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Abstract

We propose a fourth order dual method for the minimization of the non-smooth semi-norm
‖∆ · ‖1 when in amalgamation with new staircase reducing texture decomposition and restoration
models of image processing. The proposed models incorporating this high order energy include a
variant of the Chambolle and Lions model for image denoising and variants of the models by Chan,
Esedoglu, and Park for texture extraction and restoration problems. We claim that the dual method
is faster and more stable than the current gradient descent time marching algorithms often used to
minimize such energies. Moreover, proofs of convergence of the proposed method, in conjunction
with the new imaging models, will be provided.

1 Introduction

Image denoising and texture extraction are two important problems in image processing that have both
seen many recent developments. One of the most important building blocks for modelling such tasks
is the original discontinuity (edge) preserving image denoising model proposed by Rudin, Osher, and
Fatemi (ROF) [19]:

min
u∈BV (Ω)

∫

Ω

|∇u|+ 1
2λ

∫

Ω

(f − u)2 dx. (1)

Here f is the observed image, u the restored image, Ω ⊂ R2 an open bounded domain (usually a rectangle
in R2), and BV (Ω) is the space of functions of bounded variation. The ROF model has proven to be a
popular image denoising model and has also seen much use in the modelling of structural (geometric)
components in texture decomposition problems.

Many of the current partial differential equation (PDE) methods for image denoising and decompo-
sition utilize TV regularization for its beneficial discontinuity (edge) preserving property. However, a
particular caveat of TV regularization is the staircasing (terracing) phenomenon in recovered images.
Generally speaking, staircasing occurs to the highest degree in image reconstructions by functionals that
depend non-convexly on image gradients. A key example is the scheme by Perona and Malik which can
be interpreted as gradient descent on a non-convex functional depending sublinearly on image gradients
at infinity. The TV model is on the brinks of non-convexity; it depends linearly on image gradients
at infinity. This feature has two edges, since it is responsible for its ability to reconstruct images with
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discontinuities while also being responsible for staircasing. Some examples of staircasing in restorations
from the ROF model can be observed in Figure 1 for the 1-d and 2-d cases; the 1-d case is included to
better isolate the phenomenon.
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Figure 1: Staircasing in Recovered Signals from the ROF Model: Top left, observed 1-d signal, SNR=10.
Bottom left, observed signal, σ = 20, σ2 denotes the variance of the Gaussian noise. Top and bottom
right, recovered signals from the ROF model (1). Staircasing is observed in both recovered signals.

There are many ways to overcoming staircasing in reconstructions from TV regularization. One
method is to introduce higher order derivatives into the energy as in the approach by Chambolle and
Lions (CL) [9], where the authors introduce the notion of inf convolution between two convex functionals.
Here, an image u is decomposed into two parts: u = u1 + u2 where u1 is measured with the TV norm
and u2 is measured using a higher order norm. Thus, given an observed noisy image f , the CL model
is formulated as an energy minimization problem:

inf
u1,u2

{
E(u) =

∫

Ω

|∇u1|+ α

∫

Ω

|∂2u2|+ λ

∫

Ω

(f − u1 − u2)2dx
}

. (2)

The minimization of this energy has the requirement that the discontinuous component of the image be
assigned to the u1 component while regions of moderate slopes are allotted to the u2 component. The
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allocation of regions to u2 is of small cost since regions of moderate but constant gradients measure zero
for the higher order norm. In the 1-d examples presented in [9], staircasing is reduced to a remarkable
degree .

Another approach to reducing staircasing in TV reconstructions is introduced in the following model
by Blomgren, Mulet, Chan, and Wong [5]:

inf
u

{
E(u) =

∫

Ω

|∇u|Q(|∇u|) + λ(f − u)2dx
}

. (3)

Here, the authors choose the function Q(ξ) : R → R to monotonically decrease from 2 when ξ = 0, to
1 as ξ tends to infinity. Thus, the functional (3) is designed to be more convex in regions of moderate
gradient (away from discontinuities) and behave like the standard ROF model near discontinuities,
hence reducing staircasing.

A variant of the CL model (2) is introduced by Chan, Esedoglu, and Park (CEP) [11] for fast
staircase reduction in denoising problems. Their model, which is referred to as the CEP–L2 model (for
the L2 norm squared of the component v = f − u1 − u2), has the following formulation:

inf
u1,u2

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 +
λ

2

∫

Ω

(f − u1 − u2)
2
dx

}
. (4)

The main idea here, is to approximate the term
∫
Ω
|∂2u2| found in the original CL model (2), by the

term
∫
Ω
|∆u2|2. The authors show that this approximation allows for fast solvers for the u2 component

while successfully decreasing staircasing.
In addition to applications in image denoising, the TV norm has also been utilized in many of

the current texture decomposition models, particularly those based on the Meyer norms, to model the
structural (geometric) part of an image. In the fundamental work [17], Meyer introduces the notion that
image denoising can be thought of as image decomposition for the application of texture extraction.
He then introduces a variant of the popular ROF model based on a space called the G space for this
particular purpose. Meyer’s idea is to replace the L2 norm in the ROF model with a weaker norm that
better captures very oscillatory features construed as texture. Thus, the G space is essentially the dual
space to the space of functions of bounded variation (BV) and is defined as the following:

G = {v | v = ∂xg1(x, y) + ∂yg2(x, y), g1, g2 ∈ L∞(Ω)} (5)

induced by the norm:

‖v‖∗ = inf
g=(g1,g2)

{
‖
√

g1
2 + g2

2‖L∞ | v = ∂xg1 + ∂yg2

}
. (6)

Given a function f defined on Ω, Meyer’s decomposition model then follows as:

inf
u

{
E(u) =

∫

Ω

|∇u|+ λ‖v‖∗, f = u + v

}
. (7)

In this model, the u component represents the structure or geometric part of the image while the
oscillatory component v represents the texture part, thus, yielding the so called u + v decomposition:
f = u+v. It is shown numerically, by the authors in [22, 18], that the ∗ norm indeed captures oscillatory
patterns (texture) better than the standard ROF model. The first practical algorithm to approximate
Meyer’s G model (7) is found in the work by Vese and Osher [22].

Although TV regularization has been a popular choice for modelling structural components of an
image, the staircasing caveat, as in the denoising case, also occurs in the context of texture extraction.
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Some very recent efforts have been made to alleviate this particular attribute of the TV norm in
conjunction with decomposition models based on the the Meyer norms. In the work by Chan, Esedoglu,
and Park (CEP) [11], the authors consider incorporating the energy proposed by Chambolle and Lions
(2) into texture decomposition models based on the Meyer norms [17] to reduce staircasing in the
structural components of the image decomposition. Thus, the general proposed model in [11] is based
on the original model of Meyer and has the following formulation:

inf
u1,u2

{∫

Ω

|∇u1|+ α

∫

Ω

∣∣∂2u2

∣∣ + λ‖v‖∗, f = u1 + u2 + v

}
. (8)

To allow for fast solvers for the u2 component, the authors then introduce a variant of the the CL
energy, where the quantity

∫ |∆u2|2dx is used to approximate the term
∫ |∂2u2| in the original CL

model. This proposed general model is called the CEP-G model for Meyer’s G norm and has the
following formulation:

inf
u1,u2

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + λ‖v‖∗, f = u1 + u2 + v

}
. (9)

The CEP–G model (9), in practice, is difficult to implement due to the intrinsic nature of the ∗ norm.
However, the authors adapt the previous approaches of approximating Meyer’s model in [18, 1, 2] to the
approximation of the above model (9) resulting in the CEP models and approximations. In this setting,
the approximation to the CEP-G model, called the CEP-G approximation, is based on the approach in
[1] and has the following formulation:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + J∗
(

v

µ

)
+

1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

. (10)

Here, the terms
∫
Ω
|∇u1|+α

2

∫
Ω
|∆u2|2 simultaneously model the structural (geometric) part of the image

while reducing staircasing. The term J∗
(

v
µ

)
= χ{v | ‖v‖G≤µ} ensures that the texture component v lies

in the G space with ‖v‖G ≤ µ, and the quantity 1
2λ

∫
Ω

(f − u1 − u2 − v)2 secures the decomposition
f = u1 + u2 + v for small λ. Now, as λ −→ 0, the authors state that by using similar arguments to
those in [1], one can show that minimizing the energy in (10) yields a solution to the CEP–G model
(9).

A staircase reducing texture extraction model involving a negative Sobolev norm is also introduced
by the authors of [11]. This model, called the CEP–H−1 model, is based on the model by Osher, Sole,
and Vese (OSV) [18] utilizing the H−1 norm. The OSV model can be thought of as both a variant and
approximation to the original model by Meyer (7) and has proven to be useful in texture extraction
problems. The CEP–H−1 model extends the OSV model to staircase reducing texture extraction
problems and has the following formulation:

inf
u1,u2

{∫

Ω

|∇u1|+ α

∫

Ω

|∆u2|2 +
1
2λ

∫

Ω

∣∣∇∆−1 (f − u1 − u2)
∣∣2 dx

}
. (11)

The authors show that staircase reduction can be obtained both naturally and efficiently while not
affecting the texture removal properties of the negative norm.

The authors of [11] also replace the G norm in model (9) with the E norm, E denoting the space
B∞
−1,∞, the dual to the standard Besov space B1

1,1, to obtain the following CEP–E model:

inf
u1,u2

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + λ‖v‖E , f = u1 + u2 + v

}
. (12)
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Again, as in the case of the CEP–G model, the E norm is difficult to implement in practice, however,
one may consider the following CEP–E approximation:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + B∗
(

v

γ

)
+

1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

. (13)

This approximation is a staircase reducing variant of the approximation in [2] and the term B∗
(

v
γ

)
=

χ{v | ‖v‖E≤γ} enforces the texture component v to lie in the E space with norm ‖v‖E ≤ γ. The authors
also state that, by using similar arguments as in [1], one can also show that minimizing the energy in
(13) yields a solution to the CEP–E model (12). As demonstrated in [2], the E norm has proven to be
a good candidate for denoising textured images.

In addition to the staircase reducing u + v (structure and texture models), the authors of [11] also
introduce a variant to the u + v + w (structure+texture+noise) model introduced in [2] for staircase
reducing u + v + w decompositions. This model, called the CEP-UVW model has the following formu-
lation:

inf
u1,u2,v,w

{∫

Ω

{
|∇u1|+ α

2
|∆u2|2

}
+ J∗

(
v

µ

)
+ B∗

(w

δ

)
+

1
2λ

∫

Ω

(f − u1 − u2 − v − w)2dx
}

, (14)

where J∗
(

v
µ

)
and B∗ (

w
δ

)
are defined in exactly the same manner as in the approximations (10) and

(13) respectively.
The main contribution of this paper is the introduction of the 4-th order energy

‖∆u2‖1 =
∫

Ω

|∆u2| (15)

into the image restoration and texture extraction models proposed by Chan, Esedoglu, and Park [11]
leading to new staircase reducing models in image processing along with novel high 4-th order dual
methods to obtain the corresponding solutions. The advantage of the proposed non-smooth energy
(15) over the energy used in the original CEP models is the ability to preserve discontinuities in the
second derivative manifesting themselves as kinks or ridges in an image or signal. In contrast, the
energy utilized in the original CEP models ‖∆u2‖22, while being differentiable as well as allowing for
fast solvers, cannot preserve such discontinuities; an example of this property can be seen in Figure 2.
The 4-th order dual method is novel since existing dual methods have primarily been used in conjunction
with second order energies like those found in the ROF model, see [7, 2]. To the best of the combined
authors’ knowledge, the method in this paper is the first instance of a high order dual method in image
processing. Convergence proofs for the proposed dual method will also be provided in the context of
the new CEP models and we claim that the method is faster and more stable than the popular artificial
time marching algorithms so frequently used on such models. Additionally, the new method solves the
non-differentiability issue of the proposed energy (15) at zero. When the primal problem of minimizing
the energy ‖∆u2‖1 is considered, one must regularize the energy with a small β parameter:

∫

Ω

√
(∆u2)

2 + β2. (16)

Unfortunately, when employing artificial time marching methods for the minimization of the above
energy (16), when combined with appropriate data fidelity terms, the resulting minimization prob-
lem becomes stiff when β is chosen small. Larger parameters of β tend to smear out discontinuities.
When utilizing a dual method, the non-smooth issue of the energy (15) is bypassed and the small β
regularization parameter may be eliminated.
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Some related works include, a decomposition model based on the anisotropic ROF model seen in [15]
while two others based on an L1 fidelity term can be found in [10, 3]. Two multiscale decompositions
based on the TV model are introduced in [14, 21] while a simultaneous structure and texture image
inpainting model is found in [4]. A staircase reducing texture extraction and restoration model that
combines the energy introduced by Blomgren, Mulet, Chan, and Wong (3) with a negative norm is
introduced in the work by Levine et al. [16].

2 The CEP2–L2 Denoising Model and a Fourth Order Dual
Method

The proposed CEP–L2 staircase reducing image denoising model is a variant of the models by Chambolle
and Lions (2) and Chan, Esedoglu, and Park (4) and has the following formulation:

inf
u1,u2

{∫

Ω

|∇u1|+ α

∫

Ω

|∆u2|+ 1
2λ

∫

Ω

(f − u1 − u2)2dx
}

. (17)

This model, like its predecessors, can also be interpreted as a decomposition model where a given image
f is split as f = u1 + u2 + v. Here, u1, u2, and v are the discontinuous, piecewise smooth, and noise
components respectively.

One way of minimizing the energy (17) is by solving the coupled problems:

for u1 fixed, solve for u2:

inf
u2

α

∫

Ω

|∆u2|+ 1
2λ

∫

Ω

(f − u1 − u2)2dx (18)

for u2 fixed, solve for u1:

inf
u1

∫

Ω

|∇u1|+ 1
2λ

∫

Ω

(f − u1 − u2)2dx. (19)

Equation (18), is usually solved by time marching the fourth order non-linear Euler-Lagrange equation
obtained from this energy. Unfortunately, such a method has some potential caveats due to the, non-
differentiability of the energy, the nonlinear nature of the corresponding Euler-Lagrange equation, and
the CFL restrictions from the high (4-th) order. Alternatively, the problem of solving for u2 in equation
(18) can be set in the primal-dual formulation:

inf
u2

sup
ξ

{
α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

(f − u1 − u2)2dx | ξ ∈ C2
c (Ω;R), −1 ≤ ξ ≤ 1

}
(20)

where ξ is a scalar valued function, ξ : Ω → Ω. The above equation (20) is convex in u2 and concave
(linear) in ξ, thus, we may swap the inf and sup in (20) to yield:

sup
ξ

inf
u2

{
α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

(f − u1 − u2)2dx | ξ ∈ C2
c (Ω;R), −1 ≤ ξ ≤ 1

}
. (21)

For each fixed ξ, we consider the inner minimization in (21):

inf
u2

{
G(u2) = α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

(f − u1 − u2)2dx | ξ ∈ C2
c (Ω;R), −1 ≤ ξ ≤ 1

}
. (22)
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Here, for each ξ, a minimizer u2 of (22) has the form u2 = f − u1−αλ∆ξ. Substituting this expression
for u2 back into (21) and setting sup {G(·)} = − inf {−G(·)} reformulates problem (22) into:

− inf
ξ

α

{∫

Ω

(
αλ

2
(∆ξ)2 − (f − u1)∆ξ

)
dx | ξ ∈ C2

c (Ω;R), −1 ≤ ξ ≤ 1
}

. (23)

Since we are concerned only with ∆ξ, we may rewrite the above minimization (23) as the following full
dual problem:

inf
ξ

{∫

Ω

(
αλ

2
(∆ξ)2 − (f − u1)∆ξ

)
dx | ξ ∈ C2

c (Ω;R), −1 ≤ ξ ≤ 1
}

. (24)

In the discrete setting, minimizing the above equation (24) amounts to solving the following constrained
optimization problem with inequality constraints:

min
p,|p|≤1

{∫

Ω

(
αλ

2
(∆p)2 − (f − u1)∆p

)
dx

}
. (25)

The optimality condition for the above problem (25) reads:
(
αλ∆2p−∆(f − u1)

)
i,j

+ αi,jpi,j = 0 (26)

where the αi,j ’s are the Lagrange Multipliers, and by complementary slackness, either αi,j = 0 (where
∆(αλ∆2p + f −u1)i,j is also 0) and |pi,j | < 1 or αi,j > 0 and |pi,j | = 1. Here, we would like to take the
time to point out that the approach of solving a similar equation to (26) arising from the ROF model
in the dual framework was pursued by the authors in [6, 12]. Using the key observation and essential
contribution in [7], we see that in either of the cases, the Lagrange multipliers are:

αi,j =
∣∣αλ∆2p−∆(f − u1)

∣∣
i,j

. (27)

Setting A(p) = ∆2p−∆
(

f−u1
αλ

)
implies that equation (26) reduces to:

A(p)i,j + |A(p)i,j |pi,j = 0 (28)

which can be solved by a semi-implicit gradient descent (fixed point) iteration introduced in [7]:

p0 = 0; pn+1
i,j = pn

i,j − τ
(
An

i,j + |An
i,j |pn+1

i,j

)
. (29)

The scheme (29) then simplifies to the explicit iteration scheme:

p0 = 0; pn+1
i,j =

pn
i,j − τAn

i,j

1 + τ |An
i,j |

(30)

where An
i,j = ∆2pn

i,j −∆
(

f−u1
αλ

)
i,j

and un
2 = f − u1 − αλ∆pn −→ ũ2 as n −→ ∞, with ũ2 a solution

of (18).

Before stating the convergence result associated to the above method (30), we first note that the
constrained optimization problem (25) is equivalent to the following:

min
p,|p|≤1

{∫

Ω

(
∆p− f − u1

αλ

)2

dx

}
. (31)
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Theorem 2.1 Let τ < 1/64. Then, vn = ∆pn converges to the solution of the minimization problem
(25) as n −→∞.

Proof. Fix n ≥ 0 and set η = pn+1−pn

τ . Then,

‖∆pn+1 − (f − u1)/β‖2 = ‖∆pn − (f − u1)/β‖2 + 2τ 〈∆η, ∆pn − (f − u1)/β〉+ τ2‖∆η‖2
≤ ‖∆pn − (f − u1)/β‖2 + τ

(
2 〈η, ∆(∆pn − (f − u1)/β)〉+ κ2τ‖η‖2)

where β = αλ, ‖η‖2 = 〈η, η〉, and κ denotes the norm of the operator ∆ to be computed shortly. Let
An

i,j be defined by An
i,j = ∆ (∆pn − (f − u1)/β), so that

2 〈η, An〉+ κ2τ‖η‖2 =
N∑

i,j=1

2ηi,jA
n
i,j + κ2τ |ηi,j |2, (32)

with the quantity ηi,j = −An
i,j − %i,j where %i,j = |An

i,j |pn+1
i,j . Therefore, for each i, j

2ηi,jA
n
i,j + κ2τ |ηi,j |2 =

(
κ2τ − 1

) |ηi,j |2 + |%i,j |2 − |An
i,j |2. (33)

Now, |pn+1
i,j | ≤ 1 implies that |%i,j | ≤ |An

i,j |. Thus, |%i,j |2 ≤ |An
i,j |2. Hence, if

(
κ2τ − 1

) ≤ 0, i.e.
τ ≤ 1/κ2, the quantity ‖∆pn − (f − u1)/β‖2 is decreasing as n increases as long as η 6= 0. If η = 0,
then pn+1 = pn. More analysis also shows that the energy still decreases in the case when κ2τ = 1.

Now, set L = limn→∞ ‖∆pn − (f − u1)/β‖ and let {pnq} be a convergent subsequence with limit p̃.
If we let p̂ = limnq→∞ pnq+1 then, we have

p̂i,j =
p̃i,j − τ∆ (∆p̃− (f − u1)/β)i,j

1 + τ
∣∣∣∆(∆p̃− (f − u1)/β)i,j

∣∣∣
. (34)

Repeating the calculations at the beginning of the proof and taking limits yields

‖∆p̂− (f − u1)/β‖2 ≤ ‖∆p̃− (f − u1)/β‖2 + τ
(
κ2τ − 1

) ‖η̃‖2. (35)

where η̃ = p̂−p̃
τ . Now, L = ‖∆p̃− (f − u1)/β‖ = ‖∆p̂− (f − u1)/β‖ implying that η̃i,j = p̂i,j−p̃i,j

τ = 0
for every i, j. Therefore, p̃ = p̂ and

∆ (∆p̃− (f − u1)/β)i,j +
∣∣∣∆ (∆p̃− (f − u1)/β)i,j

∣∣∣ p̃i,j = 0 (36)

the optimality equation for a solution that minimizes problem (25). Therefore, ∆p̃ is the solution to
problem (25). Since this solution is unique, the complete sequence {∆pn} converges to the solution of
(25). Thus, the theorem is proved if we can show that κ2 ≤ 64.

By definition, κ = sup‖p‖≤1 ‖∆P‖. Using the standard zero boundary conditions on pi,j , we have:

‖∆p‖2 ≤
∑

i,j

( pi+1,j − 2pi,j + pi−1,j + pi,j+1 − 2pi,j + pi,j−1 )2

≤
∑

i,j

2 (pi+1,j + pi−1,j + pi,j+1 + pi,j−1)
2 + 8 (pi,j + pi,j)

2

≤
∑

i,j

8
{
(pi+1,j)2 + (pi−1,j)2 + (pi,j+1)2 + (pi,j−1)2

}
+ 16

{
(pi,j)2 + (pi,j)2

}

≤ 64‖p‖2.
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Thus, κ2 ≤ 64. ♦

The discontinuous component u1 can be obtained by solving equation (19), which is essentially
a slight variation to the ROF model. To solve (19), one can employ either artificial time marching
methods, or, keeping with the theme of this paper, a dual method like those introduced in [6, 7, 12].
We outline a method that is a slight variation of the dual method introduced in [7] where, for u2 fixed,
the primal-dual formulation of problem (19)

inf
u1

sup
ξ

{∫

Ω

u1div(ξ) +
1
2λ

∫

Ω

(f − u1 − u2)
2
dx | ξ ∈ C1

c (Ω;R2), |ξ| ≤ 1
}

, (37)

in the discrete setting, can be reformulated as the following full dual constrained optimization problem
with inequality constraints

min
p,|p|≤1

{∫

Ω

(λdiv(p)− (f − u2))
2

}
, (38)

where ξ and p are now vector valued functions, ξ : Ω → Ω×Ω. In this setting, the above problem (38)
has optimality conditions that read:

−∇ (λdiv(p)− (f − u2))i,j + αi,jpi,j = 0

where αi,j are the Lagrange multipliers and by complementary slackness, either αi,j = 0 and |pi,j | < 1
or αi,j > 0 and |pi,j | = 1. Once again, the key observation in [7] implies that the Lagrange multipliers

αi,j reduce to αi,j =
∣∣∣∇ (λdiv(p)− (f − u2))i,j

∣∣∣. Thus, the optimality equation reduces to:

−A(p)i,j + |A(p)i,j |pi,j = 0

where A(p)i,j = ∇
(
div(p)− f−u2

λ

)
i,j

. Again, this equation can be solved by the gradient descent

(fixed point) iteration scheme introduced in [7]:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

where An
i,j = ∇

(
div(pn)− f−u2

λ

)
i,j

. It is proven by the author in [7] that for the ROF model (i.e.

in the case when u2 = 0), that for τ ≤ 1
8 , un

1 = f − u2 − λdiv(pn) −→ ũ1 as n −→ ∞, where ũ1 is a
solution to (19).

3 The CEP2–H−1 Model and a Fourth Order Dual Formulation

The proposed staircase reducing texture extraction model involving the H−1 norm is called the CEP2–
H−1 model and has the following formulation:

inf
u1,u2

{∫

Ω

|∇u1|+ α

∫

Ω

|∆u2|+ 1
2λ

∫

Ω

|∇∆−1(f − u1 − u2)|2
}

. (39)

This image decomposition model splits a given image f into f = u + v where u = u1 + u2 and
v = f − u1 − u2. Here, u and v represent the structure (geometric features) and texture (oscillatory
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features) components respectively. The energy ‖∆u2‖1 reduces staircasing in the structure component
u = u1 + u2 where u1 and u2 represent the discontinuous and piecewise smooth parts of u respectively.
The proposed model is motivated by the CEP–H−1 model of [11]. We will adapt the same techniques
applied to the CEP2–L2 model in the previous section to the proposed image decomposition model
(39). Moreover, demonstrations of the proposed model to the problem of staircase reduction in texture
extraction will follow.

One way of minimizing the energy of the proposed model (39) is by minimizing the coupled energies:

for u1 fixed, solve for u2:

inf
u2

{
α

∫

Ω

|∆u2|dx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx
}

, (40)

for u2 fixed, solve for u1:

inf
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx
}

. (41)

To solve for the u2 component, we consider a high order dual formulation of the above problem (40):

for u1 fixed, solve:

inf
u2

sup
ξ

{
α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx | ξ ∈ C2
c (Ω), −1 ≤ ξ ≤ 1

}
(42)

where ξ : Ω → Ω is a scalar valued function. The above primal-dual equation (42) is convex in u2 and
concave (linear) in ξ, thus, we may swap the sup and inf to yield:

sup
ξ

inf
u2

{
α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx | ξ ∈ C2
c (Ω), −1 ≤ ξ ≤ 1

}
. (43)

Minimizing the inner quantity of (43)

inf
u2

{
G(u2) = α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx
}

(44)

with respect to u2, for each fixed ξ, admits u2 = f − u1 + αλ∆2ξ. Substituting this expression for
u2 back into equation (43), integrating by parts, and using the fact that sup {G(·)} = − inf {−G(·)},
reduces problem (43) to the following full dual minimization problem:

− inf
ξ

{∫

Ω

α2λ

2
|∇ (∆ξ) |2 − α(f − u1)∆ξdx | ξ ∈ C2

c (Ω), −1 ≤ ξ ≤ 1
}

. (45)

Since we are only concerned with ∆ξ, the above problem (45) may be reformulated as the following
minimization problem

inf
ξ

{∫

Ω

β

2
|∇ (∆ξ) |2 − (f − u1)∆ξdx | ξ ∈ C2

c (Ω), −1 ≤ ξ ≤ 1
}

(46)

10



where β = αλ. In the discrete setting, the above problem (46) amounts to solving the constrained
optimization problem with inequality constraints:

min
p,|p|≤1

{∫

Ω

β

2
|∇ (∆p) |2 − (f − u1)∆pdx

}
. (47)

Given the Lagrange Multipliers connected to the above problem (47), the optimality conditions read:

−∆(β∆2p + f − u1)i,j + αi,jpi,j = 0 (48)

where by complementary slackness, either αi,j = 0 (where −∆(β∆2ξ +f−u1)i,j is also 0) and |pi,j | < 1
or αi,j > 0 and |pi,j | = 1. Again, we would like to point out that the approach of solving a similar
equation to (48) arising from the ROF model in the dual framework was pursued in [6, 12]. Once
again, using the observation and essential contribution in [7], we see that in either case, the Lagrange
multipliers are:

αi,j = |∆(β∆2p + f − u1)i,j |. (49)

Thus, the optimality equation (48) reduces to

−A(p)i,j + |A(p)i,j |pi,j = 0 (50)

where A(p)i,j = ∆(∆2p + (f − u1)/β)i,j . This equation can be solved by the semi-implicit gradient
descent (fixed point) iteration scheme introduced in [7]:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + τ |An
i,j |

(51)

where An
i,j = ∆(∆2pn + (f − u1)/β)i,j . It will be shown shortly, that ∆pn converges to the solution of

(47) for τ small enough; hence, un
2 = f − u1 + β∆2pn −→ ũ2 as n −→∞, where ũ2 is a solution to the

original minimization problem (42).

Before stating the convergence result of the proposed method (51), we remark that the above
minimization problem (47) is equivalent to the following:

min
p

{∫

Ω

|∇ (∆p) |2 − 2(f − u1)/β∆pdx | p ∈ Ω, −1 ≤ p ≤ 1
}

. (52)

Theorem 3.1 Let τ < 1/512. Then, vn = ∆pn converges to the solution of the minimization problem
(47) as n −→∞.

Proof. Fix n ≥ 0 and set η = pn+1−pn

τ . Then,

‖∇∆pn+1‖2 − 2
β

〈
f − u1, ∆pn+1

〉 ≤ ‖∇∆pn‖2 − 2
β
〈f − u1, ∆pn〉

+ τ

(
2 〈∇∆pn,∇∆η〉 − 2

β
〈f − u1, ∆η〉+ τκ2‖η‖2

)

= ‖∇∆pn‖2 − 2
β
〈f − u1, ∆pn〉

+ τ
(−2

〈
∆

(
∆2pn + (f − u1)/β

)
, η

〉
+ τκ2‖η‖2) .
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where ‖η‖2 = 〈η, η〉 and κ denotes the norm of the operator ∇∆ to be computed shortly. Let An
i,j =

∆
(
∆2pn + (f−u1)

β

)
. Now,

−2 〈η,An〉+ κ2τ‖η‖2 =
N∑

i,j=1

−2ηi,jA
n
i,j + κ2τ |ηi,j |2 (53)

and the quantity ηi,j = An
i,j − %i,j with %i,j = |An

i,j |pn+1
i,j . Therefore, for each i, j

−2ηi,jA
n
i,j + κ2τ |ηi,j |2 =

(
τκ2 − 1

) |ηi,j |2 + |%i,j |2 − |An
i,j |2. (54)

Now, |pn+1
i,j | ≤ 1 implies that |%i,j | ≤ |An

i,j |. Thus, |%i,j |2 ≤ |An
i,j |2. Hence, if

(
τκ2 − 1

) ≤ 0, i.e.
τ ≤ 1/κ2, the quantity

‖∇∆pn‖2 − 2
β
〈f − u1, ∆pn〉

is decreasing as n increases as long as η 6= 0. If η = 0, then pn+1 = pn. More analysis also shows that
the energy still decreases in the case when κ2τ = 1.

Now, set L = limn→∞
{
‖∇∆pn‖2 − 2

β 〈f − u1, ∆pn〉
}

, let {pnq} be a convergent subsequence with

limit p̃, and let p̂ = limnq→∞ pnq+1. Then, we have

p̂i,j =
p̃i,j + τ∆(∆2p̃ + (f − u1)/β)i,j

1 + τ |∆(∆2p̃ + (f − u1)/β)i,j | . (55)

Repeating the previous calculations and taking limits yields

‖∇∆p̂‖2 − 2
β
〈f − u1, ∆p̂〉 ≤ ‖∇∆p̃‖2 − 2

β
〈f − u1, ∆p̃〉 + τ(τκ2 − 1)κ2‖η̃‖2 (56)

where η̃ = p̂−p̃
τ . Now, L =

{
‖∇∆p̂‖2 − 2

β 〈f − u1, ∆p̂〉
}

=
{
‖∇∆p̃‖2 − 2

β 〈f − u1, ∆p̃〉
}

implying that

η̃i,j = p̂i,j−p̃i,j

τ = 0 for every i, j. Therefore, p̃ = p̂ and

−∆
(

∆2p̃ +
(f − u1)

β

)
+

∣∣∣∣∆
(

∆2p̃ +
(f − u1)

β

)∣∣∣∣ p̃ = 0 (57)

the optimality equation for a solution minimizing problem (47). Therefore, ∆p̃ is the solution to prob-
lem (47). Since this solution is unique, the complete sequence {∆pn} converges to the solution of (47),
Thus, the theorem is proved if we can show that κ2 ≤ 512.

By definition, κ = sup‖p‖≤1 ‖∇∆P‖. Thus, using the standard zero boundary conditions for pi,j ,
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we have:

‖∇∆p‖2 ≤
∑

i,j

(
∆pi,j

)2

x
+ (∆pi,j)

2
y

=
∑

i,j

(
∆pi,j −∆pi−1,j

)2 + (∆pi,j −∆pi,j−1)
2

=
∑

i,j

(pi+1,j − 5pi,j + 5pi−1,j + pi,j+1 + pi,j−1 − pi−2,j − pi−1,j+1 − pi−1,j−1)
2

+ (pi+1,j − 5pi,j + 5pi−1,j + pi,j+1 + pi,j−1 − pi−2,j − pi−1,j+1 − pi−1,j−1)
2

≤ 16
∑

i,j

(
p2

i+1,j + 5p2
i,j + 5p2

i−1,j + p2
i,j+1 + p2

i,j−1 + p2
i−2,j + p2

i−1,j+1 + p2
i−1,j−1

)

+
(
p2

i+1,j + 5p2
i,j + 5p2

i−1,j + p2
i,j+1 + p2

i,j−1 + p2
i−2,j + p2

i−1,j+1 + p2
i−1,j−1

)

≤ 512‖p‖2.
Thus, κ2 ≤ 512. ♦

Remark The condition that τ ≤ 1/512 may seem restrictive, however, if we consider the existing time
marching methods for solving the CEP–H−1 model, this may not be the case. Such time marching
methods can give rise to a 6-th order non-linear equation (with CFL restrictions). More precisely, the
Euler-Lagrange equation from the regularized minimization problem (40) amounts to solving

−α∆

(
∆u2√

(∆u2)2 + β2

)
− 1

λ
∆−1 (f − u1 − u2) = 0;

∂∆u2

∂n
|∂Ω = 0,

∂∆2u2

∂n
|∂Ω = 0. (58)

Instead of directly solving (58), one can use the same technique as in [18] and apply the Laplacian to
both sides of the equation to obtain

−α∆2

(
∆u2√

(∆u2)2 + β2

)
− 1

λ
(f − u1 − u2) = 0;

∂∆u2

∂n
|∂Ω = 0,

∂∆2u2

∂n
|∂Ω = 0, (59)

which can be solved by driving to steady state

∂u

∂t
= α∆2

(
∆u2√

(∆u2)2 + β2

)
+

1
λ

(f − u1 − u2) = 0;
∂∆u2

∂n
|∂Ω = 0,

∂∆2u2

∂n
|∂Ω = 0. (60)

Equation (60) is a non-linear sixth order equation whose practicality can be limited by the small time
steps needed to solve this equation. Moreover, the stiffness of solving this equation is compounded
when the regularization parameter β is chosen small. Moreover, a proof of convergence for solving such
an equation by artificial time marching has not been provided. In contrast, the previous condition on
τ for the dual method may not seem so restrictive.

Of course, a dual method can also be formulated to solve for the discontinuous component u1 in the
minimization problem (41). Such a method was introduced by the authors in [2], and we pursue this
approach with slight modification. Let us consider the following primal-dual formulation for (41):

inf
u1

sup
ξ

{∫

Ω

u1div(ξ)dx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}

(61)
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where ξ is a vector valued function, ξ : Ω → Ω × Ω. The above equation (61), is convex in u1 and
concave (linear) in ξ, thus, swapping the inf and sup and setting v = div(ξ) yields:

sup
v,v=div(ξ)

inf
u1

{∫

Ω

u1vdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
.

(62)
Then, for each fixed v, the quantity

inf
u1

{
G(u1) =

∫

Ω

u1vdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx
}

(63)

yields a minimizer u1: u1 = f − u2 + λ∆v. Substituting this expression for u1 back into (62) and once
again using the fact that sup {G(·)} = − inf {−G(·)} yields the following full dual minimization problem
with respect to v:

− inf
v,v=div(ξ)

{
λ

2

∫

Ω

|∇v|2dx−
∫

Ω

(f − u2)vdx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
. (64)

Since we are only concerned with v = div(ξ), problem (64) can be reformulated as:

inf
ξ

{
λ

2

∫

Ω

|∇div(ξ)|2dx−
∫

Ω

(f − u2)div(ξ)dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
. (65)

In the discrete setting, equation (65) can be set as a constrained minimization problem with inequality
constraints:

min
p,|p|≤1

{
λ

2

∫

Ω

|∇div(p)|2dx−
∫

Ω

(f − u2)divpdx
}

(66)

whose optimality conditions read:

∇(f − u2)i,j + λ∇∆div(p)i,j + αi,jpi,j = 0 (67)

where αi,j are the Lagrange Multipliers, and by complementary slackness, either αi,j = 0 (where
∇(f − u2)i,j + λ∇∆div(p)i,j is also 0) and |pi,j | < 1 or αi,j > 0 and |pi,j | = 1. Here, we once again
need mention that the approach of solving a similar equation arising from the ROF model in the dual
framework was pursued in [6, 12]. Again, using the observation and essential contribution in [7], we see
that in either case, the Lagrange multipliers are:

αi,j = |∇(f − u2)i,j + λ∇∆div(p)i,j |
and the Lagrange multiplier (optimality) equation (67) reduces to:

A(p)i,j + |A(p)i,j |pi,j = 0

where A(p)i,j = ∇( f−u2
λ )i,j +∇∆div(p)i,j . This equation can be solved by the semi-implicit gradient

descent (fixed point) iteration scheme introduced in [2, 7]:

pn+1 = pn − τ
(
An

i,j + |An
i,j |pn+1

i,j

)

where An
i,j = ∇( f−u2

λ )i,j + ∇∆div(pn)i,j . Thus, the final iteration method reduces to the explicit
scheme:

p0 = 0, pn+1
i,j =

pn
i,j − τ

(
∇

(
∆div(pn) + f−u2

λ

))
i,j

1 + τ

∣∣∣∣
(
∇

(
∆div(pn) + f−u2

λ

))
i,j

∣∣∣∣
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where f − u2 + λ∆pn −→ ũ1 as n −→∞ for τ small enough, with ũ1 a solution to (41).

Theorem 3.2 Let τ < 1/64. Then, vn = div(pn) converges to the solution of the minimization problem
(66) as n −→∞.

Proof. The proof follows in the same manner as in Theorems 2.1 and 3.1. Fix n ≥ 0 and set η = pn+1−pn

τ .
Then,

‖∇div(pn+1)‖2 − 2
λ

〈
(f − u2), div(pn+1)

〉 ≤ ‖∇div(pn)‖2 − 2
λ
〈(f − u2),div(pn)〉 (68)

+ τ

(
2

〈
∇

(
∆div(pn) +

(f − u2)
λ

)
, η

〉
+ τκ2‖η‖2

)

where ‖η‖2 = 〈η, η〉 and κ denotes the norm of the operator ∇div : Ω → Ω×Ω to be computed shortly.
Let An

i,j = ∇
(
∆div(pn) + (f−u2)

λ

)
. Now,

2 〈An,η〉+ κ2τ‖η‖2 =
N∑

i,j=1

2ηi,j ·An
i,j + τκ2|ηi,j |2 (69)

and the quantity ηi,j = −An
i,j − %i,j with %i,j = |An

i,j |pn+1
i,j . Therefore, for each i, j

2ηi,j ·An
i,j + κ2τ |ηi,j |2 =

(
τκ2 − 1

) |ηi,j |2 + |%i,j |2 − |An
i,j |2. (70)

Now, |pn+1
i,j | ≤ 1 implies that |%i,j | ≤ |An

i,j |. Thus, |%i,j |2 ≤ |An
i,j |2. Hence, if

(
τκ2 − 1

) ≤ 0, i.e.
τ ≤ 1/κ2, the quantity

‖∇div(pn)‖2 − 2
λ
〈(f − u2), div(pn)〉

is decreasing as n increases as long as η 6= 0. If η = 0, then pn+1 = pn. A detailed analysis also shows
that the energy still decreases in the case when κ2τ = 1.

Now, set L = limn→∞
{‖∇div(pn)‖2 − 2

λ 〈(f − u2), div(pn)〉} and let {pnq} be a convergent subse-
quence with limit p̃ and let p̂ = limn→∞ pnq+1. Then, we have

p̂i,j =
p̃i,j + τ∇

(
∆div(p̃) + (f−u2)

λ

)
i,j

1 + τ

∣∣∣∣∇
(
∆div(p̃) + (f−u2)

λ

)
i,j

∣∣∣∣
. (71)

Repeating the previous calculations and taking limits yields

‖∇div(p̂)‖2 − 2
λ
〈(f − u2),div(p̂)〉 ≤ ‖∇div(p̃)‖2 − 2

λ
〈(f − u2),div(p̃)〉 + τ(τκ2 − 1)κ2‖η‖2. (72)

Now, L =
{‖∇div(p̂)‖2 − 2

λ 〈(f − u2),div(p̂)〉} =
{‖∇∆p̃‖2 − 2

λ 〈(f − u1),div(p̃)〉} implying that
ηi,j = p̂i,j−p̃i,j

τ = 0 for every i, j. Therefore, p̃ = p̂ and

∇
(

∆div(p̃) +
(f − u2)

λ

)
+

∣∣∣∣∇
(

∆div(p̃) +
(f − u1)

λ

)∣∣∣∣ p̃ = 0 (73)

15



the optimality equation for a minimizing solution of problem (66). Therefore, div(p̃) is the solution to
problem (66). Since this solution is unique, the entire sequence {div(pn)} converges to the solution of
(66). Thus, the theorem is proved if we can show that κ2 ≤ 64.

By definition, κ = sup‖p‖≤1 ‖∇div(p)‖. Thus, using the standard zero boundary conditions on pi,j ,
we have

‖∇div(p)‖2 ≤
∑

i,j

(
div(p)i,j

)2

x
+

(
div(p)i,j

)2

y

=
∑

i,j

((
p1

i,j)x + (p2
i,j

)
y

)2

x
+

((
p1

i,j)x + (p2
i,j

)
y

)2

y

=
∑

i,j

(
p1

i,j − p1
i−1,j + p2

i,j − p2
i,j−1

)2

x
+

(
p1

i,j − p1
i−1,j + p2

i,j − p2
i,j−1

)2

x

=
∑

i,j

{(
p1

i,j − p1
i−1,j + p2

i,j − p2
i,j−1

)− (
p1

i−1,j − p1
i−2,j + p2

i−1,j − p2
i−1,j−1

)}2

+
{(

p1
i,j − p1

i−1,j + p2
i,j − p2

i,j−1

)− (
p1

i,j−1 − p1
i−1,j−1 + p2

i,j−1 − p2
i,j−2

)}2

≤
∑

i,j

8
{
(p1

i,j)
2 + (p1

i−1,j)
2 + (p2

i,j)
2 + (p2

i,j−1)
2 + (p1

i−1,j)
2 + (p1

i−2,j)
2 + (p2

i−1,j)
2 + (p2

i−1,j−1)
2
}

+ 8
{
(p1

i,j)
2 + (p1

i−1,j)
2 + (p2

i,j)
2 + (p2

i,j−1)
2 + (p1

i,j−1)
2 + (p1

i−1,j−1)
2 + (p2

i,j−1)
2 + (p2

i,j−2)
2
}

≤ 64‖p‖2

Thus, κ2 ≤ 64. ♦

4 The CEP2–G, CEP2–E, and CEP2–UVW Models and Cor-
responding Fourth Order Dual Methods

In this section, we propose staircase reducing image decomposition models explicitly involving the Meyer
norms along with novel fourth order dual methods for obtaining solutions.

4.1 The CEP2–G Model, Approximation, and a 4-th order Dual Method

The proposed model, CEP2–G, involving Meyer’s G norm is a u + v, structure + texture, staircase
reducing decomposition model. The additional property of staircase reduction occurs in the structural
component u of the decomposition by incorporating the energy ‖∆u2‖1 into the original CEP–G model
(9). Thus, the CEP2–G model has the following formulation as energy minimization

inf
f=u+v, u=u1+u2

{∫

Ω

|∇u1|+ α

∫

Ω

|∆u2|+ β‖v‖G

}
. (74)

In practice, the minimization of (74) is difficult due to the nature of the G norm. Nonetheless, we follow
the authors approach in [1, 11] to introduce the following approximation to the energy (74) called the
CEP2–G approximation:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

∫

Ω

|∆u2|+ J∗
(

v

µ

)
+

1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

. (75)
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Using similar arguments as in [11], it follows that as λ −→ 0, minimizing the energy in (75) yields a
solution to the CEP2–G model (74).

We give some preliminary definitions where, following the notation in [2, 11], the discrete G space
can be defined as:

G = {v ∈ Ω | ∃ g ∈ Ω× Ω such that v = div(g) } (76)

having norm

‖v‖G = inf
{
‖g‖∞ | v = div(g), g = (g1, g2) ∈ Y, |gi,j | =

√
(g1

i,j)2 + (g2
i,j)2

}
. (77)

Let the set µBG be denoted by:
µBG = {v ∈ G | ‖v‖G ≤ µ} . (78)

One way of minimizing the energy (75) amounts to solving the following three minimization prob-
lems:

for u1 and v fixed, find solution u2 of:

inf
u2

{
α

∫

Ω

|∆u2|+ 1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

, (79)

for u1 and u2 fixed, find solution v of:

inf
v∈µBG

{∫

Ω

(f − u1 − u2 − v)2 dx
}

, (80)

for u2 and v fixed, find solution u1 of:

inf
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

. (81)

A solution ũ2 of (79) can be obtained by solving a dual formulation of this energy in much the same
way as in the 4-th order energy (20) obtained from the CEP–L2 model (4). Indeed, the primal-dual
formulation of (79) follows as:

inf
u2

sup
ξ

{
α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

(f − u1 − u2 − v)2dx | ξ ∈ C2
c (Ω;R), −1 ≤ ξ ≤ 1

}
. (82)

where ξ is a scalar valued function, ξ : Ω → Ω. The above problem (82) is equivalent to solving the
following full dual problem:

inf
ξ

{∫

Ω

(
αλ

2
(∆ξ)2 − (f − u1 − v)∆ξ

)
dx | ξ ∈ C2

c (Ω;R), −1 ≤ ξ ≤ 1
}

. (83)

In the discrete setting, minimizing the above equation (83) amounts to solving the following constrained
optimization problem with inequality constraints:

min
p,|p|≤1

{∫

Ω

(
αλ

2
(∆p)2 − (f − u1 − v)∆p

)
dx

}
(84)
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whose solution can be obtained from the semi-implicit gradient descent (fixed point iteration):

p0 = 0; pn+1
i,j = pn

i,j − τ
(
An

i,j + |An
i,j |pn+1

i,j

)
. (85)

The scheme (85) then, reduces to the explicit iteration scheme:

p0 = 0; pn+1
i,j =

pn
i,j − τAn

i,j

1 + τ |An
i,j |

, (86)

where An
i,j = ∆2pn

i,j − ∆
(

f−u1−v
αλ

)
i,j

and un
2 = f − u1 − v − αλ∆pn −→ ũ2 as n −→ ∞, with ũ2 a

solution of (82).

Theorem 4.1 Let τ < 1/64. Then, vn = ∆pn converges to the solution of the minimization problem
(84) as n −→∞.

Proof. The proof follows in exactly the same manner as in the proof of Theorem 2.1 except with the quan-
tity

{∫
Ω

(
αλ
2 (∆p)2 − (f − u1 − v)∆p

)
dx

}
replacing the energy

{∫
Ω

(
αλ
2 (∆p)2 − (f − u1)∆p

)
dx

}
. ♦

Solving for the texture part v requires the minimization of problem (80) as introduced in [1], which
is equivalent to the following minimization problem:

for u1 and u2 fixed, find a solution v of:

inf
‖ v

µ‖G≤1

{
1
2

∫

Ω

(f − u− v)2 dx
}

. (87)

One can get a handle on the G norm in the discrete setting since the constraint: ‖ v
µ‖G ≤ 1 in the above

minimization amounts to finding g such that v = µdiv(g), |g | ≤ 1. Thus, the problem in equation (87)
amounts to solving the constrained minimization problem with inequality constraints:

min
|p|≤1

{
1
2

∫

Ω

(f − u− µdiv(p))2 dx
}

. (88)

The optimality conditions for this problem read:

−∇ (µdiv(p)− (f − u1 − u2))i,j + αi,jpi,j = 0

where the αi,j ’s denote the Lagrange multipliers connected to each constraint in (88). Again, as in
section §2 and in [2, 7], the Lagrange multipliers αi,j reduce to αi,j = |µdiv(p)− (f − u1 − u2)|i,j , and
the optimality equation then reduces to

−A(p)i,j + |A(p)i,j |pi,j = 0

where A(p)i,j =
(
div(p)− f−u1−u2

µ

)
i,j

. Once again, this equation can be solved by the semi-implicit

gradient descent (fixed point) iteration introduced in [7, 1]:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

.
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Here, An
i,j =

(
div(pn)− f−u1−u2

µ

)
i,j

, and for τ ≤ 1
8 , vn = µdiv(pn) −→ ṽ as n −→ ∞, where ṽ is a

solution to (87).

Solving for the discontinuous component u1 requires the minimization of problem (81), and follows
in much the same way as with the dual formulation of the ROF model [6, 12, 7]. Thus, (81) can be
reformulated as the following problem:
for u2 and v fixed, find solution u1 of:

inf
u1

sup
ξ

{∫

Ω

u1div(ξ) +
1
2λ

∫

Ω

(f − u− v)2 dx | ξ ∈ C1
c (Ω;R2), |ξ| ≤ 1

}
. (89)

The above primal-dual problem (89) is almost identical to problem (37) obtained from the CEP2–
L2 model for obtaining u1. Now, problem (89), in the discrete setting, is equivalent to the following
constrained full dual minimization problem with inequality constraints

min
p,|p|≤1

{∫

Ω

(λdiv(p)− (f − u2 − v))2
}

(90)

which can be solved by the fixed point (gradient descent) iteration scheme introduced in [7]:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

.

Here, An
i,j = ∇

(
div(pn)− f−u2−v

λ

)
i,j

, so that for τ ≤ 1
8 , un

1 = f − u2 − v − λdiv(pn) −→ ũ1 as

n −→∞, where ũ1 is a solution to (89).

4.2 The CEP2–E Model, Approximation, and a 4-th Order Dual Method

Of course, one can just as easily apply the dual methods used to solve the CEP2–G model (74) to the
proposed CEP2–E model, E = B∞

−1,∞:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

∫

Ω

|∆u2|+ β‖v‖E

}
. (91)

Again, as with Meyer’s original G norm model, the CEP–G model, and the CEP2–G model, problem
(91) cannot be solved directly due to the nature of the E norm. However, we may consider the proposed
CEP2-E Approximation to the above energy (91) based on the approximations in [2, 11]:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

∫

Ω

|∆u2|+ B∗
(v

δ

)
+

1
2λ

∫

Ω

(f − u− v)2 dx
}

. (92)

One way of minimizing the above energy (92) amounts to solving the following minimization prob-
lems:

for u1 and v fixed, find solution u2 of:

inf
u2

{
α

∫

Ω

|∆u2|+ 1
2λ

∫

Ω

(f − u− v)2 dx
}

, (93)
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for u2 and v fixed, find solution u1 of:

inf
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

(f − u− v)2 dx
}

, (94)

for u1 and u2 fixed, find solution v of:

inf
v∈δBE

{∫

Ω

(f − u− v)2 dx
}

. (95)

Minimizing (93) and (94) follow in exactly the same manner as the methods used above in the
CEP2–G approximation (75). To find a minimizer ṽ of equation (95), we use the same method as in
[2, 11]. Here, ṽ is given by ṽ = f − u1 − u2 −WST (f − u1 − u2, δ), where WST stands for the wavelet
soft thresholding algorithm given in [8] with threshold δ.

4.3 The CEP2–UVW Model and a 4-th Order Dual Method

In this section, we propose a staircase reducing u+v+w, structure+texure+noise model respectively,
based on the models in [2, 11], that incorporates a high order energy. Moreover, we propose a fourth
order dual method for obtaining solutions to this model. The proposed model, called the CEP2-UVW
model, has the following formulation:

inf
u1,u2,v,w

{∫

Ω

{
|∇u1|+ α

2
|∆u2|

}
+ J∗

(
v

µ

)
+ B∗

(w

δ

)
+

1
2λ

∫

Ω

(f − u1 − u2 − v − w)2dx
}

. (96)

One way of minimizing the CEP2–UVW energy (96) amounts to solving the following minimization
problems:

for u1, v and w fixed, find solution u2 of:

inf
u2

{
α

2

∫

Ω

|∆u2|+ 1
2λ

∫

Ω

(f − u1 − u2 − v − w)2 dx
}

, (97)

for u2, v and w fixed, find solution u1 of:

inf
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

(f − u1 − u2 − v − w)2 dx
}

, (98)

for u1, u2 and w fixed, find solution v of:

inf
v∈µBG

{∫

Ω

(f − u1 − u2 − v − w)2 dx
}

, (99)

for u1, u2 and v fixed, find solution w of:

inf
w∈δBE

{∫

Ω

(f − u1 − u2 − v − w)2 dx
}

. (100)

The piecewise smooth component u2, found by minimizing (97), can also be found by solving the
associated primal-dual formulation:

inf
u2

sup
ξ

{
α

∫

Ω

u2∆ξdx +
1
2λ

∫

Ω

(f − u1 − u2 − v − w)2dx | ξ ∈ C2
c (Ω;R), −1 ≤ ξ ≤ 1

}
. (101)
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In the discrete setting, minimizing the above equation (101) amounts to solving the following constrained
full dual optimization problem with inequality constraints:

min
p,|p|≤1

{∫

Ω

(
αλ

2
(∆p)2 − (f − u1 − v − w)∆p

)
dx

}
. (102)

A solution of (102) can be found in almost the exact same way as in the CEP2-G approximation (75)
solver for ũ2 which amounts to solving the iteration scheme:

p0 = 0, pn+1
i,j =

pn
i,j − τAn

i,j

1 + τ |An
i,j |

(103)

where An
i,j = ∆2pn

i,j − ∆
(

f−u1−v−w
αλ

)
i,j

and for τ ≤ 1
64 , un

2 = f − u1 − v − w − αλ∆pn −→ ũ2 as

n −→∞, with ũ2 a solution of (101).

The discontinuous component u1 obtained by minimizing (98) can also be found in almost the exact
manner as in the dual CEP2–G (75) solver for u1. If we set An

i,j = ∇
(
div(pn)− f−u2−v−w

λ

)
i,j

, then

the semi-implicit fixed point iteration scheme:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

has the property that, for τ ≤ 1
8 , un

1 = f − u2 − v − w − λdiv(pn) −→ ũ1 as n −→ ∞, where ũ1 a
solution of (98).

Lastly, the texture component v obtained from the minimization of (99) can also be found in almost
the exact same way as in the dual CEP2–G (75) solver for v. If we set An

i,j =
∣∣∣ f−u1−u2−w

µ − div(pn)
∣∣∣
i,j

,

then the fixed point iteration:

p0 = 0; pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

has the property that, for τ ≤ 1
8 , vn = µdiv(pn) −→ ṽ as n −→∞, ṽ a solution of (99).

Finally, the noise component w obtained by minimizing (100) can be found by computing w̃ =
f − u1 − u2 − v −WST (f − u1 − u2 − v, δ), where WST (f − u1 − u2 − v) is wavelet soft thresholding
of f − u1 − u2 − v with threshold δ (see [2, 8]).

5 Numerical Experiments

5.1 1-D Results

Figure 2 illustrates the ability of the norm ‖∆ · ‖1 to preserve discontinuities in the second derivative
(e.g. kinks or ridges). We utilize the 1-d case to better demonstrate this phenomenon. Top left and
right, clean and noisy signals are respectively observed, SNR=15. Middle left and right, recovered
signals obtained from the CEP–L2 and CEP2–L2 models respectively. As expected behavior from the
‖∆ · ‖22 norm, the observation can be made that the recovered signal from the CEP–L2 model has no
sharp corners. In contrast, the recovered signal obtained from the CEP2–L2 model has better preserved
corners which is expected from the utilization of the non-smooth energy. Comparable noise components
are observed bottom left and right for the CEP–L2 and CEP2–L2 models respectively.
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5.2 2-D Results

In this section, we demonstrate staircase reduction in both denoising and texture extraction applications.
We will also compare the proposed models with some popular denoising and decomposition models.

In this first experiment, we illustrate staircase reduction for denoising applications. Exhibited, in
Figure 3, clean and noisy images left and right respectively. For the observed image, σ = 20, σ2

the variance of a Gaussian noise. Showcased in figure 4, top left and right, are the recovered image
u = u1+u2 and the removed noise v = f−u1−u2 respectively obtained from the CEP2–L2 model. Here,
we observe no significant staicasing in u. In the same figure, bottom left and right, are the discontinuous
and piecewise smooth components u1 and u2 respectively. Of course, a comparison should be made to
the ROF model and in Figure 5, we observe, top left, the recovered image u obtained from the ROF
model and bottom left, the recovered image u = u1+u2, obtained from the CEP2–L2 model. Staircasing
can already be detected on Barbara’s face and arms in the ROF component; particularly on the left
side of her face (Barbara’s face) and on her left forearm and right upper arm. In u obtained from the
CEP2–L2 Model, staircasing appears to be alleviated. Comparable noise components are observed in
top and bottom right, the components v = f−u and f−u1−u2, obtained from the ROF and CEP2–L2

models respectively. All the parameters have been chosen so that ‖v‖2 are the same for both models.
In Figure 6, we showcase, left and right, zoom ins of the face in the recovered images u and u = u1 +u2,
for the ROF and CEP2–L2 models respectively. Here, prominent staircasing is observed on Barbara’s
face in the image obtained from the ROF model. Staircasing has been successfully reduced in the image
obtained from the CEP2–L2 model while sharp edges are maintained.

The next experiment compares the recovered image obtained from the dual method to that obtained
from an artificial time marching method for the CEP2–L2 model. In Figure 7, top and bottom left,
we observe the recovered images u = u1 + u2 and u, obtained from the high order dual method and
an artificial time marching method respectively. The images appear comparable with some very slight
variation introduced from the β parameter used to regularize the non-smooth energies of the CEP2–
L2 model when utilizing time marching. Top right and bottom right, comparable noise components
v = f − u1 − u2 and v = f − u, obtained from the dual and time marching methods are respectively
observed.

The purpose of the next experiment is to ensure that the texture extraction properties of the CEP2–
H−1 model are comparable to the OSV model while simultaneously reducing staircasing. In Figure 8
left, a clean Barbara image containing structural (geometric) and texture (oscillatory) components is
observed. A noisy version of this image, σ = 20, σ2 the variance of a Gaussian noise, is observed on
the right. Figure 9, top left and right, exhibits the structural component u = u1 + u2 and the texture
component v = f − u1 − u2 respectively obtained from the CEP2–H−1 model while the piecewise
constant and smooth components u1 and u2 are observed bottom left and right respectively. Here, we
make the observation that there is an absence of any significant staircasing in the structural component
u. Moreover, the texture component appears to contain mostly oscillatory features. Of course, a
comparison is in order, and in Figure 10, we compare the CEP2–H−1 and OSV Models. Here, we
observe, top left and bottom left, the structural components u and u = u1 +u2, obtained from the OSV
and CEP2–H−1 models respectively. Even without zooming in, staircasing can already be detected
in the component obtained from the OSV model. This is particularly noticeable on the left side of
Barbara’s face (her left) and on her arms. Top right and bottom right are the corresponding texture
components v = f−u and v = f−u1−u2, obtained from the OSV and CEP2–H−1 models respectively.
These texture components appear to be comparable with mostly oscillatory features. To better illustrate
staircasing, in Figure 11, we display some zoom ins of the structural components obtained from the OSV
and CEP2–H−1 models. Left and right, zoom ins of the face from the structural component obtained
from the OSV and CEP2–H−1 models respectively. In the OSV component, prominent staircasing can
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be observed on Barbara’s face. In the CEP2–H−1 component, staircasing has been successfully reduced,
while sharp edges are still maintained. Similar observations can be deduced from Figure 12, where the
zoom ins of Barbara’s upper arm and forearm are exhibited. Again, the parameters have been chosen
so that ‖v‖2 are the same for both models.

In the final experiment, we compare the recovered image obtained from the high order dual method
to that of an artificial time marching method for the CEP2–H−1 model. In Figure 13, top and bottom
left, we observe the recovered images u = u1+u2 and u, obtained from the proposed dual method and an
artificial time marching method respectively. The images appear comparable with some slight variation
introduced from the β parameter used to regularize the non-smooth energies in the CEP2–H−1 model
when utilizing time marching. We observe, top right and bottom right, comparable noise components
v = f − u1 − u2 and v = f − u, obtained from the dual and time marching methods respectively.

6 Future Works

In this paper, we introduced new texture decomposition and restoration models incorporating fourth
order non-smooth energies in image processing along with novel high order dual methods to obtain the
corresponding solutions. Some future works include some even faster methods that exceed the current
convergence rate of the fixed point methods utilized in this paper.
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Figure 2: Preservation of Discontinuities in the 2nd Derivative: Top left and right, the clean and
observed signals respectively. The SNR=15 for the observed signal. Middle left, recovered signal from
the CEP–L2 model. Here, we observe that the kinks (peaks) in the recovered image are rounded off.
Middle right, recovered image from the proposed CEP2–L2 model. In this case, the kinks are much
better preserved. Bottom left and right, the noise components for the CEP–L2 and CEP2–L2 models
respectively. The noise components appear comparable. Parameters have been chosen so that ‖v‖2 are
the same for both models, v = f − u1 − u2. 25



Clean Image Observed Image, σ = 20

Figure 3: Clean and Nosy Image: Left, clean image. Right, noisy observed image with Gaussian noise
of variance σ2, σ=20.
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u = u1 + u2, CEP2–L2 Model v = f − u1 − u2, CEP2–L2 Model

u1, CEP2–L2 Model u2, CEP2–L2 Model

Figure 4: Image Denoising, CEP2–L2 Model (17): Top left, recovered image u = u1+u2, obtained from
the CEP2–L2 Model utilizing the fourth order dual method. Top right, the removed noise v = f−u1−u2.
Bottom left and right, the piecewise constant u1 and piecewise smooth u2 regions respectively. No
significant staircasing is observed in the recovered image u = u1 + u2.
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u, ROF Model v = f − u, ROF Model

u = u1 + u2, CEP2–L2 Model v = f − u1 − u2, CEP2–L2 Model

Figure 5: Comparison of the CEP2–L2 Model (17) and the ROF Model: Top left, recovered image
u obtained from the ROF model. Staircasing can already be detected on Barbara’s face and arms.
Bottom left, recovered image u = u1 + u2, obtained from the CEP2–L2 model. Staircasing appears to
be alleviated. Top and bottom right, the noise components v = f − u and v = f − u1 − u2, obtained
from the ROF and CEP2–L2 models respectively. Both noise components appear to be comparable and
the parameters have been chosen so that ‖v‖2 are the same for both models.
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Zoom of u, ROF Model Zoom of u = u1 + u2, CEP2–L2 Model

Figure 6: Zoom In, Comparison of the CEP2–L2 Model (17) and the ROF Model: Left and right, zoom
in of the face of the recovered images u and u = u1 +u2, obtained from the ROF and CEP2–L2 models
respectively. Prominent staircasing can be observed on Barbara’s face in the image obtained from the
ROF model. Staircasing has been successfully reduced in the image obtained from the CEP2–L2 model
while maintaining sharp edges.
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u = u1 + u2, Dual v = f − u1 − u2, Dual

u = u1 + u2, Time Marching v = f − u1 − u2, Time Marching

Figure 7: Dual Versus Artificial Time Marching, CEP2–L2 Model (17): Top left and bottom left,
recovered images u = u1+u2, obtained from the dual and artificial time marching methods respectively.
Top right and bottom right, the noise components v = f−u1−u2, obtained from the dual and artificial
time marching methods respectively. Both structural u and noise v components are comparable.
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Clean Image Observed Image, σ = 20

Figure 8: Clean and Noisy Image: Left, clean image containing both structural (geometric) and texture
(oscillatory) features. Right, noisy observed image with Gaussian noise of variance σ2, σ=20.
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u = u1 + u2, CEP2–H−1 Model v = f − u1 − u2, CEP2–H−1 Model

u1 u2

Figure 9: Texture Decomposition, CEP2–H−1 Model (39): Top left, the structural (geometric) compo-
nent u = u1 + u2, obtained from the CEP2–H−1 Model utilizing the fourth order dual method. Top
right, the texture component v = f − u1 − u2 where, mostly oscillatory features (texture) are visible.
Bottom left and right, the piecewise constant u1 and piecewise smooth u2 regions respectively. Once
again, as with the CEP2–L2 model, no significant staircasing is observed in the structural component
u = u1 + u2.
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u, OSV Model v = f − u, OSV Model

u = u1 + u2, CEP2–H−1 Model v = f − u1 − u2, CEP2–H−1 Model

Figure 10: Comparison of the CEP2–H−1 and OSV Models: Top left and bottom left, structural
components u and u = u1 +u2, obtained from the OSV and CEP2–H−1 models respectively. Top right
and bottom right, the corresponding texture components v = f − u and v = f − u1 − u2, obtained
from the OSV and CEP2–H−1 models respectively . Without zooming in, staircasing can already be
detected in the u component obtained from the OSV model. The texture components v are comparable
for both models.
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Zoom of u, OSV Model Zoom of u = u1 + u2, CEP2-H−1 Model

Figure 11: Comparison of the CEP2–H−1 and OSV Models, Zoom Ins: Left and right, zoom in of face
from the structural components u and u = u1 + u2, obtained from the OSV and CEP2–H−1 models
respectively. Prominent staircasing is observed in the zoom of the component obtained from the OSV
model. Staircasing is alleviated in the component obtained from the CEP2-H−1 model.
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Zoom of u, OSV Model Zoom of u = u1 + u2, CEP2–H−1 Model

Zoom of u, OSV Model Zoom of u = u1 + u2, CEP2–H−1 Model

Figure 12: Comparison of the CEP2–H−1 and OSV Models, Zoom Ins: Top left and right, zoom in of
the arm from the structural components u and u = u1 + u2, obtained from the OSV and CEP2–H−1

models respectively. Prominent staircasing is observed in the zoom of the component obtained from
the OSV model, particularly near the upper arm. Staircasing has been successfully alleviated in the
component obtained from the CEP2-H−1 model. Similar observations can be made from the zoom ins
of the forearm seen bottom left and right, for the components u and u = u1 + u2, obtained from the
OSV and CEP2–H−1 models respectively.
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u = u1 + u2, Dual v = f − u1 − u2, Dual

u = u1 + u2, Time Marching v = f − u1 − u2, Time Marching

Figure 13: Dual Versus Time Marching, CEP2–H−1 Model (39): Top left and bottom left, structural
components u = u1 +u2, obtained from the dual and artificial time marching methods respectively. Top
right and bottom right, the texture components v = f − u1 − u2, obtained from the dual and artificial
time marching methods respectively. Both structural u and noise v components are comparable.
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