
A NONLINEAR MULTIGRID METHOD FOR CURVATURE
EQUATIONS RELATED TO TOTAL VARIATION MINIMIZATION

KE CHEN∗ AND XUE-CHENG TAI†

Abstract. Image restoration has been an active research topic in the last few years. While much
theory as well as many useful models and methods have been developed, there still exists a need to
develop fast iterative solvers. This paper proposes to use piecewise linear function spanned subspace
correction to design a multilevel method for directly solving the total variation minimisation. Both
the theoretical and experimental results are presented.
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1. Introduction. Given a bounded domain Ω ⊂ Rd, d = 1, 2, 3, · · · , we often
need to solve problems which can be written in the following general form:

min
u

(∫

Ω

|∇u|dx +
∫

Ω

f(u)dx

)
. (1.1)

The Euler-Lagrange equation for the above minimization problem is

−∇ ·
( ∇u

|∇u|
)

+ f ′(u) = 0, (1.2)

which is known as a curvature equation [20]. The application of problems (1.1) and
(1.2) range from image processing including noise removal [23, 18], segmentation [12,
15], deblurring [4], inverse problems [11] to motion driven by mean curvature [22, 20].
Owing to huge number of applications involved with models (1.1) and (1.2), the
demand for fast solvers for these problem is huge. Traditionally, the following methods
have been used to solve the equation (1.2):

(i) The fixed point iteration method [1, 32, 35, 36, 33, 34]: Once the coefficients
1/|∇ū| are fixed at a previous iteration ū, various iterative solver techniques
have been considered [35, 36, 8, 7, 6, 17]. There exist excellent inner solvers
but the outer solver can be slow. Further improvements are still useful.

(ii) The explicit time marching scheme [23, 21]: It turns the nonlinear PDE into
a parabolic equation before using an explicit Euler method to march in time
to convergence. The method is quite reliable but often slow.

(iii) The primal-dual method [9, 10, 4]: It solves for both the primal and dual
variable together in order to achieve faster convergence with the Newton
method (and a constrained optimisation with the dual variable). There does
not appear to exist any multilevel version and also the inner solvers can have
a convergence problem if the problem dimension gets large and β gets small.

Multigrid method (MGM) is one of the most powerful numerical methods for solv-
ing linear and nonlinear elliptic problems [37, 30]. Different efforts have been devoted
to developing MGM for the curvature equation (1.2), c.f [33, 6, 24, 2]. However, the
success so far is rather limited. The main obstacle for the success of MGM for (1.2) is
that the nonlinear diffusion coefficient |∇u|−1 could be highly oscillatory. It can also
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be degenerate or has values to be nearly infinity. Recently in [13, 16], the linear alge-
braic multigrid method [25] was adapted for solving the above PDE in each (outer)
step of a fixed iteration while [24] attempted to use the standard multigrid methods
with a non-standard and somewhat global smoother. Some other approaches, c.f.
[3, 26, 5, 19], have tried to design proper minimization problems over the coarser
meshes for the MGM which are in some sense trying to mimic the interpolation and
prolongation for a linear MGM. However, the convergence of this kind of method for
nonlinear problems is not as good as for linear problems.

In [28, 30, 29, 27], MGM and domain decomposition method (DDM) have been
interpreted as space decomposition techniques. Moreover, it is proved that efficiency of
DDM and MGM for some nonlinear problems is as good as for linear elliptic problems.
The essential idea is to use nonlinear smoothers for the subproblems which respect the
minimization problem in the sense that it will guarantee that the energy functional is
monotonically decreasing. In this work, we shall use these algorithms for the curvature
equation (1.2) and demonstrate numerically that the efficiency of the schemes can be
as good as for linear problems.

In Section 2, we introduce the general subspace correction methods for convex
functional minimisation. In Section 3, we detail our proposed multilevel algorithm
for problem (1.2) and present some preliminary analysis. We present numerical al-
gorithms and experiments in Section 4 for solving both the one-dimensional and
two-dimensional image denoising problems. Finally in section 5, we discuss some
conclusions and possible future work.

2. Nonlinear space decomposition algorithms. Consider a general mini-
mization problem over a reflexive Banach space V :

min
v∈V

F (v) (2.1)

where F is a strongly convex cost functional. We shall assume that the space V can
be decomposed into a sum of smaller subspaces, i.e.

V = V1 + V2 + · · ·+ Vm . (2.2)

This means that for any v ∈ V , there exists qi ∈ Vi such that v =
∑m

i=1 qi. Two
types of subspace correction methods can be derived based on (2.2), namely the
parallel subspace correction (PSC) method and the successive subspace correction
(SSC) method, as simple generalisations of the methods for operator equations [37].

Following previous studies [27, 28, 29, 30], the parallel subspace correction method
can be described as follows.

Algorithm 2.1. Choose an initial value u0 ∈ V and relaxation parameters
αi > 0 such that

∑m
i=1 αi ≤ 1.

1. For n ≥ 0, if un ∈ V is defined, then find pn
i ∈ Vi in parallel for i =

1, 2, · · · ,m such that

F (un + pn
i ) ≤ F (un + qi) , ∀qi ∈ Vi. (2.3)

2. Set

un+1 = un +
m∑

i=1

αip
n
i , (2.4)

and go to the next iteration.
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The successive subspace correction method can be described as follows:
Algorithm 2.2. Choose an initial value u0 ∈ V .
1. For n ≥ 0, since un ∈ V is defined, find un+i/m = un+(i−1)/m + pn

i with
pn

i ∈ Vi sequentially for i = 1, 2, · · · ,m such that

F
(
un+(i−1)/m + pn

i

)
≤ F

(
un+(i−1)/m + qi

)
, ∀qi ∈ Vi. (2.5)

2. Go to the next iteration.
The classical Gauss-Seidel and Jacobi relaxation methods and the modern DDM

and MGM can all be interpreted as space decomposition algorithms.
In order to see that relation between MGM and space decomposition, we shall try

to use finite element spaces. Similar explanations can also be given for finite difference
approximations. For the domain Ω, we assume that the finite element partition T
of Ω is constructed by a successive refinement process. More precisely, T = TJ for
some J > 1, and Tj for j ≤ J are a nested sequence of quasi-uniform finite element
partitions, i.e. Tj consist of finite elements Tj = {τ i

j} of size hj such that Ω = ∪iτ
i
j

for which the quasi-uniformity constants are independent of j and τ l
j−1 is a union of

elements of {τ i
j}. We further assume that there is a constant γ < 1, independent of

j, such that hj is proportional to γ2j .
In Fig. 2.1 and Fig. 2.2, we plot the basis functions and the refined meshes for

a domain in one and two dimensions. For the two dimensional case, a finer grid is
obtained by connecting the midpoints of the edges of the triangles of the coarser grid,
with T1 being the given coarsest initial triangulation, which is quasi-uniform. In this
example, γ = 1/

√
2. We can use much smaller γ in constructing the meshes, but the

convergence will be slower.
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Fig. 2.1. Basis functions and the mesh for one dimensional multigrids
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Level k = 1 Vk
i
, k=1, i=1

Level k = 2 Vk
i
, k =2, i =1,2,...9

Level k = 3 Vk
i
, k =3, i =1,2,...49

Level k = 4 Vk
i
, k =4, i =1,2,...225

Fig. 2.2. Basis functions and the mesh for two dimensional multigrids

Corresponding to each finite element partition Tj , a finite element space Mj can
be defined by

Mj = {v : v|τ ∈ P1(τ), ∀ τ ∈ Tj}.
Each finite element space Mj is associated with a nodal basis, denoted by {φi

j}nj

i=1

satisfying

φi
j(x

k
j ) = δik

where {xk
j }nj

k=1 is the set of all nodes of the elements of Tj . Associated with each such
a nodal basis function, we define an one dimensional subspace as follows

V k
j = span (φk

j ).

Letting V = MJ , we have the following trivial space decomposition:

V =
J∑

j=1

nj∑

k=1

V k
j . (2.6)

Each subspace V k
j is an one dimensional subspace and thus the subproblems (2.5) are

easy to solve.

3. Application to noise removal for digital images. For a given noisy image
z defined on a domain Ω = [0, 1]× [0, 1], one of the basic models to remove noise from
z is to use the ROF model [23]. The ROF model is to take F (v) in (2.1) to be

F (v) = α

∫

Ω

√
v2

x + v2
y + β dx +

∫

Ω

‖u− z‖2 dx. (3.1)

4



The minimizer of (2.1) with F given above is taken as the denoised image. The
constant α > 0 is chosen according to the noise level and the parameter β > 0 is
chosen to be small. The minimizer u is the solution of

−α∇ ·
(

∇u√
|∇u|2 + β

)
+ (u− z) = 0. (3.2)

Instead of solving problem (3.2) directly, we shall proceed to solve its related convex
minimisation problem (3.1) by a MGM.

For problem (3.1), we shall explain the details in using Algorithm 2.2 for multigrid
decomposition (2.6). Note that all the subspaces in the multi-dimensional decompo-
sition (2.6) are one dimensional. Thus, the subproblems (2.5) are essentially trying
to solve the following one dimensional minimization problem:

min
c∈R

F (w + cφk
j ), (3.3)

where w = un+(i−1)/m ∈ V and φk
j is the basis function over the jth level at the kth

node. As F is strongly convex, x is a minimizer of (3.3) if and only if it satisfies

∫

Ω

[
α
∇(w + xφk

j ) · ∇φk
j√

|∇(w + xφk
j )|2 + β

+ (w + xφk
j − z)φk

j

]
dx = 0. (3.4)

This one dimensional problem is nonlinear and we may use the fixed point iteration
of [1] to solve it, i.e. start with an x0 = 0 and recursively get xl from

∫

Ω

[
α
∇(w + xl+1φk

j ) · ∇φk
j√

|∇(w + xlφk
j )|2 + β

+ (w + xl+1φk
j − z)φk

j

]
dx = 0. (3.5)

It is easy to see that

xl+1 =
bk
j − ak

j (w)
ak

j (φk
j )

, bk
j =

∫

Ω

(z − w)φk
j dx and

ak
j (v) =

∫

Ω

[
α

∇v · ∇φk
j√

|∇(w + xlφk
j )|2 + β

+ vφk
j

]
dx. (3.6)

It is easy to see that ak
j (φk

j ) > 0 and thus such an iteration will never break down.
As w is a function over the fine mesh, thus we must use the fine mesh elements in
doing integrations for getting ak

j (w) and ak
j (φk

j ). Regarding complexity, we note that
the domain integration in (3.5) and (3.6) does not present complications because the
basis function φk

j is only defined locally (as with finite elements). This is addressed
in the next section.

4. Numerical algorithms and experiments. To implement Algorithm 2.2
using the above described framework via (3.3-3.6), we now examine the details of
solving the discrete problems of these equations for a more efficient implementation.
The idea will be applicable to more general setting. Then we shall present some
experimental results.
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Fig. 4.1. The one dimensional basis function φk
j – on the coarse level j = 2 and at a middle

node k = 2 (top plot) and at end nodes (bottom plot).
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4.1. The one dimensional algorithm. Firstly we consider the one dimen-
sional case and note that φk

j (on level j = 2 and at node k = 2) may be illustrated by
Figure 4.1. We wish to simplify the functional as much as possible by using the com-
pact support of φk

j . For easier notation, we drop the parameter β (and re-introduce
it back later). Then simple manipulations show that (note boundary basis functions
require the usual adjustment in indices).

In the discrete setting for one dimensional problems, the cost functional (3.1)
with β = 0 is:

F (u) = α

n−1∑

i=1

|D+
x ui|+ 1

2

n∑

i=1

(ui − zi)2

where n is the total number of nodes, D+
x (also later D+

y ) is the standard forward
finite difference operator. Let Ωk

j be the support set of φk
j and Ω̄k

j be its closure.
Corresponding to Ωk

j and we define Ik
j = {i| xi ∈ Ωk

j ∩N} and Īk
j = {i| xi ∈ Ω̄k

j ∩N}
with N being the set of the nodal points for the discretization. It is clear that

F (u) = F̃ k
j (u) + α

∑

i∈Īk
j

|D+
x ui|+ 1

2

∑

i∈Ik
j

(ui − zi)2, (4.1)

where F̃ k
j contains all terms not overlapping with the support of φk

j . Let vi = φk
j (xi).
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With the above splitting of the functional

F (w + cφk
j ) = F̃ k

j (w) + α
∑

i∈Īk
j

|D+
x wi − cD+

x vi|+ 1
2

∑

i∈Ik
j

(wi − zi + cvi)2.

= F̃ k
j (w) + α

∑

i∈Īk
j

|D+
x wi − cD+

x vi| +
s

2
(c− z∗)2, (4.2)

where z̄ = z − w,

s =
∑

i∈Ik
j

v2
i and z∗ =

∑

i∈Ik
j

viz̄i/s.

Therefore, in 1D, solving (3.3) is equivalent to solving

min
c∈R

[
α

∑

i∈Īk
j

|D+
x wi − cD+

x vi| +
s

2
(c− z∗)2

]
,

and (with β added) the following

min
c∈R

J(c), J(c) =
[
α

∑

i∈Īk
j

√(
D+

x wi − cD+
x vi

)2 + β +
s

2
(c− z∗)2

]
. (4.3)

Further, implementing (3.5) and (3.6) for the simplified equation (4.3) leads to the
iterations

[
α

∑

i∈Īk
j

|D+
x vi|2√(

D+
x wi − xlD+

x vi

)2 + β
+ s

]
xl+1 =

[
sz∗ − α

∑

i∈Ik
j

D+
x wiD

+
x vi√(

D+
x wi − xlD+

x vi

)2 + β

]
, for l = 1, 2, · · · . (4.4)

4.2. The two dimensional algorithm. Secondly we can apply the same ar-
gument of simplification to the 2D case, where we note that a 2D basis function φk

j

(similar to Figure 4.1) may be illustrated by Figure 4.2. That is, the terms in the
functional F (w + cφk

j ), c ∈ R, from (3.3) may again be grouped and simplified ac-
cording to the compact support of φk

j . Similar to the 1D case in (4.2), the values of
the 2D basis function may be denoted by matrix v, which takes the values

v =




0 0 0 0 0 0 0 0 0
0 1

4
1
4

1
4

1
4 0 0 0 0

0 1
4

1
2

1
2

1
2

1
4 0 0 0

0 1
4

1
2

3
4

3
4

1
2

1
4 0 0

0 1
4

1
2

3
4 1 3

4
1
2

1
4 0

0 0 1
4

1
2

3
4

3
4

1
2

1
4 0

0 0 0 1
4

1
2

1
2

1
2

1
4 0

0 0 0 0 1
4

1
4

1
4

1
4 0

0 0 0 0 0 0 0 0 0




(4.5)

for the example of j = 3 and b = bj = 4 (as in Figure 4.2) and when we zoom in the
neighbourhood of index k (as v is actually a global quantity with a compact support).
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Fig. 4.2. The two dimensional basis function φk
j (on the coarse level j = 3 and at the center

node k. Note on the right plot, only the weights v` along a diagonal, as in (4.5), are shown.)
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Let the quantities v, Ωk
j , Ik

j and Īk
j be defined in a similar way as for 1D problems.

In the discretized setting, we have

F (u) = α

n∑

k1=1

m∑

k2=1

√
(D+

x uk1,k2)2 + (D+
y uk1,k2)2 +

1
2

n∑

k1=1

m∑

k2=1

(uk1,k2 − zk1,k2)
2 (4.6)

where F̃ k
j contains all terms not overlapping with the support of φk

j . Similar to the
1D case, we are ready to simplify F (w + cφk

j ) as follows:

F (w + cφk
j ) = F (w + cv) = F̃ k

j (w) +

α
∑

(k1,k2)∈Īk
j

√
(D+

x wk1,k2 + cD+
x vk1,k2)2 + (D+

y wk1,k2 + cD+
y vk1,k2)2 + β

+
1
2

∑

(k1,k2)∈Ik
j

(z̄k1,k2 − cvk1,k2)
2,

= F k
j (w, z̄, v) + α

∑

(k1,k2)∈Īk
j

Tk1,k2(c) +
s

2
(c− z∗)2, (4.7)

where F̃ , z̄ = z − w and F do not involve c,

z∗ =
∑

(k1,k2)∈Ik
j

z̄k1,k2vk1,k2

s
, s =

∑

(k1,k2)∈Ik
j

v2
k1,k2

, and

Tk1,k2(c) =
√
|D+

x (wk1,k2 + cvk1,k2)|2 + |D+
y (wk1,k2 + cvk1,k2)|2 + β.
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Omitting the details, we find that the updating of (3.6) or (3.5) in the discretized
setting for 2D problem is:

[
α

∑

(k1,k2)∈Īk
j

|D+
x vk1,k2 |2 + |D+

y vk1,k2 |2
Tk1,k2(xl)

+ s

]
xl+1 =

[
sz∗ − α

∑

(k1,k2)∈Īk
j

D+
x wk1,k2D

+
x vk1,k2 + D+

y wk1,k2D
+
y vk1,k2

Tk1,k2(xl)

]
, for l = 1, 2, · · · .

(4.8)

The iteration for (3.5) is stopped when |ak
j (w + xlφk

j ) − bk
j | ≤ τinner. Numerical

experiments will show that the convergence rate is nearly independent of τinner. Nor-
mally, just carrying out one or two iterations for (3.4) is sufficient to get rather good
convergence rate. For linear problems, the cost per iteration for the multigrid itera-
tion can be reduced to O(DOF ) where DOF is the total number of degree of freedom.
For the nonlinear problem here, the cost per iteration is O(DOF log(DOF )).

Finally we present some numerical experiments. The above proposed algorithm
(Algorithm 2.2 with (3.3) as a core step) has not been applied to the image total
variation minimisation before. Here we shall first test its effectiveness in solving
the image total variation minimisation for some image denoising problems. Then we
experiment on the dependence of the convergence of the proposed multigrid algorithm
on the image problem sizes. Finally we experiment on the influence of the inner Picard
fixed point iterations (3.4) on the overall convergence performance. As we see, the
method is not sensitive to the choice of problem sizes and accuracy of the inner Picard
type fixed point iterations.

Test problems and results. We shall consider 4 one-dimensional problems as
shown in Figure 4.3 and another 4 two-dimensional problems as shown in Figure 4.5.
The signal-to-noise ratio (SNR) is taken as 10 (for smaller SNR all iterations will
be less, as expected). The iterative method will be stopped whenever the relative
dynamic residual ‖uk+1 − uk‖2/‖uk+1‖2 < τouter for a prescribed tolerance τouter.
Then k + 1 will be the number of outer iteration steps. There is another prescribed
tolerance τinner which is to control how accuracy the iterations should be in the
solution of the local minimisation (3.3). Here we take τinner = τouter = 10−3 and
β = 10−4 for the regularising parameter. The processed results by our algorithm
is shown in Figure 4.4 (for N = 4097) and Figure 4.6 (for N × N = 257 × 257)
respectively, where the symbol ¤ refers to our algorithm while the symbol × the
method of [9]. Clearly one observes that our method converges quite quickly and
gives a result which is not distinguishable from the result of [9].

4.3. Sensitivity of the method on problem size n. It is of interest to in-
vestigate any dependence of the overall algorithm convergence as the problem sizes
increase (n in 1D and n× n in 2D). In Table 4.1, we fix both tolerances τinner, τouter

and vary the problem size to see how many convergence steps are needed. Clearly one
observes that the convergence of our method is not much affected by n, especially for
the 2D problems. For the 1D case, the convergence patterns become clear and the
number of steps approaches a constant as n increases.

4.4. Sensitivity to the inner fixed point iterations. We next address how
crucial the inner nodal solver is for the overall algorithm. To this end, we fix the
problem size n and the tolerance τouter. Table 4.2 shows the results obtained for the
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Fig. 4.3. The 1D test examples
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Fig. 4.4. The 1D processed results: ¤ - the new multilevel algorithm and × - the primal-dual
method [9].
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Fig. 4.5. The 2D test examples
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Fig. 4.6. The 2D processed results: ¤ - the new multilevel algorithm and × - the primal-dual
method [9].
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Table 4.1
Test of dependence of the problem sizes (n in 1D and n×n in 2D): ‘Dim’ denotes ‘Dimension’,

‘Prob’ stands for ’Problem number’, ‘Levels’ indicates the “levels used in the multilevel algorithm”
and ‘Steps’ the “number of multilevel steps’. Here τ = 10−3, β = 10−4. Clearly there is no strong
dependence. Here the Problem numbers refer to Figure 4.3 for 1D and Figure 4.5 for 2D.

Dim Prob Size Levels Steps Prob Size Levels Steps
1D 1 65 6 25 2 65 6 17

129 7 11 129 7 11
257 8 7 257 8 5
513 9 8 513 9 6
1015 10 5 1015 10 4
2049 11 4 2049 11 4
4097 12 3 4097 12 4
8193 13 4 8193 13 4
16385 14 3 16385 14 4
32769 15 3 32769 15 4
65537 16 3 65537 16 4

1D 3 65 6 9 4 65 6 34
129 7 7 129 7 23
257 8 8 257 8 18
513 9 5 513 9 12
1015 10 5 1015 10 8
2049 11 5 2049 11 6
4097 12 5 4097 12 4
8193 13 4 8193 13 4
16385 14 4 16385 14 4
32769 15 4 32769 15 4
65537 16 4 65537 16 4

2D 1 33×33 5 6 2 33×33 5 5
65×65 6 6 65×65 6 5

129×129 7 6 129×129 7 5
257×257 8 6 257×257 8 5

2D 3 33×33 5 6 4 33×33 5 5
65×65 6 6 65×65 6 5

129×129 7 6 129×129 7 5
257×257 8 6 257×257 8 5

selected test problems in 1D and 2D from varying the inner solver tolerance τinner

within the range of a value below τouter to another much larger value. Clearly the
overall multilevel method is not much affected. Note that for the cases associated
with using the largest tolerance τinner = 10, the number of inner iterations is mostly
one and hence the inner solver is far from convergence and yet the outer iterations
can converge. This latter observation is somewhat related to the inner-outer iteration
control as shown in [14] and adopted in the algorithm of [9]. It is possible to work
out an appropriate formula for τinner.

5. Conclusions. This paper has considered a nonlinear multigrid method for
solving curvature equations related to total variation minimization. Numerical tests
show that the convergence for the MG algorithm is mesh independent as long as α is
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Table 4.2
Test of dependence of the accuracy of the inner nodal solver (n = 8193 and Levels=13 in 1D

and n × n = 257 × 257 and Levels= 8 in 2D): ‘Levels’ indicates the “levels used in the multilevel
algorithm” and ‘Steps’ the “number of multilevel steps’. Here τ = β = 10−4 and τinner is the
tolerance used for each nodal relaxation solver (note: the minimal number of relaxation steps is 1).
Clearly there is no strong dependence. Here again, the Problem numbers refer to Figure 4.3 for 1D
and Figure 4.5 for 2D.

Dimension Problem τinner Steps Problem τinner Steps
1D 1 10−5 8 2 10−5 4

10−4 8 10−4 4
10−3 8 10−3 4
10−2 8 10−2 4
10−1 8 10−1 4
10−0 8 10−0 4
10+1 8 10+1 4

1D 3 10−5 5 4 10−5 11
10−4 5 10−4 11
10−3 5 10−3 11
10−2 5 10−2 11
10−1 5 10−1 11
10−0 5 10−0 11
10+1 5 10+1 11

2D 1 10−5 10 2 10−5 5
10−4 10 10−4 5
10−3 10 10−3 5
10−2 8 10−2 5
10−1 8 10−1 5
10−0 10 10−0 5
10+1 11 10+1 5

2D 3 10−5 6 4 10−5 7
10−4 6 10−4 7
10−3 6 10−3 7
10−2 6 10−2 7
10−1 6 10−1 7
10−0 6 10−0 8
10+1 6 10+1 9

not chosen to be very large, i.e. α ∈ (0, 1]. The parameter β is used to control the
width of the jumps. The smallest width is over one mesh element. As long as β is
chosen in this range, the algorithm offers mesh independent convergence which is also
not very sensitive to the values of β. However, we can take β ≈ 0 for experimental
purposes. For very small β, overflow may happen during the iterations and we will
then have problems to have our algorithms to converge. It is known that the algorithm
of [9] is rather robust with respect to α and β. For most of the experiments we have
done, we need less than 20 iterations to get a results which is nearly undistinguishable
from the results of [9].

Even mesh independent convergence is observed in our numerical simulations. A
full theoretical justification is still missing for small β (including β = 0). In order
to use the existing theory to justify this convergence behaviour, we need to verify
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that the functional F and the decomposed spaces satisfy some theoretical conditions
(relating to differentiability), see [27, p.212] and [30, p.121]. Up to now, it is still an
open problem to find a proper norm for F to satisfy the needed conditions. Although
the standard total variation norm does not satisfy the required conditions, as the
problem (1.2) is a nonlinear diffusion process and the subproblem iteration procedure
is reducing the cost functional all the time, thus it respects the nonlinear diffusion
behavior of the problem and corrects the errors up when going to finer and finer
meshes.
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