant function.
For the phase field models, these constraints are handled by a penalization
method [5, 7, 17, 18]. For a given penalization parameter, the solution of the
phase field models can be a smooth function and thus the energy for the phase
field models is energy for smooth functions. It was verified theoretically that the
smooth energy converges to the energy of a piecewise constant function when the
penalization parameter goes to zero [5, 7, 17, 18]. In the piecewise constant level
set approaches [9, 10], the constraints are handled by the augmented Lagrangian
method. The advantage for such an approach is that we do not need to use
a penalization parameter which must be taken to be very small in order to
approximate the constrained minimization problem. Because the solution in
our approach is a piecewise constant function, energies for smooth functions
cannot be used. Instead, energies involving total variation of piecewise smooth
functions are used for the length term.

The purpose of this work is to clarify a relationship between the methods
proposed in [9, 10] and [6]. Similar to [6], we can combine the MBO scheme with
the PCSLM of [9, 10]. The combined schemes offer efficient implementations
for the PCLSM of [9, 10]. The efficiency may further be improved by the oper-
ator splitting schemes of [12, 13, 24]. A number of algorithms are summarized
during the description of our work. Algorithm 1 is a recall of the MBO scheme.
Algorithms 2 and 3 are an explanation of MBO as a splitting scheme for a phase
field model. Algorithms 5 and 6 are then the applications of Algorithms 2 and
3 incorporated with dimensional splitting to a piecewise constant level set func-
tion for multi-phase image segmentation. Our numerical experiments indicate
that Algorithm 6 is mostly recommended.

2 Sequential and parallel splitting algorithms

For a given function space V and an operator (linear or nonlinear) defined in
V', we often need to solve the following time dependent equation:
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5 TAG) =f0), tel0,T], ¢(0)=oeV. (1)
In case that the operator A and the function f can be split in the following way:

A=A+ A+ An, f=f+fat fm, (2)

then some splitting schemes can be used to approximate the solution of (1).
Normally, the operators A; are simpler and easier to solve. The first scheme is
called the parallel splitting scheme or additive operator splitting (AOS) scheme.
First we choose a time step 7 and set ¢° = qg At each time level ¢; = jr1, we



compute ¢’ = in parallel for i = 1,2,--- ,m from:

¢j+2fn 7¢)J— i i 1 o
—————— + Ai(¢'"27) = fi(t;), and then set ¢ :EZ¢ . (3)
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Note that all the subproblems for the operators A; use the same initial value
¢’. This algorithm was first proposed in Lu, Neittaanmaki and Tai [12, 13]. It
was discovered independently later in [24] and used in a different context for
image processing [25, 22, 3, 2]. This scheme is locally second order of accuracy
and globally first order of accuracy, i.e.

e = ¢ — olt;) = O(r). (4)

See [13] for a proof of this error estimate. The advantage of the above scheme
is that all the subproblems can be computed in parallel. Another advantage of
the scheme is that it treats all the operators A; in the same way. For image pro-
cessing problems, the operators A; are differential operators in the x; directions.
Thus this scheme will treat all the spatial variables in a symmetrical way and
avoid the artifacts produced by treating the spatial variables in nonsymmetrical
ways.

The following sequential scheme, sometimes also called the multiplicative
operator splitting (MOS) scheme can also be used to approximate the solution
of (1):

i—1
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The above scheme uses different initial values for the A; operators and thus
must be computed sequentially for ¢ = 1,2,--- ,m. This scheme also has the
first order convergence as stated in (4). Both schemes (3) and (5) are absolutely
stable for some differential operators, see [14, 11].

In case the equation (1) has a steady state, then the steady state satisfies

A(g) = f. (6)

Both schemes (3) and (5) can be used to compute the solution of (6). However,
the parameter 7 should not be regarded as a time step, but as a relaxation
parameter which can be taken large. For the stability and convergence analysis
for using (3) and (5) for solving equation (6), we refer to [12, 13]. Some other
algorithms which have the same advantages as scheme (3) for solving equation
(6) were also proposed in [12, 13].

In order to be consistent with the notations of [15], the schemes (3) and (5)
can also be written in a more general form. For given v € V' and operators A;
(linear or nonlinear), let w; be the solutions of

awi
ot

+A1(wz):fz(tj), ’Ll}z(O):U7 Z:1,2, , M. (7)



Denote the mapping from v to w;(t) as T; ;(t), i.e. w;(t) = T; ;(¢t)v. Then the
parallel scheme (3) is a discretized version of the following iteration:

P = S T, 0 =6 )
i=1

The schemes (5) is a discretized version of the following iteration:

P =T (1) 0 0Ta (1) o Ty (1), ¢° = ¢. (9)

3 The MBO scheme

Merriman, Bence, and Osher introduced a very interesting scheme to approxi-
mate the motion of an interface by its mean curvature [15]. Suppose we wish to
follow an interface moving with a normal velocity equal to its mean curvature.
The MBO scheme for the case of two regions is given as an algorithm below:

Algorithm 1 (MBO scheme for two regions)
Choose initial value ¢(0) = +1 and the time step 7. Forn = 0,1,2,--- and
t, =nT,

o Solve G(t),t € [tn,tns1] from

by =Ap,  Ptn) = d(tn) in Q, % =0 on ON. (10)
o Set .
s ={ 7 P50 ay

In the original paper [15], the phase function is taking values 0 or 1. Here
we use +1 to be consistent with our notation. To apply the above scheme for
mean curvature motion of multiphase symmetric junctions, one just needs to
use multiple phase functions ¢;,7 = 1,2,---r and project the largest value of ¢;
to 1 and the others to -1 (See [19]).

The connection between the MBO scheme and the splitting algorithm is
revealed in [6, 7, 17, 18, 8] by interpreting it as a phase field method. Let u be
the solution of

uy = eAu — lVV’(u), (12)
€

with W (s) = (s> — 1)?/2. It is known that the rescaled solution u(z, t) is the
solution of the mean curvature motion in the limit when e — 0%, c.f. [7, 17, 18].

If we use the splitting scheme (9) to solve (12), we would need to solve the
following two equations on [t,, t,11]:

W) b= A6, B) by =—W'(9). (13)
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The rescaled solution ¢(z,t,/€) of (13.a) is exactly the solution of (10). When
e — 0T, the rescaled solution ¢(z,t,/¢) of (13.b) has three values, i.e. 1, 0,
-1. We drop the nonstable solution 0 and get (11). This splitting scheme bears
some of the natures of the algorithm that have been analysed in [11].

4 The binary levelset method

The binary level set method was originally introduced in [9]. To introduce the
main idea, let us first assume that the interface is enclosing Q; € Q ¢ R?. By
standard level set methods the interior of €, is represented by points Z : ¢(Z) >
0, and the exterior of Q is represented by points & : ¢(Z) < 0. We instead use
a discontinuous level set function ¢, with ¢(&) = 1 if & is an interior point of
Oy and ¢(Z) = —1 if ¥ is an exterior point of Qy, i.e.

o 1 if 7

¢(7) { Sl 7 € ext(Q), (14)
Thus I' is implicitly defined as the discontinuity of ¢. This representation can
be used for various applications where subdomains need to be identified. We
shall use this idea for image segmentation. Let us assume that ug is an image
consisting of two distinct regions €1 and s, and that we want to construct a
piecewise constant approximation u to ug. Let w(Z) = ¢; in 4, and u(Z) = ¢o
in Qy. If (Z) =1 in O, and ¢(&) = —1 in Qo, u can be written as the sum

u=(@+1) - F(@-1). (15)
The formula (15) can be generalized to represent functions with more than two
constant values by using multiple functions {¢;} following the essential ideas of
the level set formulation used in [4, 23]. A function having four constant values
can be associated with two level set functions {¢;}?_; satisfying ¢? = 1. More
precisely, a function given as

(p1 + 1) (2 +1) = Z(d1 + 1)(¢2 — 1)
(p1 = 1)(p2 + 1) + G(d1 — 1)(¢2 — 1), (16)

u =

RN

is a piecewise constant function of the form

C1, if ¢l(f) - 17 ¢2(f) 17

2\ C2, if ¢ (f) - 17 ¢ (f) - 715
O =\ e i G0 = -1, @) = 1.
Cyq, if Qﬁl(.’f) = —17 QSQ(f) = —1.



Introducing basis functions ¥; as in the following

u=c i(% +1)(¢2 +1)

1
ber (1) 30+ 1)(g2 — )4+, a7)
2
we see that v can be written as
4
u= Zciwi- (18)
i=1

For more general cases, we can use N level set functions to represent 2V
phases. To simplify notation, we define the vectors (5 = {¢1,02,...,¢n} and
¢={ci,cay. .. con}y. Fori=1,2,...,2 let (00,0571, . .. ,b?{l) be the binary
representation of ¢ — 1, where b;fl = 0V 1. Furthermore, set

N
s(i) = b, (19)
j=1
and write 1; as the product
—1ys) N i
vo= S T + 1207 (20)
j=1

Then a function u having 2%V constant values can be written as the weighted

sum
oN

U = Z Ci’lpi- (21)
i=1

If the level set functions ¢; satisfy ¢? = 1 and v; are defined as in (18) or (20),
then supp(¢;) = Q;, ¥; = 1 in Q;, and supp(¢;) N supp(v;) = 0 when j # i.
This ensures non-overlapping phases, and in addition (J, supp(¢;) = €2, which
prevents vacuums. It is clear that 1); is the characteristic function of the set €2;.
If the level set functions satisfy ¢? = 1, then we can use the basis functions

1; to calculate the length of the boundary of €2; and the area inside §2;, i.e.

00| :/|V1pi|dx, and |9 :/widm. (22)
Q Q

The first equality of (22) shows that the length of the boundary of ©; equals the
total variation of ;. See [27] for more explanations about the total variations



of functions that might have discontinuities. In numerical computations, we use

the approximation
/|V¢i|dx - /\/|wi|2 e dr, (23)
Q Q

for a small € and the gradient V1) is approximated by forward finite differences
except at some part of the boundary where a backward finite difference is used.

We have now introduced a way to represent a piecewise constant function u
by using the binary level set functions. Based on this we propose to minimize
the following Mumford-Shah functional to find a segmentation of a given image
uo [16]:

2N
Fms($,6):%/|u—uo|2dm+52/|vwi|dx. (24)
Q =19

In the above, 8 is a nonnegative parameter controlling the regularizing, u is a
piecewise constant function depending on 5 and ¢, as in (21). The first term
of (24) is a least square functional, measuring how well the piecewise constant
image u approximates ug. The second term is a regularizer measuring the length
of the edges in the image ug. It is easy to see that

N oN N
any / Voldr <3 / Viilde < e2(V) S / Volde,  (25)
=1 Q =1 Q

i=1 Q

where ¢1(N) and co(N) only depend on N. Thus, we can replace the regulariza-
tion term by an equivalent one and get the following simplified cost functional:

N
F((E,éj:%/|u—u0|2dx+ﬁ2/|v¢i|dx. (26)
Q =1g

Considering the constraints imposed on the level set functions, we find that the
segmentation problem is the following constrained minimization problem

min F(4,é), subject to ¢? =1, Vi. (27)

, C

Recall that (5 is a vector having N elements ¢;. For notational simplicity, we
introduce a vector I_('(q;) of the same dimension as 5 with Kz(g) =¢? —1. Itis
easy to see that ~

¢ =1,V & K(¢)=0. (28)

In the next section, we try to use the MBO scheme to solve this minimization
problem and point out a relationship between our scheme and the scheme of [6].



5 Relation between the MBO and the binary
levelset method

In order to make the relation clear, we shall consider the two dimensional two-
phase model here, that is, we need to solve

Igip F(¢,¢), subject to ¢* =1 (29)
for N =1 and m = 2. The minimization functional in this case is:
1
F(6.0) = 5 [1u(6,) ~ ua | *dz + 3 |9 (30)
Q Q
For the two-phase problem, we have
1 1
1/1115(1*@7 ¢2:§(1+¢)- (31)

In case that ¢ = 1, we can use relation (31) to show that the minimization
functional of (33) is exactly

1 1
FH((b’Ej:? / |01—UQ|2dCL‘+§ / |CQ—’U,0|2d5L‘+5/|V¢|dCB (32)
Q(p=1) Q(p=-1) Q

If we use a penalization term to tackle the constraint ¢? = 1, we need to choose
a small p and solve:

I}gig F.(¢,0), (33)

where

Fu(d, &) = %/| w(@, &) — uo | 2dz + ﬁ/|V¢|dm + %/@)2 C12de, (34)
Q Q

Q

where u(¢,¢) = c191(¢) + c2tp2(¢). In order to find a minimizer for (33), we
shall find ¢ and ¢ that satisfy

aFH —

OF,
9 Bz = ;=

29
As u is linear with respect to ¢, we see that F}, is quadratic with respect ¢. For
a given ¢", the minimizer of F), with respect to ¢ satisfies

0, b 0. (35)

2
;/g%w Ji(¢")ei :/QUOM'((Jj ), Vi,i=1,2. (36)

For a fixed ¢, the steepest decent method in ¢ for the energy functional (34)
gives the following equation for the level set function ¢:

v (Y2 w6 &) — a2 Ly
0 =09 (5) = (006, - w) 35 = W) @7)



with boundary condition

v—¢~ﬁ:00n8§2.

Vol
To use the sequential splitting scheme (5) to compute ¢ for a given ¢", we choose
a 7 > 0 and an initial value ¢° and then solve

n+1/2 _ 4n OF
s = 5@ ). (38)

Afterwards, we need to solve

n+l _ n+1/2
W) (39)

For the parallel splitting scheme (3), we will need to solve

¢n+1/4 _ ¢n _ _lW/(¢n+1/4)_ (40)
2T o
and g g 5
9" _OF 12
G = G, (41)

In the end, we set

¢n+1 _ l(¢n+1/4 +¢n+1/2).
2

For simplicity, we define the function for the MBO projection to be

Px) =

{ 1 ifx>0 (42)

-1 fxz<0

If we replace the solving of (39) and (40) by the MBO projection, we get the
following two algorithms.

Algorithm 2 (Sequential MBO scheme) For n =0,1,2,---

e Solve ¢"t1/2 from

n+1/2 _ in n+1/2 9
% =pV- (lgznT/gl) — (u(g" /2 E) - uo)a—Z(qﬁ”H/Q,é’”).
(43)

e Set
¢" =P (e T2, (44)

e Compute & from (36).

Algorithm 3 (AOS MBO scheme) Forn=20,1,2,---



o Solve ¢"t1/2 from

n+1/2 _ n \V4 n+1/2 b
% =0V- (Winw) — (u(g"2, @) — u@(ﬁ(&“”ﬂ)-
(45)

o Set
¢t = (P(¢") + 9" ) 2. (46)
e Compute & from (36).
For the above two algorithms, we may not need to update the values for ¢”
at each iteration.

If we replace the total variation regularization term [, [Vo|dz by [, |[V¢|*dx
(which is not suggested though), we need to replace the curvature term V -

<|§—$) by A¢ (i.e the Laplacian of ¢) in all the algorithms. If we do this for

Algorithm 2, we will get essentially the same algorithms of [6]. For clarity, we
write this scheme in the following:

Algorithm 4 (The scheme of [6]) Forn=0,1,2,---
e Solve ¢"t1/2 from

— BAGTH2 _ (u(gn 2, ) uo>g—g<¢”+1/2, &), (47)

¢n+1/2 _ (bn

o Set
¢" = P(p"). (48)

When we need to identify more than two subdomains, we need to use multiple
level set functions ¢;. The iterations for the multiple level set functions are
essentially the same as for the one level set function case. The interplay between

the different level set functions are through the values of u(¢) which depends
on all the level set functions.

6 A Piecewise Constant Level Set Method

The binary level set method presented in §4 needs to use more than one level set
function ¢ when more than two phases are needed in the segmentation. Here
we shall introduce a method that just needs one level set function to represent
multiphase segmentation. This idea was originally introduced in [10]. Assume
that we need to find N regions {Q;}Y; which form a partition of Q2. In order
to find the regions, we want to find a piecewise constant function which takes
values

p=1iinQ;, i=1,2,...,N. (49)
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With this approach we just need one function to identify all the phases in €.
The basis functions v; associated with ¢ are defined in the following form:

1 N N
vi=—[[(6—j) and a; =[] k). (50)
g =t

It is clear that the function w given by u = > ¢;9); is a piecewise constant
function and u = ¢; in Q; if ¢ is as in (49). The function w is a polynomial of
order N—1 in ¢. Each 1; is expressed as a product of linear factors of the form
(¢ — j), with the ith factor omitted. Thereupon ;(x)=1 for x € Q;, and ¥;(x)
equals zero elsewhere as long as (49) holds.

To ensure that different values of ¢ should correspond to different function
values of u(¢, ¢) at convergence, we introduce

N
K(9)= (=16 =2)(¢=N)=]](6 - (51)
If a given function ¢ : Q — R satisfies
K(¢) =0, (52)

there exists a unique i € {1,2,...,N} for every € Q such that ¢(z) = i.
Thus, each point € Q can belong to one and only one phase if K(¢) = 0.
The constraint (52) is used to guarantee that there is no vacuum and overlap
between the different phases. In [26] some other constraints for the classical
level set methods were used to avoid vacuum and overlap.

In order to segment a given image, we shall solve the following constrained
minimization problem:

1

. 2
Kxal)goaﬂ/m(@ &) — up | dx—i—ﬁﬂ/quﬂda:. (53)

Above, u(¢, €) = > ¢;1h; and 1), are given as in (50). The minimization variables
are ¢ and € In [10], the length of the subdomain boundaries were used as
the regularization term. Here we replace the regularization term by the total
variation of ¢ which is equivalent to the regularization term up to a constant,
c.f. (25).

For the new level set method, the function W (¢) is defined as W(¢) =
|K(¢)|?. If we use a penalization method to deal with the constraint K (¢) = 0,
then the penalization functional for this case will be:

B0 8 = 3 fluto, 0w s 45 [[Volas+ L [iK@)Par. 6
Q Q Q

If we split A(¢) = 68};” into a sum of B(¢) = ‘g—g, C(p) = %W’(qﬁ) and use

the splitting schemes and MBO projections for such a splitting, we will get two

11



algorithms for this piecewise constant level set method. We will omit the details
of these algorithms as they look rather similar to Algorithms 2 and 3. The only
difference is the MBO projection. For the level set method presented in this
section, the MBO projection is given by:
1 ifxa<1b
Plx)=1 i ifxe(i—0.5,94+0.5] . (55)
N ifz>N-05
In order to further simplify the computations, we shall split B into a sum of

(29 4 Lo w0 6, i1
5i0) = Di( g ) + (6.0~ w) G (6.8, i=12d

Above D; denotes the partial derivative with respect to x; and d is the dimension
of Q, i.e. O C R We see that
A=B1+By+---Bs+C.

If we use scheme (3) for such a splitting, we will get the following algorithm if
the penalization is replaced by the MBO projection (55).

Algorithm 5 (Dimensional AOS MBO scheme) For n=0,1,2,---

o Solve ¢" /24 in parallel for i =1,2,---d from

¢n+i/2d7¢n Di¢n+i/2d 1 i ou i
 ar ﬂDi'<W>E(U(¢ * /2d70 )*Uo)a_(b(ﬁb * /dec )-
(56)
o Set
1 .
o = i (Pon o). 57

i=1
e Compute & from (36).

However, if we solve the subproblems associated with the operators B; by
the parallel splitting scheme (3) and do the MBO projection in a sequential
fashion, then the algorithm will look like:

Algorithm 6 (Dimensional sequential MBO scheme) All the other steps are
the same as for Algorithm 5, only replace the MBO projection by:

o Set

1
n+1l __ - n+i/2d
¢ _p(d;¢ ) (58)

Normally, Algorithm 6 is faster than Algorithm 5. Due to the fact that all
the dimensional variables are treated in a symmetrical manner, it avoids the
artifacts of the dimensional variables. Each subproblem is a one dimensional
problem on the lines parallel to the axes and they can be solved efficiently
using exact solver for tri-diagonal matrices [12, 13, 24]. We have tested all the
proposed algorithms, and it was found that Algorithm 6 combined with the level
set method of §6 is the favorable due to it efficiency and simplicity to implement.
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7 Numerical experiments

It should be noted that the basis functions 1; and the MBO projection operator
P are different for the binary level set method of section §4 and the piecewise
constant level set method of section §6. Thus one should use the correct forms
in the different algorithms.

For Algorithms 2 and 3, the subproblems (43) and (45) are nonlinear. We
use the following Picard iteration to solve these nonlinear equations:

P — g™ Ve old =n ou old_zn
o =gV <W> — (u(ep™,c )*Uo)a(b(flS ). (59)

Normally, we start with the initial value ¢4 = ¢™. A CG method can be used
to get a ¢"" through the above linear equation. We use this ¢™“* as the initial
values again and get another ¢™*" to be used as initial value. We do a fixed
number of iterations for the Picard process. In all the experiments shown later,
this iteration number is even set to be 1.

We use the same strategy to solve the nonlinear equation (56), i.e

= (o

ou
9¢

Similar to the solving of (59), we use ¢™ as the initial value to get a ¢Pe*
through the above equation, and then use this ¢7'°" again as the initial value to
get another ¢7'** to be used as the initial value again. As for (59), we just do
one such iteration in all the experiments shown later. Note that the equation
(60) reduces to some one dimensional equations in the z;-direction and thus
can be efficiently solved by direct solvers for tri-diagonal matrices [12, 13, 24].
Moreover, all these one dimensional problems can be solved in parallel.

We validate and compare the (dimensional) Sequential MBO scheme, Alg.
6, and the (dimensional) AOS MBO scheme, Alg. 5. We consider only two-
dimensional cases and restrict ourself to gray-scale images, but the schemes can
handle any dimension and can be extended to vector-valued images as well. Syn-
thesized images, natural images and an MR image are evaluated. The original
image is known for some cases which we evaluate her. Thereupon it is trivial to
find the perfect segmentation result. To complicate such a segmentation process
we typically expose the original image with Gaussian distributed noise and use
the polluted image as the observation data ug. In all examples the iteration is
terminated when the relative change in the levelset function ¢ in L2-norm is
less then 1078, All tests are run on a 2.8GHz Pentium 4 processor.

In the first example we illustrate a 2-phase segmentation on a real car plate
image. Locating and reading car plates is a well known problem, and there
are a number of commercial software available. Below we demonstrate that the
Sequential MBO scheme and the AOS MBO scheme can be used for this seg-
mentation. We challenge these two segmentation techniques by adding Gaussian
distributed noise to the real image and use the polluted image in Fig. 1(b) as
the observation data. The difficult part is to find the optimal choice for 7 and

) - Sl — o) S, (o0

13



lss

20 40, e & 10 190, 140,160 180 300, 20
50 100 150 200 250 300 350 400 450

(a) Real image of a car plate. (b) Input noise image (SNR~ 1.7).

300 300
350 | 350
1 1 1 -

(c) Segmented using sequential MBO (d) Segmented using AOS MBO scheme.
scheme. 7 = 0.5 and 3 = 6. 7=0.5and g =3.

Figure 1: Character and number segmentation from a car plate.

(3, and we observe that the choice differs for the two methods. Both methods
perform well, see Fig. 1(c) and Fig. 1(d). However, with this amount of noise we
miss some details along the edges for the characters and numbers, even though
we have large regularization parameters. The values we have used are § = 6
for the Sequential MBO scheme and § = 3 for the AOS MBO scheme. For
the Sequential MBO scheme the number of iterations is 15, and the CPU time
is 67 seconds. For the AOS MBO scheme the number of iterations is 27, and
the CPU time is 116 seconds. The Sequential MBO is the faster one in all our
results.
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(a) Observed image ug (SNR~ 2.3). (b) Initial level set function ¢.

(c) Different phases using sequential (d) At convergence ¢ approaches 2 con-
scheme. stant values.

Figure 2: Segmentation of the Olympic rings using the sequential MBO scheme.
7=20.5,8=0.08

In the next example we illustrate a 2-phase segmentation on a noisy synthetic
image containing 5 rings as shown in Fig. 2(a). The image is segmented using
both the Sequential MBO scheme and the AOS MBO scheme. The results are
shown in Fig. 2 and Fig. 3 respectively. For the Sequential MBO scheme the
number of iterations is 2, and the CPU time is 1 second. For the A0S MBO
scheme the number of iterations is 9, and the CPU time is 4.2 seconds. The
input data wg is given in Fig. 2(a) and Fig. 3(a). In Fig. 2(d) and Fig. 3(d)
the ¢ functions are depicted at convergence. ¢ approaches the predetermined
constants ¢ = 1V 2. Each of these constants represents one unique phase as
seen in Fig. 2(c) and Fig. 3(c).
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(c) Different phases using sequential (d) At convergence ¢ approaches 2 con-
scheme. stant values.

Figure 3: Segmentation of the Olympic rings using the AOS MBO scheme.
7=0.5,8=0.08

The sequential MBO scheme has some artifacts caused by dimensional split-
ting. However, the artifacts is nearly noticeable by human eyes. Fig. 4 shows
the difference between the image segmented by the Sequential MBO scheme and
the image segmented by the AOS MBO scheme.
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Figure 4: Difference image between the image segmented by the Sequential MBO
scheme and the image segmented by the AOS MBO scheme.

Figure 5: MRI image with a change in the intensity values going from left to
right caused by the non-uniform RF-puls.

17



In our next example segmentation of an MR image is demonstrated. The im-
age in Fig. 5 is available to the public at http://www.bic.mni.mcgill. ca/brainweb/.
These realistic MRI data are used by the neuroimaging community to evaluate
the performance of various image analysis methods in a setting where the truth
is known. For the image used in this test the noise level is 7% and the non-
uniformity intensity level of the RF-puls is 20 %, for details concerning the noise
level percent and the intensity level see hittp://www.bic.mni.megill.ca/brainweb /.
Both the Sequential MBO scheme and the AOS MBO scheme are used to seg-
ment the MRI phantom and the results are depicted in Fig. 6. There are three
tissue classes that should be identified; phase 1: cerebrospinal fluid, phase 2:
gray matter, phase 3: white matter. Because of this, 4-phase segmentation
was used, but we do not depict the background phase here. We have used
£ =0.52,7 = 0.7 in the Sequential and 8 = 0.19,7 = 0.7 in the AOS scheme.
For the Sequential MBO scheme the number of iterations is 13, and the CPU
time is 42 seconds. For the AOS MBO scheme the number of iterations is
26, and the CPU time is 82 seconds. The time step has large impact on the
regularization.
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(d) Sequential: phase 2. (f) Exact: phase 2.

(g) Sequential: phase 3. (h) AOS: phase 3. (1) Exact: phase 3.

Figure 6: Segmentation of MRI phantom using Sequential MBO scheme and
AOS MBO scheme. Last column shows exact segmentation.

In Fig. 7 we show the results from a 4-phase segmentation of a star image,
using the Sequential MBO scheme and the AOS MBO scheme, respectively. In
both cases 3 =0.1, and 7 = 1.

For the Sequential MBO scheme the number of iterations is 2, and the CPU
time is 0.32 seconds. For the AOS MBO scheme the number of iterations is 4,
and the CPU time is 0.49 seconds.

In this example, both the 7 and (§ that give the best result were much easier
to find than for the MR image.
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(a) Observed image uo (SNR~ 14.4). (b) Initial levelset function.
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(¢) The four phases from Sequential MBO. (d) The four phases rom AOS MBO. CPU
CPU time: 0.32 sec. time: 0.49 sec.

Figure 7: 4-phase segmentation using Sequential and AOS MBO scheme.

As mentioned, the MBO scheme is very sensitive to the regularization pa-
rameter J and the time step 7. In some cases a large 3 is needed in order
to keep the boundary of a phase smooth, and Fig. 8 shows the effect from a
small change in 7. Here 8 = 30. The difference in 7 in Fig. 8(b) and (c) is
very small, yet it leads to quite different results. Because of the sensitivity to
the time step illustrated here, finding the good parameters sometimes requires
quite an effort. In these cases we reach convergence after 7 iterations taking 3.2
seconds resulting in Fig. 8(b) and 10 iterations taking 4.6 seconds, Fig. 8 (c).
Fig. 9 illustrates the same, but here we have added noise to the input image.
Convergence is reached after 9 iterations taking 4.1 seconds, Fig. 9(b), and 15
iterations taking 6.9 seconds, Fig. 9(c).
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Figure 8: A small difference in the timestep 7 results in very different segmen-
tations.

21



(a) Input image (SNR=~ 3.4).

20+ 4 20

40

60

80

:‘ 1 100

120

100

&

120
1401 140

160 160

(b) Segmented image u, 7 = 0.03. (c) Segmented image u, T = 0.01.

Figure 9: A small difference in the timestep 7 results in very different segmen-
tations.

8 Conclusions and remarks

In this work, we propose to combine the MBO scheme of [15] with the piecewise
constant level set methods of [9, 10]. Numerical experiments show the success
of these schemes. The scheme combining the binary level set method of [9] with
the MBO scheme [15] is rather similar to the scheme proposed in [6], see §4.
The schemes using the piecewise constant level set method of [10] and the MBO
scheme of [15] in a fashion with the AOS or MOS seem to be new compared with
other proposed schemes. The numerical experiments show that these schemes
are fast and give good results. Note that only one level set function is needed to
segment any number of phases. The schemes are rather sensitive to the choice
of the time step 7, some further researches need to be done in order to find a
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systematical strategy to choose the time step for different applications.
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