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Abstract

A noise removal technique using partial differential equations (PDEs)
is proposed here. It combines the Total Variational (TV) filter with a
fourth-order PDE filter. The combined technique is able to preserve
edges and at the same time avoid the staircase effect in smooth re-
gions. A weighting function is used in an iterative way to combine
the solutions of the TV-filter and the fourth-order filter. Numerical
experiments confirm that the new method is able to use less restric-
tive time step than the fourth-order filter. Numerical examples using
images with objects consisting of edge, flat and intermediate regions
illustrate advantages of the proposed model.

Key words. Iterative image restoration, convex combination, characteristic fea-
tures, PDEs.

1 Introduction

An approach to recover an image u from a noisy observation u0 is proposed in this
work. Digital images can basically be decomposed into three distinguished areas;
flat regions, regions with a smooth change in the intensity value, and jumps. The
aim of all noise removal algorithms is to restore and enhance these characteristics
by filtering out noise. Total Variation (TV) minimization is a successful approach
to recover images with sharp edges. This method was proposed by Rudin, Osher
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and Fatemi (ROF) in [1]. The TV minimization method finds u where the following
is satisfied

min
u
E1(u), where E1(u) =

∫

Ω
|∇u| dxdy +

λ1

2

∫

Ω
|u− u0|2dxdy. (1)

Here, Ω ⊂ IR2 is the domain where the image is defined, λ1 > 0 is a parameter that
controls contribution of the fidelity term

∫
Ω |u− u0|2dxdy, and

∫
Ω |∇u| dxdy is in

fact the total variation of u; see Ziemer [2] and Giusti [3] for definitions. When u
is not differentiable, |∇u| is understood as a measure. More precisely,

∫

Ω
|∇u|dxdy = sup

{∫

Ω
u div v dxdy : v = (v1, v2) ∈ C∞0 (Ω),

v2
1(x, y) + v2

2(x, y) ≤ 1 for (x, y) ∈ Ω

}
. (2)

See p. 221 of [2] for some more details. This term is generally called a regularization
term and it is used here to penalize oscillations. A superior advantage of the
TV-norm regularization is that discontinuities are allowed. However, both from a
theoretical [4, 5] and experimental [6, 7, 8] point of view, it has been shown that the
TV-norm transforms smooth signal into piecewise constants, the so-called staircase
effect. To overcome this spurious effect, higher-order PDEs have been of special
interest over the last few years [6, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The theoretical
analysis of [13, 14, 15] reveals that fourth-order PDEs enjoy some special properties
that are not valid for the second-order PDEs. The higher-order PDEs are generally
coming from the minimization of functionals as

min
u

∫

Ω
F (x1, x2, . . . , xk, u, du, d

2u, · · · , dku) dx1dx2 . . . dxk, (3)

where dku is the partial derivatives of u of order k. For Ω ⊂ IRn and n ≥ 2, mixed
derivative may occur in (3). One of the functionals of focus in this paper was first
proposed by Lysaker, Lundervold and Tai (LLT) in a previous work [6]:

min
u
E2(u), where E2(u) =

∫

Ω

(
u2
xx +u2

xy +u2
yx + u2

yy

) 1
2
dxdy+

λ2

2

∫

Ω
|u−u0|2dxdy,

(4)
where the parameter λ2 > 0 balances the regularity of the solution and how well
u fits the noisy data u0. Minimizing functional (4) yields a nonlinear fourth-order
PDE. The details about how to get this nonlinear fourth-order PDE and its bound-
ary conditions were omitted in [6] due to its complexity. In this work, we shall
supply these details together with some details about its numerical implementa-
tions.

Higher-order PDEs are known to recover smoother surfaces. Dealing with
higher-order PDEs a major challenge is to pursue the quality of (1) along jumps.
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Unfortunately, it seems to be a hard case to get one method to preserve discon-
tinuities in one part of the image and simultaneously recover smooth signals in
other parts. Hence, a combination of different methods may be needed to improve
the image restoration capability. Our approach is to involve both a lower- and a
higher-order PDE, a solution strategy motivated by [7, 8, 17, 18], among others.

The novelty in this work is to involve the restoration properties of (1) together
with (4), i.e. using convex combination of the solutions of (1) and (4). By analyzing
underlying features or the local trend in the image of interest, we can combine (1)
and (4) in such a way that both smooth and discontinuous signals are handled
properly. The ROF [1] model (1) is known to be better than the LLT [6] model
(4) when identifying locations of discontinuities and the amplitude of jumps. The
LLT model handles smooth signals better than the ROF model. A combined
model is able to utilize the best properties of each of the two models, and manage
to overcome the weaknesses of both.

Different approaches for adaptive image restoration methods have been con-
sidered before [7, 8, 17, 18, 19, 20, 21]. In [7], u was decomposed into a sum of
a smooth function u1 and a function u2 that contained the jumps. They solved
an inf-convolution problem concerning u1 and u2. The strategy in [8] was to in-
troduce an elliptic operator together with (1). This substantially reduced the
staircase effect, while edges were preserved. Further, in [17], functional (1) was
modified by the extra term µ

2

∫
Ω |∇u|2dxdy, µ > 0. This ensures convexity of the

cost functional in H1
0 (Ω), and yields the unique solvability of the problem in this

space. Common drawbacks of the adaptive formulations mentioned above, are the
increased number of unknown to determine leading to increased computing time.
In [18] they employed and generalized the enhancement technique based on BV-
and Perona-Malik-type regularization methods. A cost functional consisting of a
data fitting term and a restoration energy criterion for objects consisting of edge,
flat, and intermediate regions was minimized. Global convergence was proven.

The idea we use here seems to have some similarities with the ideas used in
[19, 20, 21]. For example, the following functional is used as a regularization term
in [21] in computing a visible-surface representation u(x, y);

Sρτ (u) =
1

2

∫

Ω
ρ(x, y){τ(x, y)(u2

xx + 2u2
xy + u2

yy) + [1− τ(x, y)](u2
x + u2

y)}dxdy.

The function ρ(x, y) is chosen to be small at jumps and τ(x, y) ∈ [0, 1] is used
to control the regularity of the surface. In our approach, ρ is not necessary due
to the use of the total variational norms and the function of τ is replaced by a
linear combination technique using a weighting function. The approach using the
weighting function could automatically detect jumps and smooth regions. Thus,
it has better properties and is easy and cheap to compute.

To deal with the unknown parameters presented in our approach, i.e. λ1 in (1)
and λ2 in (4), we assume the noise level

σ2 =

∫

Ω
|u− u0|2dxdy (5)
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to be approximately known. The minimizers for (1) and (4) can then be combined
with (5) to find an optimal value for λ1 and λ2, respectively. Without this as-
sumption, λ1 and λ2 can be found by trial and error, or by adjusting a parameter
σ to approximate the true noise level σ in (5). Examples of image restoration with
such approximation of the noise level will also be evaluated.

Section 2 of this paper gives a detailed description of minimization problem (4),
and we formally introduce the fourth-order PDE appearing in the image restoration
model. This fourth-order PDE together with a second-order PDE are the basic
ingredients in our composed model. The way these two PDEs interfere with each
other is discussed in Section 3. Implementation details are given in Section 4.
Section 5 is devoted to numerical examples, followed by some conclusions in Section
6.

2 Description of minimization problem (4)

It is in our interest to restore an image that is contaminated with noise. We use
functionals Ei, i = 1, 2, to measure the quality of the restoration process. Smaller
values of Ei correspond to a result that reflects features (flat, smooth and jumps)
in a better way than larger values do. One of the two basis functionals in our
approach is given by (1). From [1] we know that minimizing functional (1) yields
the associated Lagrange equation

−∇ ·
( ∇u
|∇u|

)
+ λ1(u− u0) = 0 in Ω,

∂u

∂n
= 0 on ∂Ω. (6)

Further, recall from [1] that the unknown parameter λ1 is given by

λ1 = − 1

σ2

∫

Ω

( ∇u
|∇u|

)
· ∇(u− u0) dxdy. (7)

An iterative method is used to solve (6) and (7) so that the solution satisfies these
equations at steady state, c.f. [1]. We want to find an equivalent formulation
for minimization problem (4). For simplicity we introduce the notation |D2u| =(
∇ux · ∇ux +∇uy · ∇uy

) 1
2

=
(
u2
xx + u2

xy + u2
yx + u2

yy

) 1
2

and write

E2(u) =

∫

Ω
|D2u| dxdy +

λ2

2

∫

Ω
|u− u0|2 dxdy. (8)

To find a weak solution for (8) we must investigate

∂E

∂u
· v =

∫

Ω

(∇ux · ∇vx +∇uy · ∇vy
|D2u|

)
dxdy + λ2

∫

Ω
(u− u0)v dxdy = 0. (9)
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Using Green’s lemma on the first part of (9) we get
∫

Ω

(∇ux · ∇vx +∇uy · ∇vy
|D2u|

)
dxdy =

∫

∂Ω

( 1

|D2u|
∂ux
∂n

)
vx +

( 1

|D2u|
∂uy
∂n

)
vy dS

−
∫

Ω
∇·
( ∇ux
|D2u|

)
vx +∇·

( ∇uy
|D2u|

)
vy dxdy,

(10)

where dS denotes the surface measure on ∂Ω. Here and later, the unit normal
vector on ∂Ω is denoted by n = (n1, n2). Let us also introduce the notation

G = [g1, g2] =
[
∇·
(
∇ux
|D2u|

)
,∇·

(
∇uy
|D2u|

)]
. Applying Green’s lemma on the vector

field G, we obtain
∫

Ω
G · ∇ v dxdy =

∫

∂Ω
G · n v dS −

∫

Ω
∇ ·G v dxdy. (11)

By combining (10) and (11) together with the notation of G, we see that
∫

Ω

(∇ux · ∇vx +∇uy · ∇vy
|D2u|

)
dxdy=

∫

∂Ω

( 1

|D2u|
∂ux
∂n

)
vx+

( 1

|D2u|
∂uy
∂n

)
vy dS

−
∫

∂Ω
∇·
( ∇ux
|D2u|

)
n1 v +∇·

( ∇uy
|D2u|

)
n2 v dS

+

∫

Ω

(
∇·
( ∇ux
|D2u|

))
x
v +

(
∇·
( ∇uy
|D2u|

))
y
v dxdy.

(12)

From this we conclude that a minimum for (8) occurs when
( uxx
|D2u|

)
xx

+
( uxy
|D2u|

)
yx

+
( uyx
|D2u|

)
xy

+
( uyy
|D2u|

)
yy

+ λ2(u− u0) = 0. (13)

If Ω is a rectangular domain, with an outer normal n = (n1, n2), we see from (12)
that the variational equality (9) implies the following the boundary conditions

uxx + uyx = 0
( uxx
|D2u|

)
x

+
( uxy
|D2u|

)
y

= 0



 on ∂Ω where n is orthogonal to the y-axe, (14)

uyy + uxy = 0
( uyx
|D2u|

)
x

+
( uyy
|D2u|

)
y

= 0



 on ∂Ω where n is orthogonal to the x-axe. (15)

The value of λ2 also needs to be determined such that (13) has a steady state with
condition (5) fulfilled at the steady state. We use the same idea as in [1] to obtain
such a formula for λ2. We simply multiply (13) by u − u0, integrate over Ω, and
make use of (5) to get

λ2 =
−1

σ2

∫

Ω

( uxx
|D2u|(u−u0)xx+

uxy
|D2u|(u−u0)yx+

uyx
|D2u|(u−u0)xy+

uyy
|D2u|(u−u0)yy

)
dxdy.

(16)
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In this section we have treated E1(u) and E2(u) and their associated Lagrangian
equations separately. However, we want to establish a positive interaction between
these equations and that is the topic for the next section.

3 Convex combination of the two minimiza-

tion problems

Here, we use the notation u and v to distinguish the solutions of (6) and (13)
respectively. From the Euler-Lagrange variational principle, the minimizer of u
and the minimizer of v can be interpreted as the steady state solution of the
nonlinear diffusion process

ut = ∇ ·
( ∇u
|∇u|

)
− λ1(u− u0), and (17)

vt = −
( vxx
|D2v|

)
xx
−
( vxy
|D2v|

)
yx
−
( vyx
|D2v|

)
xy
−
( vyy
|D2v|

)
yy
− λ2(v − u0), (18)

where we respectively use the initial condition u(x, y, 0) = u0(x, y) and v(x, y, 0) =
u0(x, y). Each of the above PDEs substantially suppress noise, but we do not ex-
pect their solutions u and v to be equal all over the image domain Ω, mainly
because (17) does not penalize discontinuities while (18) is known to recover
smoother surfaces. Both methods have their strengths and weaknesses depend-
ing on the characteristics of the image of interest. Because of this, we want to
generate a new solution by taking the best from each of the two methods by a
convex combination w = θu+(1−θ)v, for θ ∈ [0, 1]. We prefer that the weighting
function θ can be found adaptively. Due to the strengths and weaknesses of the
two models, it is desirable that the weighting function θ = 1 along edges and in
flat regions, emphasizing the restoration properties for (17). To emphasize the
restoration properties for (18) in smooth regions we want 0 ≤ θ < 1. By testing
several different approaches calculating the weighting function, we have found the
procedure to update θ discussed below is rather stable and gives good results.

Assume that we have a weighting function θold, a function u which is an in-
termediate solution of (17) and a function v which is an intermediate solution of
(18). We shall find a new weighting function θnew according to

θnew =

{
1 if |∇w| ≥ c

1
2 cos(2π|∇w|

c ) + 1
2 elsewhere,

(19)

where w = θoldu + (1 − θold)v. We define this mapping from u, v, θold to θnew

as ψ, i.e. θnew = ψ(θold, u, v). For large and small values of |∇w| the weight θ
approaches 1, and for intermediate values of |∇w| the weight function is closer to
0. The positive parameter c must be adjusted so that θ reaches its minimum value
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in regions that are linearly sloped. A typical example of the relationship between
|∇w|, c and θ are given in Figure 1.

1

0

PSfrag replacements
w

c |∇w|

Figure 1: An example of the weight function θ given by (19).

Choosing 0 << c < 1 means that only the absolute largest jumps are unaffected
of the fourth-order PDE (18). Since only small jumps (staircase effect) caused by
(17) should be suppressed with fourth-order PDE (18) we found c ∈ ( 1

20 ,
1
5) to be a

proper value if |∇w| is scaled to take values in the interval [0, 1]. With this choice
of c intermediate jumps were protected while the staircase effect was suppressed,
but this parameter is image dependent.

4 Implementation details

To discretize the equations (17) and (18), we use finite differences. Let ∆x and ∆y
be the mesh sizes for the x and y variables, and ∆t be the time step. We denote by
uk and vk the approximations for u(x, y, k∆t) and v(x, y, k∆t) respectively, where
x and y are the grid points. The approximations we have used in our scheme is
outlined in Table 1.
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Table 1: Discretization used in the implementations.

D±x (ui,j) ± 1
∆x [ui±1,j − ui,j]

D±y (ui,j) ± 1
∆y [ui,j±1 − ui,j ]

Dxx(ui,j)
1

∆x [D+
x (ui,j)−D+

x (ui−1,j)]

D±xy(ui,j) ± 1
∆y [D±x (ui,j±1)−D±x (ui,j)]

D±yx(ui,j) ± 1
∆x [D±y (ui±1,j)−D±y (ui,j)]

Dyy(ui,j)
1

∆y [D+
y (ui,j)−D+

y (ui,j−1)]

|Dx(ui,j)|
√(

D+
x (ui,j)

)2
+
(
m[D+

y (ui,j), D
−
y (ui,j)]

)2
+ ε

|Dy(ui,j)|
√(

m[D+
x (ui,j), D

−
x (ui,j)]

)2
+
(
D+
y (ui,j)

)2
+ ε

|D2(ui,j)|
√(

Dxx(ui,j)
)2

+
(
D+
xy(ui,j)

)2
+
(
D+
yx(ui,j)

)2
+
(
Dyy(ui,j)

)2
+ ε

To simplify the notations, we will omit the subscripts i, j and use uk to denote
uki,j . In Table 1 we have used the notation m[a, b] =

( sign a+sign b
2

)
min(|a|, |b|). The

details of the algorithm we have used are given in the following.

Algorithm 1 Given θ0 ∈ [0, 1], c ∈ [0, 1] and put u0 = v0 =u0. For k = 0, 1, . . .,
do

1. Find λk1 by (7) and update

ũk+1 = uk + ∆tD−x
( D+

x u
k

|Dxuk|
)

+ ∆tD−y
( D+

y u
k

|Dyuk|
)
−∆tλk1(uk − u0). (20)

2. Find λk2 by (16) and update

ṽk+1 = vk −∆t
[
Dxx

(Dxxv
k

|D2vk|
)

+D−yx
(D+

xyv
k

|D2vk|
)

(21)

+D+
xy

(D−yxvk
|D2vk|

)
+Dyy

(Dyyv
k

|D2vk|
)]
−∆tλk2(vk − u0).

3. Find θk+1 from (19), i.e.

θk+1 = ψ(θk, ũk+1, ṽk+1).

4. Do the convex combination

uk+1 = θk+1ũk+1 + (1− θk+1)ṽk+1, and let vk+1 = uk+1.
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When evaluating the finite differences for (20) and (21), the boundary condi-
tions (6) and (14)-(15) are needed. Implementation of (6) is explained in [1], and
implementation of (14)-(15) follows from Table 1.

Notice that a convex combination is done in each iteration for this algorithm.
Another approach could be to find the solution u and v independent of each other,
and combine them at convergence. Numerical tests indicate that a combination
in each iteration is most effective and accurate. Each of the numerical schemes
(20) and (21) are stable if they are solved separately, as long as ∆t fulfills the
Courant-Friedrichs-Lewy (or CFL) stability criterion. Numerical tests have shown
that the same holds if we combine them in each iteration. Moreover, the time step
needed by the combined scheme Algorithm 1 is always larger than in the fourth-
order scheme; the combined scheme not only improves the quality of the processed
image; it also improves the efficiency compared with the fourth-order scheme.

5 Numerical results

In this section we present some of the results obtained with the proposed Iterative
Image Restoration (IIR) model by alternating between PDE (17) and PDE (18).
Our results will be compared with the standard ROF model [1] given by solving
PDE (17), and the LLT model [6] given by solving PDE (18). For the numerical
examples we will use images composed of flat subregions, subregions with a smooth
change in the intensity value, and jumps. We expect ROF to restore and enhance
jumps more precisely than LLT does. On the other hand, we expect LLT to process
smooth subregions more correctly than ROF does. See [6] for a closer evaluation of
ROF and LLT. Using IIR the aim is to take the best out of each of these methods
to recover both jumps and smooth signals accurately.

In Figure 2, two gray-level images are depicted, together with the corresponding
intensity plots. At first glance, one may mistakenly think that the bright region
in the central part of the image in Figure 2(a) takes a constant intensity value,
but the intensity plot in Figure 2(c) reveals that there is a smooth change in the
intensity value in this region. To emphasize these details it is therefore essential to
visualize the results with both intensity plots and contour plots when we compare
the performance for the different schemes. To do a thorough evaluation, we will
also investigate and report the signal-to-noise-ratio (SNR) and the L2-norm of the
difference between the recovered image and the true image. For a given image u
and its noise observation u0, the noise is denoted as η = u0 − u. The following
formula has been used to calculate the SNR for the numerical experiments for a
given image u and noise η;

SNR =

∫
Ω(u0 − u0)2dxdy∫

Ω(η − η)2dxdy
, where u0 =

1

|Ω|

∫

Ω
u0 dxdy, and η =

1

|Ω|

∫

Ω
η dxdy.

In our first example, we used the noisy data shown in Figure 2(b) as input to
the ROF, LLT and IIR. Before processing, we observed ||u0 − utrue||2L2 ≈ 1.88 ·
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105 and SNR ≈ 12. There are several reasons for examine the image shown in
Figure 2(a). First of all, it consists of a rotationally invariant object, i.e. circular
edges. Secondly, evaluating an object like this should provoke the strengths and
the weaknesses for the three restoration methods listed above.
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(a) True image
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(b) Noisy image, SNR ≈ 12

0 10 20 30 40 50 60 70 80 90 100

0102030405060708090100
−10

0

10

20

30

40

50

60

70

(c) Intensity plot of (a)
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(d) Intensity plot of (b)

Figure 2: Two different ways to visualize the same data are given in the
upper and lower column. Regions with high function values in the lower
column correspond to bright regions in the images at the upper column.

In this first test we were specially interested in evaluating (i) the ability to
reproduce the cone on the top of the object, (ii) the ability to maintain the height
of the object, (iii) the ability to reproduce jumps and flat regions, and (iv) the
spurious staircase effect in smooth regions.
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(a) Processed with ROF
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(b) Processed with LLT
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(c) Intensity plot of (a)
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(d) Intensity plot of (b)

Figure 3: Two different approaches are used to find an improved image from
the noisy image given in Figure 2(b). Only the central portion of the intensity
plots is depicted in the lower column.

Let us first focus on the result obtained with ROF depicted in Figure 3(a)
and (c). The smooth change in the intensity value (i.e. the cone) is recovered as
piecewise constant subregions, as seen in Figure 3(c). This is a known byproduct of
the TV-norm methods in image restoration. On the other hand, flat regions and all
edges in this image are recovered accurate by ROF. Concerning the result obtained
with LLT, we observe that the staircase effect in smooth regions is suppressed but
edges are not recovered that accurately with this model. By comparing Figure
3(c)-(d) with Figure 2(c), the strengths and the weaknesses of the restoration
schemes ROF and LLT are clearly visible.
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(a) Processed with IIR
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(b) Intensity plot of (a)

Figure 4: IIR is used to find an improved image from the noisy image given
in Figure 2(b). Only the central portion of the intensity plot is depicted here.

All edges are recovered accurately with the iterative model as seen in Figure
4. At the same time, the staircase effect in smooth regions is avoided. These are
important improvements. Also when we evaluated the SNR and the L2-norm some
progress was found in the result achieved with the IIR model.

Table 2: SNR, L2-norm and ∆tmax for the different schemes.

Method SNR L2-norm ∆tmax(CFL)

ROF 115 1.64 · 104 0.35

LLT 148 1.66 · 104 0.09

IIR 163 1.22 · 104 0.17

From Table 2 we see that the L2-norm is reduced approximately 11.5 times
by both ROF and LLT, and 15.5 times by using the IIR model. These num-
bers indicate that some progress is made with IIR, but the important issues are
that IIR recovers smoother sub-surfaces where ROF suffers from the staircase ef-
fect and simultaneously preserves discontinuities in other parts of the image. We
observed that choosing ∆t > ∆tmax made the schemes unstable. The ratio be-
tween the three CFL-conditions is representative for what we found in other tests.
Higher-order PDEs are known to have more restricted time step than lower-order
PDEs. One important observation is that the time step restriction ∆tmax for IIR
is not bounded by the time step restriction for LLT, although the LLT model is
incorporated in the IIR model.
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For the convex combination θu+ (1 − θ)v in IIR, it is essential that the con-
tributions from v are suppressed at major discontinuities. The weight function θ
given by (19) controls the interplay between u from (17) and v from (18) in IIR. In
Figure 5 we visualize θ at convergence. This gray-level image indicates the ratio
between (17) and (18) for IIR. It is interesting to observe that all flat regions are
marked as bright regions, i.e. θ ≈ 1, meaning that no contribution from v occurs
in this region. For regions where smooth sub surfaces should be restored we find
θ < 1. This indicates that θ is estimated in accordance with the image features
given in Figure 2(c).
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Figure 5: Weight function θ at convergence.

In the next example the Lena image was corrupted with Gaussian distributed
noise. Before processing SNR ≈ 10 and L2-norm ≈ 1.97 · 107. In real applications
the exact noise level is seldom known. To simulate such a case the value we use
for σ in (7) and (16) is not the true noise level, but an approximation of the true
noise level σ. Let σ denote the noise level we use for the algorithms and σ denote
the true noise level. For the Lena image given in Figure 6(b) we challenge the
schemes by a poor estimate for the amount of noise when we deal with the noise
constraint, σ2 = 10

14σ
2.
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Table 3: SNR, L2-norm and ∆tmax for the different schemes.

Method SNR L2-norm ∆tmax(CFL)

ROF 35 4.79 · 106 1.10

LLT 40 4.26 · 106 0.24

IIR 43 4.05 · 106 0.80

Both ROF, LLT and IIR improve the restoration capacity when the correct
estimate for the amount of noise is used for the noise level constraint, but these
results are not reported here. As in Table 2, we observe some progress using IIR
compared with the two other schemes. However, the important issue is whether
IIR recovers smoother sub surfaces where ROF suffers from the staircase effect,
and simultaneously preserves discontinuities in other parts, also for natural images.
We zoom in the two regions marked with white rectangles in Figure 6(c) for a more
definite evaluation of the processed images.
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Figure 6: Lena image corrupted with Gaussian distributed noise. The white
rectangles in (c) indicate two regions of special interest, i.e. one typical
smooth region and one region with discontinuities.

14



(a) True image (b) Noisy image, SNR ≈ 10

(c) Processed with ROF (d) Processed with LLT (e) Processed with IIR

Figure 7: A small portion of the Lena image is shown to better emphasize
disparities in the smooth surface.

A small portion of the Lena image is shown in Figure 7. As expected, ROF
transforms smooth subregions like the cheek into piecewise constant regions. Both
LLT and IIR restore images with smoother surfaces that match Figure 7(a) in
a better way. It is not easy to distinguish between the two images depicted in
Figure 7(d) and (e). In this part of the image the weight function θ, given in
Figure 10, emphasize the effect of (18) in the convex combination between (17)
and (18) for IIR, and therefore the results from LLT and IIR are similar in this
part of the image. This effect is even better visualized in a contour plot given in
Figure 8. From the contours, we see that the results produced by LLT and IIR is
much smoother than the result of ROF and they also match the true contours in
a better way. All the three methods are able to preserve the discontinuity around
the lips and nose.
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(a) Ideal contour plot (b) Result with ROF

(c) Result with LLT (d) Result with IIR

Figure 8: A small portion of the Lena image is visualized with a contour plot
to better emphasize disparities between the models.

Next, we want to evaluate the performance of the three different methods in
regions that are dominated by discontinuities and piecewise constant signals, see
Figure 9. In regions with edges we observe that ROF restores and enhances these
image features in a better way than LLT, see Figure 9(c) and (d). Both ROF and
IIR recover images with edges in accordance with Figure 9(a). It is not easy to
distinguish between the two images depicted in Figure 9(c) and (e). Along the
discontinuities the weight function θ, given in Figure 10, emphasizes the effect of
(17) in the convex combination between (17) and (18) for IIR, therefore the results
from ROF and IIR are similar in this part of the image.
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(a) True image (b) Noisy image, SNR ≈ 10

(c) Processed with ROF (d) Processed with LLT

(e) Processed with IIR

Figure 9: A part of the Lena image with discontinuities.

The weight function θ given by (19) at convergence is shown in Figure 10. The
gray-level indicates the ratio between (17) and (18) for IIR. It is interesting to
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observe that all major edges are marked as bright regions, i.e. θ = 1, meaning that
IIR automatically preserves image boundaries in these regions while suppressing
noise.
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Figure 10: Weight function θ at convergence.

6 Conclusions

This paper describes a method for filtering gray-scale images corrupted by i.i.d.
Gaussian noise. The proposed method combines the TV-norm filter of Rudin, Os-
her and Fatemi (ROF) in [1] with a fourth-order PDE filter of Lysaker, Lundervold
and Tai (LLT) in [6]. The algorithm, which we call an ”Iterative Image Restora-
tion” (IIR) model, is based on a convex combination of the two corresponding
solutions of ROF and LLT, and an iterative way to determine the weighted aver-
age of these two solutions. We have tested the IIR algorithm on images consisting
of edge, flat and smooth sub-regions. The proposed algorithm is able to locate
discontinuities as accurate as the ROF algorithm, and, at the same time do a bet-
ter job in regions with a smooth variation. Moreover, the combined algorithm is
able to use a much less restrictive CFL condition than the fourth-order scheme of
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LLT. This is confirmed by numerical experiments. Due to the complexity of the
equations involved, it is not easy to supply a theoretical verification for this.
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