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Abstract. This paper studies the total variation regularization model with an L1 fidelity term
(TV-L1) for decomposing an image into features of different scales. We first show that the images
produced by this model can be formed from the minimizers of a sequence of decoupled geometry
subproblems. Using this result we show that the TV-L1 model is able to separate image features
according to their scales, where the scale is analytically defined by the G-value. A number of other
properties including the geometric and morphological invariance of the TV-L1 model are also proved
and their applications discussed.
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1. Introduction. Let a grey-scale n-dimensional image be represented by a
function f on a domain of Rn. In this paper, we restrict our discussion to typi-
cal 2-dimensional open domains (typically, Ω = R2 or (0, 1)2). The TV-L1 model
obtains a decomposition of f by solving the following model:

(1.1) inf
u∈BV

TV (u) + λ‖f − u‖L1 ,

for the minimizer u∗λ and v∗λ = f −u∗λ, where BV is the space of functions of bounded
variation, TV (u) is the total variation of u, and f ∈ L1(Ω). The latter is needed
for technical reasons given below. Previous work on this model for image/signal pro-
cessing includes Alliney’s pioneering study [2, 3, 4] of the discrete version of (1.1),
Nikolova’s [31, 32, 33] discovery of the usefulness of this model for removing impul-
sive noise, Chan and Esedoglu’s [16] further analysis of this model, and a series of
applications of this model in computer vision by Chen et al. [21, 19, 20] and in
biomedical imaging Yin et al. [40].

In this paper we extend the existing analysis of the TV-L1 model. In particular,
we show its equivalence to the non-convex geometry problem:

(1.2) min
U

Per(U) + λ |S4U |,

where Per(U) is the perimeter of the set U , S4U ≡ (S\U)∪ (U\S) is the symmetric
difference of the sets S and U , and |S4U | is its area. We use this equivalence to
obtain results on TV-L1’s scale-based feature selection properties. We first give a
brief introduction to the framework of total variation-based image processing models
and the space of functions of bounded variation.
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1.1. Notation. We use following notation throughout this paper (the TV and
Per functionals are defined in the next section):

1. The TV-L1 energy: E(u;λ, f) = TV (u) + λ‖u− f‖L1 ;
2. The minimizer of E(u;λ, f): u∗, which may also be subscripted by λ;
3. The TV-L1 operator: Tt · f denotes a minimizer u∗ of E(u; 1/t, f) (if there

are multiple minimizers, Tt · f gives a specific u∗);
4. Composite operator: Ts◦Tt·f = Ts·(Tt·f) denotes a minimizer of E(u; 1/s, (Ts·
f));

5. The super level set: L(f, µ) = {x ∈ dom(f) : f(x) > µ};
6. The geometry energy: EG(U ;λ, S) = Per(U) + λ |S4U |;
7. The minimizer of EG(U ;λ, S): U∗, which may also be subscripted by the

penalty parameter λ or the level parameter µ, when S = L(f, µ), to emphasize
the dependence on λ or µ, respectively;

8. For two sets S and T , S+T := S∪T when S∩T = ∅ is (implicitly) assumed;
9. For two sets S and T , S − T := S \ T when S ⊇ T is (implicitly) assumed.

1.2. Total variation (TV) models. A general framework for obtaining a de-
composition of an image f into a regular part u and an irregular part v is to solve
the problem

(1.3) inf
u
{‖s(u)‖A | ‖t(u, f)‖B ≤ σ},

for u, where s(·) and t(·, ·) are two functionals on appropriate spaces and ‖ · ‖A and
‖ · ‖B are norms (or semi-norms). ‖ · ‖A and s(·) should be chosen so that ‖s(u)‖A
is small for regular signals u but much bigger for irregular noise v. Then, minimizing
‖s(u)‖A is equivalent to regularizing u according to the measure ‖s(u)‖A. A typical
choice for ‖s(u)‖A is

∫
|Du|p, where u ∈ BV , the space of functions of bounded

variation (see Def. 1.1), and Du denotes the generalized derivative of u. For p > 1,
minimizing

∫
|Du|p tends to produce rather smooth functions. In particular, p = 2

gives Tihoknov regularization. Therefore, to keep edges like object boundaries in u
(i.e. to allow discontinuities in u), one should use p = 1. An adaptive combination of
these semi-norms can be used to keep sharp edges while avoiding staircase effects in
regions where the image varies smoothly. The fidelity term ‖t(u, f)‖B ≤ σ forces u to
be close to f . t(u, f) is often chosen to be f −u ≡ v. The choice of a particular norm
depends on the application. In image denoising, a common choice (known as the ROF
model) is ‖t(u, f)‖B = ‖f − u‖L2 , which is small if f − u is noise. The ROF model
[36] by Rudin, Osher, and Fatemi was the first use of total variation regularization in
image processing. In deblurring with denoising, for example, ‖t(u, f)‖B = ‖f−Au‖L2

is commonly used, where A is a blurring operator. The pioneering ROF model led
the way to a rich area of total variation-based image processing. See [17] for a survey.

If ‖s(u)‖A and ‖t(u, f)‖B are convex in u, the constrained minimization problem
min{‖s(u)‖A s.t. ‖t(u)‖B ≤ σ} is equivalent to its Lagrangian form min{‖s(u)‖A +
λ‖t(u, f)‖B}, where λ is the Lagrange multiplier for the constraint ‖t(u)‖B ≤ σ. The
two problems have the same solution if λ is chosen equal to the optimal value of the
dual variable corresponding to the constraint in the constrained problem. Given σ or
λ, one can calculate the other value by solving the corresponding problem.

1.3. The BV and G spaces and norms. We now formally define the Banach
space BV of functions with bounded variation and the Banach space G, which is dual
to a subspace of BV , and norms defined on these spaces. We provide these for the
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completeness. They are relevant to some of the results in Section 7. Readers familiar
with the theoretical foundation of total variation [6] can skip this subsection.

Definition 1.1. [42] Let u ∈ L1, and define

TV (u) := sup
{∫

u div(~g) dx : ~g ∈ C1
0 (Rn; Rn), |~g(x)|l2 ≤ 1 for all x ∈ Rn

}
,

and ‖u‖BV := ‖u‖L1 + TV (u), where C1
0 (Rn; Rn) denotes the set of continuously

differentiable vector-valued functions that vanish at infinity. The Banach space of
functions with bounded variation is defined as

BV =
{
u ∈ L1 : ‖u‖BV <∞

}
,

and is equipped with the ‖ · ‖BV -norm. Moreover, TV (u) is a semi-norm. BV (Ω)
with Ω being a bounded open domain is defined analogously to BV with L1 and
C1

0 (Rn; Rn) replaced by L1(Ω) and C1
0 (Ω; Rn), respectively.

If u is in the smaller Sobolev space W 1,1(Rn) and Du is the generalized derivative
of u, then we have from the definition above, using integration by parts:

(1.4) u ∈ BV ∩W 1,1(Rn) ⇔ sup
~g∈C0(Rn;Rn) |~g(x)|l2≤1

∫
Du · ~g ≤ ∞.

We can also see from (1.4) that each u defines a bounded linear functional Lu(g)
on C0(Rn; Rn) [11]. Using the Riesz representation theorem (also referred to as the
Riesz-Markov theorem) on the isomorphism between the dual of C0(Rn; Rn) and the
set of bounded vector Radon measures, we immediately have the following equivalent
and often used definition:

BV = {u : Du is a bounded Radon vector measure on Rn} .

When Du is considered as a measure, TV (u) over a set Ω ⊆ Rn equals the total
variation of Du as the Borel positive measure over Ω. This is given by

‖Du‖(Ω) = sup

{
n∑
i=1

‖Du(Ei)‖ :
n⋃
i=1

Ei ⊆ Ω, Ei’s are disjoint Borel sets

}
,

where the Borel sets are the σ-algebra generated by the open sets in Rn. This is
true because each ~g ∈ C0(Rn; Rn) such that ‖~g‖l2 ≤ 1 is the limit of a series of
[−1, 1]-valued vector functions that are piecewise constant on Borel sets.

In the dual space of C0(Rn; Rn) we define weak-* convergence of Dun to Dn as

lim
n→∞

∫
Ω

Dun · ~g =
∫

Ω

Du · ~g,

for all ~g ∈ C0(Rn; Rn).
Sets in Rn with finite perimeter are often referred to as BV sets. The perimeter

of a set S is defined as follows:
(1.5)

Per(S) := TV (1S) = sup
{∫

S

div(~g)dx : ~g ∈ C1
0 (Rn; Rn), |~g(x)|l2 ≤ 1,∀ x ∈ Rn

}
,

where 1S is the indicator function of S.
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Next, we define the space G [29].
Definition 1.2. Let G denote the Banach space consisting of all generalized

functions v(x) defined on Rn that can be written as

(1.6) v = div(~g), ~g = [gi]i=1,...,n ∈ L∞(Rn; Rn),

and equipped with the norm ‖v‖G defined as the infimum of all L∞ norms of the func-
tions |~g(x)|l2 over all decompositions (1.6) of v. In short, ‖v‖G = inf{‖ |~g(x)|l2 ‖L∞ :
v = div(~g)}. G is the dual of the closed subspace BV of BV , where BV := {u ∈
BV : |Du| ∈ L1} [29]. We note that finite difference approximations to functions in
BV and in BV are the same. For the definition and properties of G(Ω), see [10].

An immediate consequence of Definition 1.2 is that

(1.7)
∫
u v =

∫
u∇ · ~g = −

∫
Du · ~g ≤ ‖Du‖‖v‖G,

holds for any u ∈ BV with compact support and v ∈ G. We say (u, v) is an extremal
pair if (1.7) holds with equality. This result was recently used by Kindermann, Osher
and Xu [27] to recover f from an ROF generated v, which may have applications in
image encryption.

The rest of the paper is organized as follows. In Section 2 we present a simple ex-
ample to introduce some preliminaries and existing results on the TV-L1 model. Sec-
tion 3 is devoted to the monoticity property of the geometry problem minU⊂R2 Per(U)+
λ|S4U |, which serves as a basis for the rest of the paper. In Section 4 we use the
results in Section 3 to construct the solution of the TV-L1 model and discuss compu-
tational methods based on this construction. Sections 5 and 6 discuss feature selection
and geometric and morphological invariance properties of the TV-L1 model. In Sec-
tion 7 we take a different analytic approach to establish the relationship between an
approximate and the exact TV-L1 model. Numerical results illustrating properties of
the model are given in Section 8. Some technical results are given in Appendices A
and B.

2. Preliminary properties of the TV-L1 model. Let us first see how the
TV-L1 model (1.1) acts on the simple 2-dimensional image

f = c1Br(0),

which has intensity c > 0 at all points (x1, x2) inside the disk Br(0) ≡ {(x1, x2) :
x2

1 + x2
2 ≤ r2} and intensity 0 everywhere else.

Chan and Esedoglu [16] showed that for this f , solving (1.1) gives

u∗λ =


0, if 0 < λ < 2

r ,

c′f for any c′ ∈ [0, 1], if λ = 2
r ,

f, if λ > 2
r .

In general the minimizer of the TV-L1 is nonunique. In the above disk example, if
λ = 2/r, problem (1.1) has an infinite number of minimizers.

Two surprising points about this example are worth mentioning. First, the signal
is never corrupted by the TV-L1 decomposition: for all values of λ except 2/r, where
nonuniqueness occurs, the entire signal of f is either completely contained in u∗λ or
completely contained in v∗λ. This is not case in the ROF (TV-L2) decomposition.
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Strong and Chan [39] showed that, for this f , the ROF model gives u∗λ = c′λf , where
c′λ is a constant scalar lying in [0, 1), never reaching 1 exactly. In other words, even if
the input image f is completely noiseless, there does not exist a value of λ that gives
an uncorrupted output in the ROF model. Meyer [29] characterized this phenomenon
using the G-norm: if ‖f‖G ≥ 1

2λ , then the v∗λ of the ROF model satisfies ‖v∗λ‖G = 1
2λ ;

otherwise, if ‖f‖G < 1
2λ , the decomposition is meaningless since u∗λ ≡ 0 and v∗λ = f .

Since v∗λ corresponds to signal noise in the ROF model, Meyer’s analysis indicates
that the ROF model corrupts a noiseless input. However, it is desirable that noise-
free images or image portions be kept invariant by a signal-noise decomposition. To
achieve this, a remedy proposed by Osher et al in [34] for the ROF model iterates the
decomposition using fk = f + vk−1. In contrast to the ROF model, the TV-L1 model
keeps the integrity of the signal in its decomposition.

The second surprising property of the TV-L1 model exposed by this example is
that the value of λ at which u∗λ switches from 0 to f depends on the size of signal (i.e.,
the radius of the disk), and not on its intensity c. This is very surprising because the
fidelity term ‖f − u‖L1 clearly penalizes the intensity difference between f and u∗.
For the aforementioned disk signal [16] or inputs like an annulus or a set of concentric
annuli, and more general inputs with level sets contained inside a convex outer curve,
one may derive analytic solutions using a symmetry argument (e.g., see Appendix
A) or total variation flow (see [5, 12, 13, 8, 9] for extensive studies of the minimizers
of minU⊂S Per(U) − λ|U | when S is convex or has an external boundary that is a
convex curve using total variation flow); but how should one choose λ for an image
that may contain signals of different scales and arbitrary shapes so as to isolate in
u∗λ certain of these signals? In Sections 5 and 6, we give a rigorous proof of this
intensity-independent property of the TV-L1 model for general image inputs. This
property was observed by Chan and Esedoglu and mentioned in their work [16].

Even though Alliney and Nikolova did not explicitly draw these conclusions in an
analytic way in their papers [2, 3, 4, 31, 32], they made related observations, and their
successful attempts of applying the 1D/2D TV-L1 to signal processing were based on
these properties. Alliney studied the 1D and discrete version of the TV-L1 energy
and proved that his recursive median filter can construct u∗λ directly. Many of his
1D results were later extended to 2D or higher dimensional spaces in [16]. Nikolova
focused on the minimization of non-differentiable data fidelity terms, including the
L1 fidelity term, and presented impressive and successful applications of the TV-L1

model to impulsive noise removal and outlier identification. She observed that u∗, the
reconstructed image, was exact at some pixels and related this finding to the property
of contrast-invariance. Later, Chan and Esedoglu [16] compared the continuum of
ROF and TV-L1 energies and studied the geometric properties of u∗λ. Some of their
results are quoted below.

Proposition 2.1. The TV-L1 energy of a function f can be expressed as an
integral of the geometry energies of the super level sets of f ; i.e.,

(2.1) E(u;λ, f) =
∫ ∞

−∞
EG (L(u, µ);λ, L(f, µ)) dµ.

Formula (2.1), which is called the Layer Cake formula in [16], can be obtained by
combining the co-area formula [24]

∫
|∇u| =

∫∞
−∞Per(L(u, µ))dµ with the formula∫

|u− f |dx =
∫∞
−∞ |L(u, µ)4L(f, µ)|dµ.

Proposition 2.2. If the observed image is a characteristic function of a set
S, i.e., f = 1S, and u∗λ = minuE(u;λ,1S), then 1L(u∗λ,µ) for any µ ∈ [0, 1) also
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minimizes E(u;λ,1S).
An equivalent of the above proposition is
Proposition 2.3. Any [0, 1) level set of the minimizer u∗λ of E(u;λ,1S) solves

the geometry problem

(2.2) min
U⊆R2

EG(U ;λ, S).

Propositions 2.2 and 2.3 state that the non-convex geometry problem (2.2) can be
converted into the TV-L1 problem (1.1), which is a convex problem. This geometry
problem finds applications in removing isolated binary noise and enhancing binary
fax images. Given a binary signal S, one can solve the TV-L1 problem with input
f = 1S . If the solution u∗ is not binary, then one should examine its level sets.

In the rest of the paper, we exploit the converse of this process: given an observed
image f , one can solve a series of geometry problems (2.2) and use the series of
solutions, which are sets, to construct u∗ explicitly.

3. The TV-L1 geometry problem. In [16] Chan and Esedoglu raised the
following question about the geometry problem (2.2):

If S1 ⊂ S2 and U∗1 and U∗2 are minimizers of the geometry problem
(2.2) with inputs S = S1 and S = S2, respectively, is U∗1 ⊂ U∗2 ?

While the absolute answer is “no”, the answer is affirmative for a variant of the above
question:

Theorem 3.1. Suppose that S1 ⊂ S2 and U∗1 and U∗2 are minimizers of the
geometry problem (2.2) with inputs S = S1 and S = S2,

1. if either U∗1 or U∗2 is a unique minimizer, then U∗1 ⊆ U∗2 ;
2. otherwise, i.e., both problems with input S = S1 and S = S2 have multiple

solutions, there exists a solution pair (Ū∗1 , Ū
∗
2 ) such that Ū∗1 ⊆ Ū∗2 .

This section focuses on proving Theorem 3.1, which is used in the next section to
construct a solution u∗ of the TV-L1 problem from a series of U∗λ ’s from input sets
S = L(f, µ) for all values of µ.

Before we present this proof, let us see why the answer to Chan and Esedoglu’s
question is negative:
Example Let λ = 2/r and the input sets S1 = Br(0) and S2 = Br(0)∪Br(x) where
x is a point distant from the origin 0. Clearly, S1 ⊂ S2 strictly. However, there exist
solutions

U∗1 = Br(0) and U∗2 = ∅

of the geometry problem (2.2) for S = S1 and S = S2, respectively, where U∗1 ⊃ U∗2
strictly. According to the results in [12, 13], both problems have multiple solu-
tions. For S = S1, the set of minimizers is {∅, Br(0)} and, for S = S2, this set
is {∅, Br(0), Br(x), Br(0) ∪Br(x)}.
Assumption A: In the rest of this section, we assumer U∗1 and U∗2 are minimizers
(U∗1 ⊆ U∗2 may not hold) of EG(U ;λ, S) with S = S1 and S = S2 for a fixed λ,
respectively, and S1 ⊆ S2. Since λ is fixed, we omit λ and write EG(U ;λ, S) as
EG(U ;S). Moreover, we define U∧ = U∗1 ∩ U∗2 and U∨ = U∗1 ∪ U∗2 .

Lemma 3.2 (Proposition 3.38 in [6]). For two arbitrary sets U1 and U2 with finite
perimeters, we have

(3.1) Per(U1) + Per(U2) ≥ Per(U1 ∩ U2) + Per(U1 ∪ U2)
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This property is also called the submodularity of Per functional. The following
example shows that the above inequality can hold strictly.
Example Let U1 be a square with opposite corners at (0, 0), (−1, 1) and U2 be an-
other square with opposite corners at (0, 0), (1, 1). U1 has its entire right edge touch-
ing the entire left edge of U2. According to the definition, Per(U1) = Per(U2) = 4,
Per(U1 ∩ U2) = 0, and Per(U1 ∪ U2) = 6, where the third equation holds because
U1 ∩ U2 has measure 0 in R2 and hence is untestable by continuous functions.
In general, if two sets U1 and U2 share opposite edges for a strictly positive reduced
length (a concept in geometric measure theory, see [6]), then this length is excluded
from Per(U1 ∩ U2) so (3.1) holds strictly. Lemma 3.2 is used in the proof of Lemma
3.4 below.

Lemma 3.3. Under Assumption A, the following inequalities hold:

(3.2) 0 ≥ EG(U∗1 ;S1)−EG(U∧;S1) ≥ EG(U∗1 ;S2)−EG(U∧;S2).

Proof. The first inequality follows from the optimality of U∗1 . To prove the second
inequality in (3.2), we expand its left-hand and right-hand sides:

EG(U∗1 ;S1)−EG(U∧;S1)
= Per(U∗1 )−Per(U∗1 ∩ U∗2 )(3.3)
+ λ(|U∗1 \S1| − |(U∗1 ∩ U∗2 )\S1|)(3.4)
+ λ(|S1\U∗1 | − |S1\(U∗1 ∩ U∗2 )|);(3.5)

EG(U∗1 ;S2)−EG(U∧;S2)
= Per(U∗1 )−Per(U∗1 ∩ U∗2 )(3.6)
+ λ(|U∗1 \S2| − |(U∗1 ∩ U∗2 )\S2|)(3.7)
+ λ(|S2\U∗1 | − |S2\(U∗1 ∩ U∗2 )|).(3.8)

As (3.3) is identical to (3.6), we only need to prove (3.4) ≥ (3.7) and (3.5) ≥ (3.8).
In fact,

|U∗1 \S1| − |(U∗1 ∩ U∗2 )\S1|
= |(U∗1 \(U∗1 ∩ U∗2 ))\S1|
= |(U∗1 \ U∗2 )\S1|
≥ |(U∗1 \ U∗2 )\S2| (∵ S1 ⊆ S2)
= |(U∗1 \(U∗1 ∩ U∗2 ))\S2|
= |U∗1 \S2| − |(U∗1 ∩ U∗2 )\S2|,

and
|S1\U∗1 | − |S1\(U∗1 ∩ U∗2 )|

= |S1 ∩ U∗1 | − |S1 ∩ (U∗1 ∩ U∗2 )|
= −|S1 ∩ ((U∗1 ∩ U∗2 )− U∗1 )| (∵ U∗1 ⊆ (U∗1 ∩ U∗2 ))

≥ −|S2 ∩ ((U∗1 ∩ U∗2 )− U∗1 )| (∵ S1 ⊆ S2)

= |S2 ∩ U∗1 | − |S2 ∩ (U∗1 ∩ U∗2 )|
= |S2\U∗1 | − |S2\(U∗1 ∩ U∗2 )|.
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Lemma 3.4. Under Assumption A, the following inequalities hold:

(3.9) EG(U∗1 ;S2)−EG(U∧;S2) ≥ EG(U∨;S2)−EG(U∗2 ;S2) ≥ 0.

Proof. The second inequality follows directly from the optimality of U∗2 with re-
spect to S = S2. To prove the first inequality, let us expand EG(U∨;S2)−EG(U∗2 ;S2).
(The other term EG(U∗1 ;S2)−EG(U∧;S2) was expanded above in the proof of Lemma
3.3.)

EG(U∗∨;S2)−EG(U∗2 ;S2)
= Per(U∗1 ∪ U∗2 )−Per(U∗2 )(3.10)
+ λ(|(U∗1 ∪ U∗2 )\S2| − |U∗2 \S2|)(3.11)
+ λ(|S2\(U∗1 ∪ U∗2 )| − |S2\U∗2 |).(3.12)

We need to prove that (3.6), (3.7), and (3.8) are no less than (3.10), (3.11), and (3.12),
respectively. Lemma 3.2 gives (3.6)≥(3.10). Moreover, we have (3.7) = (3.11) and
(3.8) = (3.12) as proved below:

|U∗1 \S2| − |(U∗1 ∩ U∗2 )\S2| = |((U∗1 ∩ U∗2 ) + (U∗1 \U∗2 ))\S2| − |(U∗1 ∩ U∗2 )\S2|
= |(U∗1 \U∗2 )\S2|+ |(U∗1 ∩ U∗2 )\S2| − |(U∗1 ∩ U∗2 )\S2| (∵ (U∗1 ∩ U∗2 ) ∩ (U∗1 \U∗2 ) = ∅)
= |(U∗1 \U∗2 )\S2|+ |U∗2 \S2| − |U∗2 \S2|
= |(U∗2 + (U∗1 \U∗2 ))\S2| − |U∗2 \S2| = |(U∗1 ∪ U∗2 )\S2| − |U∗2 \S2| (∵ (U∗1 \U∗2 ) ∩ U∗2 = ∅).

and

|S2\U∗1 | − |S2\(U∗1 ∩ U∗2 )| = |S2 ∩ U∗1 | − |S2 ∩ (U∗1 ∩ U∗2 )|
= −|S2 ∩ ((U∗1 ∩ U∗2 )− U∗1 )|; (∵ U∗1 ⊆ (U∗1 ∩ U∗2 ) )

= −|S2 ∩ (U∗1 \U∗2 )|; (∵ U∗1 \U∗2 = U∗1 − U∗1 ∩ U∗2 = (U∗1 ∩ U∗2 )− U∗1 )
= −|S2 ∩ (U∗2 \U∗1 )|
= −|S2 ∩ (U∗2 − (U∗2 ∩ U∗1 )|
= |S2 ∩ (U∗2 ∪ U∗1 )| − |S2 ∩ U∗2 |; (∵ U∗2 ⊇ U∗2 ∩ U∗1 = (U∗2 ∪ U∗1 ) )

= |S2 ∩ (U∗2 + U∗1 \U∗2 )| − |S2 ∩ U∗2 |
= |S2\(U∗2 + U∗1 \U∗2 )| − |S2\U∗2 | = |S2\(U∗1 ∪ U∗2 )| − |S2\U∗2 |.

Proof. (of Theorem 3.1) Concatenating the inequalities in Lemmas 3.3 and 3.4
gives us

(3.13)

0 ≥ EG(U∗1 ;S1)−EG(U∧;S1)
≥ EG(U∗1 ;S2)−EG(U∧;S2)
≥ EG(U∨;S2)−EG(U∗2 ;S2)
≥ 0.

Therefore, all inequalities above hold as equalities. It follows that U∧ and U∨ minimize
EG(U ;S1) and EG(U ;S2), respectively. We have found a solution pair (Ū∗1 , Ū

∗
2 ) :=

(U∧, U∨) such that Ū∗1 ⊆ Ū∗2
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Corollary 3.5. Under Assumption A, U∧ minimizes EG(U ;S1); U∨ minimizes
EG(U ;S2).

The following two corollaries extend the above geometric results to the minimizers
of the TV-L1 energy E.

Corollary 3.6. Let u∗1 and u∗2 minimizes the TV-L1 energies E(u;λ, f1) and
E(u;λ, f2), respectively, where f1 ≥ f2 point-wise. We have

1. if either u∗1 or u∗2 is a unique minimizer, then u∗1 ≤ u∗2;
2. otherwise, i.e., both problems with inputs f = f1 and f = f2 have nonunique

solutions, then there exists a solution pair (ū∗1, ū
∗
2) such that ū∗1 ≤ ū∗2.

Corollary 3.7. Under the same assumption as in the above corollary, min(u∗1, u
∗
2)

and max(u∗1, u
∗
2) minimize E(u;λ, f1) and E(u;λ, f2), respectively.

The above two corollaries can be proved by first using the Layer Cake formula
(2.1) to express the TV-L1 energy as an integral of geometry energies over all super
level sets and then applying the results of Theorem 3.1 and Corollary 3.5 to the
geometry energy at each level. We leave these proofs to the reader.

4. Constructing u∗ from U∗µ. In this section we show how Theorem 3.1 can
be applied to construct a minimizer u∗ of E(u;λ, f) from minimizers of EG(U ;λ, S).
Given an observed image f , we let the inputs S be the level sets of f , i.e., S = L(f, µ),
which are contained inside one another as µ is increased, i.e., L(f, µ2) ⊆ L(f, µ1) if
µ2 > µ1. From Theorem 3.1, the following collections of sequences of minimizers U∗µ
of EG(U ;λ, L(f, µ)) is well-defined and nonempty:

(4.1) U∗(f) :=
{
{U∗µ}µ∈R :

∀µ ∈ R, U∗µ is a minimizer of EG(U ;λ, L(f, µ)),
and U∗µ2

⊆ U∗µ1
if µ2 > µ1.

}
Let {U∗µ}µ∈R ∈ U∗(f), i.e., {U∗µ}µ∈R is a specific sequence of sets in the collection
U∗(f), in which the minimizers U∗µ of EG(U ;λ, L(f, µ)) are contained inside one
another as µ is increased. We define ū pointwise by

(4.2) ū(x) = sup{µ : x ∈ U∗µ}.

A geometrically clearer version of the above construction is the following: let

f = f+ − f−, (f+, f− ≥ 0)
{U+

µ }µ∈R ∈ U∗(f+) and {U−µ }µ∈R ∈ U∗(f−),

then we have

(4.3) ū(x) =
∫ ∞

0

1U+
µ

dµ︸ ︷︷ ︸
u+

−
∫ ∞

0

1U−µ dµ︸ ︷︷ ︸
u−

,

where u+ and u− are built up by stacking the shrinking (and nested) U+
µ ’s and U−µ ’s.

One can easily check that (4.2) and (4.3) are equivalent. Darbon and Sigelle [22]
independently obtained a similar result for their discretized version of a variant of the
TV-L1 problem, which is a linear program.

Below is the main result of this section based on the above construction.
Theorem 4.1. The function ū(x) given by (4.2) minimizes E(u;λ, f) where

{U∗µ}µ∈R is any sequence from the collection of sequences U∗(f) given by (4.1).
Proof. By the construction formula (4.2), the level set of ū

(4.4) L(ū, µ̄) = {x : ū(x) ≥ µ̄} = {x : ∃µ,3 x ∈ U∗µ and µ ≥ µ̄}
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Since U∗µ ⊆ U∗µ̄ if µ > µ̄, the condition of the existence of a µ that gives both x ∈ U∗µ
and µ ≥ µ̄ in the right-hand side of (4.4) holds if and only if x ∈ U∗µ̄. It follows that

(4.5) L(ū, µ) = U∗µ.

Since each L(ū, µ) minimizes the integrand of the integral

(4.6)
∫ ∞

−∞
EG(U ;λ, L(f, µ))dµ

over all levels µ, the whole integral is minimized and is equivalent to E(ū;λ, f) by the
Layer Cake formula (2.1).

In Section 5 below, Theorem 4.1 is used to characterize those image features that
appear in u∗ and those that end up in v∗ = f − u∗.

In the light of this theorem, one may wonder whether this equivalence between
the TV-L1 model (1.1) and a series of geometry problems makes it easier (or at least
provides a more geometric way) to find a solution. There is both bad and good news.
In theory, the number of different geometry problems we need to solve is infinite while,
in practice, when processing computerized images this number is finite and is limited
by the number of grey-scale levels (typically 256 or 216). However, obtaining a solution
of (2.2) is non-trivial because it is nonconvex and has nonunique solutions in general.
Let us again examine the disk example S = Br(0) with radius r for an illustration of
solution nonuniqueness: if S = Br(0) and λ = 2/r, then both U = Br(0) and U = ∅
minimize the geometry energy while any other sets, especially those U ′ = Br̄(0)
satisfying 0 < r̄ < r, are not minimizers; if 0 < λ < 2/r, then U = Br(0) is a
local, non-global, minimizer in then sense that U = Br±ε(0) for any ε small gives
higher energies (so U = Br(0) is locally minimal) but U = ∅ is the unique global
minimum. This suggests that a global minimization algorithm for solving (2.2) may
have to examine a large number of sets before restricting its search locally. The recent
algorithm by Darbon and Sigelle [22] based on sampling a 256-level Markov Random
Field on grey-scale images falls into this category. They used the Layer Cake formula
and associated a Markov random field with each level set of an image with 256 grey-
scale levels. They were able to reformulate and decompose the geometry energy (2.2)
as conditional posterior energies at each pixel (i.e., at each site in the Markov random
field) and thus defined a Markov random field. To optimize this Markov random field,
i.e., to find a lowest energy configuration, they used a min-cut algorithm [28], which
finds the global minimizer in polynomial time. This is in fact not surprising despite
the fact that the geometry problem may have strictly local solutions. Though the
min-cut algorithm is an 0-1 combinatorial program, its dual is the max flow problem,
which has long been known to have polynomial-time algorithms and give a min-cut,
as the dual solution, upon termination. This link between a TV variational problem
and a discrete network algorithm is very interesting.

After our work was first submitted, an anonymous referee brought to our attention
the recent work [15] by A. Chambolle, which exploits the connection between the ROF
model and a series of decoupled geometry problems to solve the ROF model using
a graph-cut based algorithm [28] that is essentially identical to the one proposed in
[22].

5. Feature selections. In the previous sections, the parameter λ in the TV-L1

model (1.1) was fixed. In this section, however, we vary λ and relate it to the scales
of the features in u∗ and v∗. It is well know that Meyer’s G-norm (Def. 1.2) is a good
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measure of the oscillation of functions [29]. Using G-value [37] defined below, which
is an extension of Meyer’s G-norm proposed by Scherzer et al, we are able to fully
characterize v∗ for a given parameter λ. To emphasize the role of λ in determining
u∗, v∗, U∗µ, and V ∗µ , we add λ as a subscript to these quantities (i.e., we write u∗λ, v

∗
λ,

U∗λ,µ, and V ∗λ,µ) in this section.
In general, the TV-L1 model, using a particular value of the parameter λ, returns

an image combining many features. In certain applications one is interested in ex-
tracting small and/or large-scale features in an image. Therefore, we are interested
in determining a λ that gives all targeted features with the least number of unwanted
features in the output. Below we show how to choose an appropriate λ that will allow
us to extract geometric features of a given scale, measured by the G-values of their
level sets.

Definition 5.1. (G-value)[37] Let Ψ : R2 → 2R be a set-valued function (also
called a multifunction and a set-valued map) that is measurable in the sense that
Ψ−1(S) is Lebesgue measurable for every open set S ⊂ R. We do not distinguish be-
tween Ψ being a set-valued function and a set of measurable (single-valued) functions,
and let

Ψ := {ψ : ψ : R2 → R is measurable and ψ(x) ∈ Ψ(x),∀ x}.

The G-value of Ψ is defined as follows:

(5.1) G(Ψ) := sup
h∈C∞0 :

R
|∇h|=1

inf
ψ∈Ψ

∫
ψ(x)h(x)dx.

An easy way to understand the above definition is to compare the definitions of
G-value and G-norm. Since the G-norm of a function ψ can be defined as

(5.2) G({ψ}) = sup
h∈C∞0 :

R
|∇h|=1

∫
ψ(x)h(x)dx = ‖ψ‖G,

where a single-function set {ψ} replaces Ψ in (5.1), the G-value can be viewed as an
extension of the G-norm to set-valued functions. In [37] Scherzer et al applied the
G-value to the sub-differential of the absolute value of f , ∂|f |, and the Slope from [7]
of f to determine when u∗λ or v∗λ vanishes:

Theorem 5.2. [37] Let ∂|f | denote the set-valued sub-differential of |f |, i.e.,

(5.3) ∂|f(x)| =

{
{sign(f(x))} f(x) 6= 0
[−1, 1] f(x) = 0.

Then, for the TV-L1 problem (1.1)
1. u∗λ = 0 (v∗λ = f) is an optimal solution if and only if

λ ≤ 1
G(∂|f |)

;

2. u∗λ = f (v∗λ = 0) is an optimal solution if and only if

λ ≥ sup
h∈BV

‖Df‖ − ‖Dh‖∫
|f − h|

.
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Instead of directly applying Theorem 5.2 to the input f , we apply it to the
characteristic functions of the level sets of f . We easily have the following results as
a corollary of Theorem 5.2:

Corollary 5.3. For the geometric problem (2.2) with a given λ,
1. U∗λ = ∅ (V ∗λ = S) is an optimal solution if and only if

λ ≤ 1
G(∂|1S |)

;

2. U∗λ = S (V ∗λ = ∅) is an optimal solution if and only if

λ ≥ sup
h∈BV

‖D1S‖ − ‖Dh‖∫
|1S − h|

.

The above corollary characterizes U∗λ,µ in (4.2) for given level µ and scalar λ. Sup-
pose that the set S of a geometric feature coincides with L(f, µ) for µ ∈ [µ0, µ1). Then,
for any λ < 1/G(∂|1S |), S is not observable in u∗λ. This is because 1/G(∂|1L(f,µ)|)
is increasing in µ and therefore, for µ ≥ µ0, U∗λ,µ vanishes. On the other hand, once
λ ≥ 1/G(∂|1S |), according the above corollary, 1U∗λ,µ

6≡ 0 for µ ∈ [µ0, µ1), which
implies that at least some part of S can be observed in u∗λ. If λ is increased further
such that λ ≥ suph∈BV (‖D1S‖ − ‖Dh‖)/

∫
|1S − h|, we get U∗λ,µ = L(f, µ) = S for

all µ ∈ [µ0, µ1) and therefore, the feature is fully contained in u∗λ, which is given by
(4.2). In general, although a feature is often different from its vicinity in intensity,
it cannot monopolize a level set of the input f , i.e., it is represented by an isolated
set in L(f, µ), for some µ, which also contains sets representing other features. Con-
sequently, u∗λ that contains a targeted feature may also contain many other features.
However, from Theorem 4.1 and Corollary 5.3, we can easily see that the arguments
for the case S = L(f, µ) still hold for the case S ⊂ L(f, µ).

Suppose there is a sequence of features in f that are represented by sets S1, S2, . . . , Sl
and have distinct intensity values. Let

(5.4) λmin
i :=

1
G(∂|1Si |)

, λmax
i := sup

h∈BV

‖D1Si
‖ − ‖Dh‖∫

|1Si
− h|

,

for i = 1, . . . , l. If the features have decreasing scales and, in addition, the following
holds

(5.5) λmin
1 ≤ λmax

1 < λmin
2 ≤ λmax

2 < . . . < λmin
l ≤ λmax

l ,

then feature i, for i = 1, . . . , l, can be precisely retrieved as u∗λmax
i +ε − u∗λmin

i −ε (here ε

is a small scalar that forces unique solutions because λmin
i = λmax

i is allowed). This is
true since for λ = λmin

i − ε, feature i completely vanishes in u∗λ, but for λ = λmax
i + ε,

feature i is fully contained in u∗λ while there is no change to any other features.

6. Geometric and morphological invariance. Based on the results and dis-
cussion in the previous sections, we now show that the TV-L1 model is invariant under
certain geometric and morphological transformations.

Proposition 6.1. (Geometric invariance) The TV-L1 decomposition, defined as
the operator Tt, is invariant under the following geometric transformations:

1. Translation τ (shifting the coordinates by a constant): Tt ◦ τ = τ ◦ Tt;
2. Isometry transformation R: Tt ◦R = R ◦ Tt;
3. Scaling ρ > 0: Ttρ ◦ ρ = ρ ◦ Tt, where ρ · x = ρx.
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Fig. 6.1. The LTV model. From left to right: f , u∗, v∗, f(20, :), v′ = f/u∗. f(20, :) is the
signal along the line depicted in f .

Proof. The proof is simple since it is sufficient to provide a proof for the geometry
problem (2.2). The geometry formulation (2.2) has the straightforward properties of
translational and isometric (e.g., rotational) invariance. If the n-dimensional geometry
sets U and S in (2.2) are both uniformly scaled by a constant ρ, then Per(Uρ) and
|Uρ4Sρ| equal ρn−1Per(U) and ρn|U4S|, respectively. One can scale λ in (2.2) by
1/ρ and obtain an energy homogeneously scaled by ρn−1:

ρn−1 (Per(U) + λ|U4S|) = Per(Uρ) + λ/ρ|Uρ4Sρ|.

By noticing 1/(tρ) = λ/ρ, therefore, Ttρ ◦ ρ · f = (u∗)ρ = ρ ◦ Tt · f for any f .
Proposition 6.2. (Morphological invariance) Let C be a constant scalar and g

be an increasing real function. Then,

(6.1) Tt · (f + C) = (Tt · f) + C, Tt ◦ g = g ◦ Tt.

Proof. These results are simple consequences of Theorem 4.1, which states that
minimizing E(u;λ, f) can be decoupled into independent minimizations of EG(U ;λ, L(F, µ))
over a range of values of µ.

Since log is an increasing function, we have the following from Proposition 6.2:
Example Suppose f > 1 strictly, then Tt · log f = log(Tt · f) = log u∗. Let f̄ = log f
and ū = Tt · f̄ , then

(6.2)
f

u∗
= elog f−log u∗ = ef̄−ū.

This means that the following two processes are equivalent:
(1) Take f , obtain u∗ by applying the TV-L1 decomposition to f , and get v′ = f

u∗ ;
(2) Take the logarithm f̄ of f , obtain v̄ = f̄− ū by applying the TV-L1 decomposition
to f̄ , and get the same v′ = exp(v̄).
This example was explored by Chen et al [20] who proposed the Logarithm TV (LTV)
model for preprocessing face images to correct varying illuminations prior to auto-
mated face recognition. In a face image, one half of the face can look brighter than
the other half if the light shines on the face from one side. An extreme case occurs
when a point light source is located exactly to the left of the face. In such a case the
right half of the face only receives a very little amount of ambient light, resulting in
face images with very unbalanced brightness and contrast. In Figure 6.1 we present
a face f to illustrate this issue. Geometric information intrinsic to the face must be
extracted for use by distance-based algorithms for comparing an inquiry image with
reference images. It is well known in signal processing that the logarithm function,
which is steep near 1 and flat near∞, can be applied to a grey-scale image f to enhance
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Fig. 6.2. The LTV model. First 3 rows: input face images f ; Last 3 rows: illumination-free
output images v′ = f/u∗ for automated face recognition.

the contrast of its low-light range signal, corresponding to the range of small intensity
values. Therefore, the authors applied the TV-L1 model to log f and examined the
small-scale output v̄ and its restored signal exp(v̄). They found that v′ = exp(v̄)
(Figure 6.2) contains signal of small-scale facial features that does not vary too much
among the images of the same face under different illuminations. Their experiments
based on angle testing and principal component analysis (PCA) then proved that
v′ = exp(v̄) has illumination-free signal that is an ideal element for distance measure.
Specifically, they treat two exp(v̄)’s as two vectors w1 and w2 and measure their dis-
tance by the cosine of the angle between them (i.e., 〈w1, w2〉/(‖w1‖ ‖w2‖)). Their
analysis in [20] provides an explanation for LTV’s excellent performance that is based
on the relationship between v′ = f/u∗ and a multiplicative light reflection model.

7. Smooth approximation of the TV-L1 model. In contrast with the pre-
vious sections where we followed a geometric approach, in this section we analytically
study the approximate TV-L1 energy

(7.1) Eε(u;λ, f) =
∫

Ω

|∇u|+ λ

∫
Ω

√
(f − u)2 + ε,

defined in a bounded convex open set Ω with a C1 boundary (typically rectangular).
We let u∗ε denote the unique minimizer of Eε(u;λ, f) and v∗ε = f − u∗ε. Because the
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L1 energy is convex but nonsmooth, PDE-based iterative methods [36, 14] inevitably
employ a smoothing regularization like (7.1). For large-scale and nondecomposible
problems, such as those arise in processing 3D and 4D medical images, this type of
method is the only one that does not exceed memory limits. Therefore, it is important
to understand the behavior of the approximation (7.1). Below we characterize the G-
norm of the minimizers of (7.1), which allows us to compare (7.1) with the ROF model
[36] and view the results in the previous sections from a different perspective. We
note that the TV term is also not smooth and its approximation is discussed in [1].

In our proof below of Theorem 7.5, which states the convergence of the solutions
of the perturbed TV-L1 model (7.1) to the solution of the TV-L1 model, we need the
following three known results.

Lemma 7.1 (General Minimax Theorem [23, 38]). Let K be a compact convex
subset of a Hausdorff topological vector space X, C be a convex subset of a vector
space Y , and f be a real-valued functional defined on K ×C which is (1) convex and
lower-semicontinuous in x for each y, and (2) concave in y for each x. Then

inf
x∈K

sup
y∈C

f(x, y) = sup
y∈C

inf
x∈K

f(x, y).

Lemma 7.2 (See [35, 42] for related results). If a sequence {ui}i∈N defined in
BV satisfies supi ‖Dui‖ < +∞, then it has a subsequence that weakly converges in
both Ln/(n−1) and BV to u ∈ BV . Moreover, weak lower semi-continuity holds for
this sequence:

‖Du‖ ≤ lim infi‖Dui‖.

This lemma shows that the BV space has the so-called relatively weakly compact
property. For Lp (1 ≤ p < n

n−1 ), the lemma below gives a stronger result:
Lemma 7.3 ((See [1, 24])). Let S be a BV -bounded set of functions defined on a

bounded open domain Ω. Then S is relatively compact in Lp for 1 ≤ p < n/(n− 1).
We also need the following technical lemma.
Lemma 7.4. The sets G0 := {v : v = div(~g), ~g ∈ C1

0 (Ω; Rn), ‖ |~g(x)|l2 ‖L∞ ≤ 1 }
and BV0 := {u ∈ L1(Ω) : ‖Du‖ ≤ R, ‖u‖L1 ≤ ‖f‖L1} ⊂ BV (Ω), where R is given,
are convex. Moreover, BV0 is compact in L1.

Proof. Suppose vg and vh are in G0. There exist ~g,~h ∈ C1
0 (Ω; Rn) satisfying

vg = div(~g), vh = div(~h), ‖ |~g|l2 ‖L∞ ≤ 1, ‖ |~h|l2 ‖L∞ ≤ 1.

For any λ ∈ [0, 1], we have (Minkowski inequality)

‖ |λ~g + (1− λ)~h|l2 ‖L∞ ≤ ‖λ|~g|l2 + (1− λ)|~h|l2 ‖L∞
≤ λ‖ |~g|l2 ‖L∞ + (1− λ)‖ |~h|l2 ‖L∞
≤ λ+ (1− λ) = 1.

This means ‖λvg + (1 − λ)vh‖G ≤ 1; consequently, λvg + (1 − λ)vh ∈ G0, i.e., G0

is convex. The convexity of BV0 can be proved analogously from its definition. The
compactness of BV0 in L1 is a direct result of Lemma 7.3.

Theorem 7.5. The solution u∗ε ∈ BV (Ω) of the approximate TV-L1 model (7.1)
satisfies

‖signε(v
∗
ε )‖G ≤ 1/λ,
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where signε(·) is defined pointwise by signε(g)(x) := g(x)/
√
|g(x)|2 + ε for any func-

tion g.
A proof for more general cases can be found in [35]. We give a short proof below

based on Lemma 7.1. A similar approach is also used in [26] to derive the G-norm
related properties for the ROF model [36].

Proof. Let R (in the definition of BV0 in Lemma 7.4) be large enough, and
consider the functional L : BV0 ×G0 → R:

Lε(u,w) =
∫

Ω

uw + λ
√

(f − u)2 + ε.

Define Pε(u) = supw∈G0
Lε(u,w) and Dε(w) = infu∈BV0 Lε(u,w). Lε(u,w) is convex

and lower semi-continuous in u, and is linear (hence concave) in w.
Since G0 is complete w.r.t. ‖·‖G, there exists an optimal w∗ε(u) satisfying Pε(u) =

Lε(u,w∗ε(u)) for each u ∈ BV0. On the other hand, by applying Lemmas 7.2 and 7.3,
we have an optimal u∗ε ∈ BV0 that minimizes Pε(u).

The obtainability of optimizers and Lemma 7.4 allow us to apply Lemma 7.1 to
Lε(u,w): there exists an optimal solution pair (u∗ε, w

∗
ε) ∈ BV0 ×G0 such that

(7.2) Dε(w∗ε) = Lε(u∗ε, w
∗
ε) = Pε(u∗ε).

The first equation in (7.2) indicates ∂Lε(u,w∗ε)/∂u|u=u∗ε = 0, and this gives

(7.3) w∗ε = λ
v∗ε√
v∗ε

2 + ε
,

where v∗ε = f − u∗ε. Therefore, ‖signε(v∗ε )‖G ≤ 1/λ.
Corollary 7.6. If ‖signε(f)‖G ≤ 1/λ, uλ,ε ≡ 0 minimizes Eε(u;λ, f).
Proof. Let w∗ε ≡ λ signε(f) and v∗ε ≡ f . Noting that u∗ε ≡ 0, we have

Dε(w∗ε) = Lε(u∗ε, w
∗
ε) = Pε(u∗ε).

The corollary then follows from the optimality of the saddle point (u∗ε, w
∗
ε).

Corollary 7.7. If ‖signε(f)‖G > 1/λ, then there exists an optimal solution u∗ε
satisfying

• ‖signε(v∗ε )‖G = 1/λ;
•

∫
u∗ε signε(v∗ε ) = ‖Du∗ε‖/λ, i.e., u∗ε and signε(v∗ε ) form an extremal pair.

Proof. Since ‖signε(f)‖G > 1/λ but ‖signε(v∗ε )‖G ≤ 1/λ by Theorem 7.5, we
must have u∗ε 6≡ 0. Then, we have ‖w∗ε‖G = 1 from the second equation in (7.2). It
follows from (7.3) that ‖signε(v∗ε )‖G = 1/λ. The second result of Corollary 7.7 follows
from the equations

∫
Ω
u∗εw

∗
ε = supw∈G0

∫
Ω
u∗εw = ‖Du∗ε‖ and w∗ε = λ signε(v∗ε ).

According to Theorem 7.5 and its corollaries, the approximate TV-L1 model
performs a soft thresholding on ‖signε(f)‖G. If this value is bigger than 1/λ, a part
of the signal f , v∗ε with ‖signε(v∗ε )‖G = 1/λ, is removed from f ; if less or equal to
1/λ, the whole signal v∗ε ≡ f is removed. This does not contradict the behavior of the
exact TV-L1 model. As ε→ 0, signε(f) converges to the characteristic function of the
support of f . Therefore, the thresholding depends mainly on the shape of f rather
than its value. The smaller that ε is, the less the value f affects the thresholding.
This matches the results based on the G-value in Section 5. We point out that the
need for the G-value in the analysis of the exact model, as an extension of the G-norm
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to set-valued functions, is related to the fact that signε(·) does not converge to the
signum function sign(·) uniformly. Instead, we can think that signε(·) “converges” to

sign : R 7→ 2R, sign(x) =

{
{sign(x)}, if x 6= 0;
[−1, 1], if x = 0.

Finally, we show that the solution of the approximate model converges in L1 to that
of the exact model.

Theorem 7.8. Assume u∗ε minimizes Eε(u;λ, f). There exists a minimizer ū of
E(u;λ, f) such that

lim
ε↓0+

‖u∗ε − ū‖L1 = 0, lim
ε↓0+

‖v∗ε − v̄‖L1 = 0.

Proof. Noticing that
√
t+ ε ≤

√
t +

√
ε, for t, ε ≥ 0, we have, for all positive ε

less than a given ε0 and any minimizer u∗ of E(u;λ, f),

(7.4) Eε(u∗ε;λ, f) ≤ Eε(u∗;λ, f) ≤ E(u∗;λ, f) +
√
ε.

From this we conclude that Eε(u∗ε), and thus ‖Du∗ε‖, are bounded. Since Ω is bounded
(f has compact support), Lemma 7.3 with p = 1 and n = 2 states there exists
ū ∈ BV (Ω) such that limi→∞ ‖u∗εi

− ū‖L1 = 0 with limi→∞ εi = 0. The optimality of
ū follows from

E(ū;λ, f) = ‖Dū‖+ λ

∫
|ū− f |

= ‖Dū‖+ λ lim
i→∞

∫ √
(u∗εi

− f)2 + εi (dominant convergence)

≤ lim inf
i→∞

‖Du∗εi
‖+ λ

∫ √
(u∗εi

− f)2 + εi (lower semi-continuity)

= lim inf
i→∞

Eεi
(u∗εi

;λ, f)

≤ E(u∗;λ, f) (by (7.4)).

Since f ∈ L1 and hence v̄ = f − ū ∈ L1, we also have limε→0+ ‖v∗ε − v̄‖L1 = 0.
Unfortunately, an L1 error estimate independent of f is not available. We tested

‖u∗ε − ū‖L1 for different f ’s and obtained different orders of magnitudes of ε.

8. Numerical results. In this section, we present numerical results for the TV-
L1 model on multiscale feature selection. Since the second-order cone programming
(SOCP) approach [25, 41] has proven to give very accurate solutions for solving TV-
based image models, we formulated the TV-L1 model (1.1) and the G-value formula
(5.1) as SOCPs and solved them using the commercial optimization package Mosek
[30].

The set of results depicted in Figure 8.2 were obtained by applying the TV-L1

model with different λ’s to the composite input image depicted in Figure 8.1 (f). Each
of the five components in this composite image is depicted in Figure 8.1 (S1)-(S5).
They are the image features that we are interested in extracting from f . We name
the components by S1, . . . , S5 in the order they are depicted in Figure 8.1. Clearly,
they are decreasing in scale. This is further shown by their decreasing G-values (i.e.,
G(|∂1Si

|)), and hence, their increasing λmin values (see (5.4)), which are given in
Table 8.1. We note that λmax

i , for i = 1, . . . , 6, are large since the components do
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Table 8.1
The G-values (i.e., G(|∂1Si

|)) and λmin of feature components S1, . . . , S5;
λ1, . . . , λ6 used to obtain u1, . . . , u6.

S1 S2 S3 S4 S5

G-value 19.39390 13.39629 7.958856 4.570322 2.345214
λmin 0.0515626 0.0746475 0.125646 0.218803 0.426400

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 =
0.0515 0.0746 0.1256 0.2188 0.4263 0.6000

not possess smooth edges in the pixelized images. This means that the property
(5.5) does not hold for these components, so using the lambda values λ1, . . . , λ6 given
in Table 8.1 does not necessarily give the entire feature signals in the outputs ui,
i = 1, . . . , 6. We can see from the numerical results depicted in Figure 8.2 that we
were able to produce an output ui that contains only those features with scales larger
that 1/λi, leaving in vi only a small amount of the signal of these features near non-
smooth edges. For example, we can see the white boundary of S2 in v3 and four
white pixels corresponding to the four corners of S3 in v4 and v5. This is due to the
nonsmoothness of the boundary and the use of finite difference. However, we can
see that the numerical results closely match the analytic results given in Subsection
4.1. ui’s contain signal increasing in scale and vi’s contain the residual, which is
decreasing in scale. Using the λmin

i values, we were able to get the desired features
in u and v. Moreover, by forming differences between the outputs u1, . . . , u6, we
extracted individual features S1, . . . , S5 from input f . These results are depicted in
the last two rows of images in Figure 8.2.

Besides multiscale feature selection demonstrated in the test above, the TV-L1

decomposition can also be used to filter 1D signal [2], to remove impulsive (salt-n-
pepper) noise [32], to extract textures from natural images [41], to remove varying
illumination in face images for face recognition [21, 20], to decompose 2D/3D images
for multiscale MR image registration [19], to assess damage from satellite imagery [18],
and to remove inhomogeneous background from cDNA microarray and digital micro-
scopic images [40]. These interesting results were obtained before their theoretical
basis was proven above. We believe there exist broader and undiscovered applications
of the TV-L1 model or variants of it, and we hope that the insights into the TV-L1

model provided here help in identifying such applications.
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(S1) (S2) (S3)

(S4) (S5) (f)

Fig. 8.1. (S1)-(S5): individual feature components of composite image (f).

Appendix A.
Proposition A.1 (Annulus input). Let the observed image be the characteristic

function f = c1Ar1,r2 (y), 0 < r2 < r1, which has intensity c > 0 at all points in the
annulus Ar1,r2(y) := {(x1, x2) : r22 ≤ (x1 − y1)2 + (x2 − y2)2 ≤ r21} and intensity 0
everywhere else. Let u∗ denote the minimizer of the TV-L1 energy E(u;λ, f).

1. If r2 < r1
2 , then

u∗λ =



0, if λ < 2r1
r21−2r22

,

ρc1Br1 (y), ∀ρ ∈ [0, 1], if λ = 2r1
r21−2r22

,

c1Br1 (y), if 2r1
r21−2r22

< λ < 2
r2

,

ρc1Br1 (y) + (1− ρ)f, ∀ρ ∈ [0, 1], if λ = 2
r2

,
f, if λ > 2

r2
.

2. If r2 = r1
2 , then

u∗λ =


0, if λ < 2

r1−r2 ,
ρc1Br1 (y) + ρ̄f, ∀ρ, ρ̄ ∈ [0, 1] 3 ρ+ ρ̄ ≤ 1, if λ = 2

r1−r2 ,
f, if λ > 2

r1−r2 .

3. If r1
2 < r2, then

u∗λ =


0, if λ < 2

r1−r2 ,
ρf, ∀ρ ∈ [0, 1], if λ = 2

r1−r2 ,
f, if λ > 2

r1−r2 .
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(u1) (u2) (u3)

(v1) (v2) (v3)

(u4) (u5) (u6)

(v4) (v5) (v6)

(u2 − u1) (u3 − u2) (u4 − u3)

(u5 − u4) (u6 − u5)

Fig. 8.2. TV-L1 decomposition outputs (ui and vi were obtained using λi).
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Proof. L(f, µ) ≡ Ar1,r2(y) for µ ∈ (0, 1). It follows from u∗ = argminuE(u;λ, f)
and the Layer Cake formula (2.1) that Uµ := L(u∗, µ) must minimize

(A.1) Per (Uµ) + λ|Uµ4Ar1,r2(y)|.

We first show there exists a minimizer of (A.1) that is rotationally symmetric. Let
Ū denote an arbitrary minimizer of (A.1) and suppose that Ū is not rotationally
symmetric. Let Ū(α) denote another minimizer of (A.1) obtained by rotating Ū
clockwise around y for α radians. It follows from the Layer Cake formula (2.1) that

ū =
1
2π

∫ 2π

0

1Ū(α)dα

minimizes E(u;λ, f). Therefore, Ũ := {x : ū > 0} is a minimizer of (A.1) that is
rotationally symmetric. Using this result we can narrow the set of solutions to the
empty set and rotationally symmetric (about y) sets. We now briefly outline the rest
of the proof and leave the details to the reader.

First, we further limit the search for a solution U∗λ to the empty set and rotation-
ally symmetric sets with a single connected component, and this gives a U∗λ exactly
as the L(u∗λ, 0).

Then, allowing U to have more than one connected components, say U = U1 ∪
. . . ∪ Un, and using the fact that minimizing (A.1) is equivalent to

min
U

Per(U) + λ|U \Ar1,r2(y)| − λ|U ∩Ar1,r2(y)|

= min
U

n∑
i=1

(Per(Ui) + λ|Ui \Ar1,r2(y)| − λ|Ui ∩Ar1,r2(y)|) ,

we conclude that each Ui must minimize (A.1) and hence equal to U∗λ . Therefore,
U∗λ is a minimizer of the geometry problem (A.1), and the proposition follows from
Theorem 4.1.
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