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Abstract

The active contour model [9, 10, 2] is one of the most
well-known variational methods in image segmentation. In
a recent paper by Bresson, Esedoḡlu, Vandergheynst, Thi-
ran and Osher [1], a link between the active contour model
and the variational denoising model of Rudin-Osher-Fatemi
(ROF) [12] was demonstrated. This relation provides a
method to determine theglobal minimizer of the active con-
tour model. In this paper, we propose a variation of this
method to determine the global minimizer of the active con-
tour model in the case when there are missing regions in
the observed image. The idea is to turn off theL1-fidelity
term in some subdomains, in particular the regions for im-
age inpainting. Minimizing this proposed energy provides
a unified way to perform image denoising, image segmen-
tation and image inpainting. To determine the minimizer of
this energy functional, we use the method of gradient de-
scent. But unlike the usual numerical method which uses
the standard fully explicit scheme, we apply the Alternat-
ing Direction Explicit (ADE) scheme. This scheme provides
a faster and a more robust way to minimize the proposed
energy functional.

1 Introduction

Image segmentation, image restoration and image in-
painting are a few basic yet important areas in image
processing and computer vision. Traditionally, these closely
related fields were developed independently. However, the
use of the level set method and variational methods in recent
years started to bring all these fields together. One example
is the TV-inpainting model [7]. We can perform inpainting
in a desired domain while applying the ROF model [12] to
remove noise from the rest of the domain using only one
energy functional. Another example is the Mumford-Shah
model [11] which was originally designed for image seg-

mentation but can also be used as an image denoising tool.
Extension of the Mumford-Shah model to image inpainting
was also carried out in [8].

There are two interesting recent developments about the
connection between different fields in image processing.
We will discuss later in this paper how they link different
fields in an interesting way. The first development con-
cerns the impulse-noise removal method and the variational
method for image regularization. In two recent papers by
Chan, Nikolova et al. [3, 4], a two-phase method was
proposed to remove impulse-type noise. For a true image
u∗(x) and an observed imagef(x) defined in a domainΩ,
impulse-type noise is defined by

f(x) =
{

r(x) with probabilityr0

u∗(x) with probability(1− r0).
(1)

As an example, for the so-called salt-and-pepper noise,r(x)
is simply the maximum or the minimum of the image in-
tensity (0 and 255 for grey-scaled images). The main idea
in those papers is to separate the denoising process into a
noise detection phase and a noise removal phase. In the first
stage, a median-type filter is applied to the observed image
to detect the possible locations of the impulse noise. Then
in the second phase, instead of replacing the intensity at all
locations by the median intensity around a certain neighbor-
hood, aL1-regularization method is applied only to those
locations reported in the first phase while keeping the other
pixels unchanged. The resulting method was shown to be
able to remove the salt-and-pepper noise efficiently even at
a very high noise level (for exampler0 = 0.75). The main
reason for its success is that this method retains those pixels
that are unlikely to be polluted and maintains sharp edges
in the whole image.

Another interesting development is a new model that
uses variational method for image segmentation [5, 1]. The
idea of the model is to minimize an energy functional con-
sisting of a weighted TV-norm with aL1-fidelity term. For
the segmentation of a binary image, the papers showed an



equivalence between the new energy functional and that of
the active contour model. This relation can be used to over-
come the problem of the active contour model in which the
energy function is not convex. Very often the snake will
be trapped in alocal minimizer thus giving unsatisfactory
segmentation results. The link between these two energies,
as demonstrated in the above papers, provides a convenient
way to determine theglobal minimizer of the active contour
energy.

In this paper, we will combine the two recent advances in
image processing mentioned above. This provides an effi-
cient and unified way to perform image denoising (for both
impulse-type and Gaussian-type noises), image segmenta-
tion, and image inpainting at the same time.

The rest of the paper will be organized as follows. In
Section 2, we will briefly review the denoising model by
Chan, Nikolova et al. [3, 4] and also restate the link be-
tween the active contour model and the ROF model as in
[1]. A new model will be given in Section 3. Section 4 con-
tains some details in the numerical implementation. Some
numerical results will be given in Section 5.

2 Two Recent Developments

2.1 A Two-Phase Method to Remove Impulse-
type Noise

Unlike the usual way to denoise impulse noise by ap-
plying the median-type filter to the image and replacing the
image intensity everywhere, the idea in [3, 4] is to separate
the denoising processing into a noise-detection phase and a
noise-removal phase. Mathematically, the first phase can be
formulated as determining a noise candidate set

N = {x ∈ Ω : f(x) 6= fMF(x)} (2)

in whichΩ is the image domain,f(x) is the observed image
intensity at the pixelx, andfMF(x) is the intensity atx after
applying a median-type filter, such as the classical median
filter or the adaptive median filter. In the second phase, the
following functional is minimized

F |N (u) =
∫

N

{
|u(x)− f(x)|+ β

2
[S1(u) + S2(u)]

}

(3)
where

S1(u) =
∫

V(x)∩(Ω\N )

2 φ[u(x)− f(y)]dy

S2(u) =
∫

V(x)∩N
φ[u(x)− u(y)]dy , (4)

V(x) is the neighborhood centered atx andφ is an edge-
preserving potential function. As seen in [3, 4], one possible

choice forφ is

φ(t) =
√

t2 + ε2 (5)

with a small constantε. The first term in the curve-bracket
is aL1-fidelity term. The terms in the square-bracket can be
interpreted as an approximation of the total variation (TV)
of u.

In the simple case when the noise can be separated accu-
rately in the first step, the fidelity term is not important. A
simplification of this whole algorithm is therefore the same
as an image inpainting algorithm. For example, if ROF [12]
or L2-fidelity is used instead, we arrive at the TV-inpainting
[7]. That is, given an observed imagef , one minimizes the
following energy

E1(u) =
∫

Ω

|∇u|+ 1
2

∫

Ω

λ(x)|u− f |2 (6)

where

λ(x) =
{

0 if f(x) = fMF(x)
λ∞ ' ∞ otherwise.

(7)

The idea of using a piecewise constantλ(x) in TV-
inpainting is not new [7]. However, it is interesting to see
here the relationship between the impulse-type noise re-
moval and image inpainting by using a piecewise constant
λ(x) determined by a median-type filter.

2.2 Global Minimizer of the Active Contour
Model

In the classical active contour model, the initial guess of
the segmented image plays a very important role. We show
in Figure 1 some minimizers of the active contour model.
As we can see, different initial conditions in the evolution
will give different segmented region. More importantly,
none of these results corresponds to thetrue segmented re-
sults, i.e. curves which separate all regions with different
intensities in the whole image. One reason for these un-
satisfactory results is that the minimization problem of the
active contour is not convex, and therefore it is very likely
that the energy minimization could be trapped into alocal
minimizer, as shown in the left most case.

Recently, a few algorithms were proposed [5, 1] to de-
termine theglobal minimizers of some image segmentation
models. In particular, an algorithm to determine the global
minimizer of the active contour model based on the ROF
model was given in [1]. The idea is to modify the ROF en-
ergy

EROF(u, λ) =
∫

Ω

|∇u|+ λ

2

∫

Ω

|u− f |2 (8)

by first replacing the TV-norm by a weighted TV-norm and
then, more importantly, changing the measure in the fidelity
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Figure 1. Segmentation results using the ac-
tive contour model. We show different initial
configurations of the snake on the first row.
The corresponding segmented results using
these initial conditions are shown on the sec-
ond row.

term fromL2-norm toL1-norm. This gives

E2(u, λ) =
∫

Ω

g̃(f)|∇u|+ λ

∫

Ω

|u− f | (9)

in which

g̃(f) =
1

1 + β|∇f |2 . (10)

As pointed out in [1], ifu is the characteristic function
of a setΩC with boundary given by the curveC (i.e. u =
1ΩC

), the minimizer of the above energyE2 is the same as
the minimizer of the active contour energy

EAC(C) =
∫

C

g̃(f)ds (11)

with f approximated (in the sense ofL1) by a binary func-
tion of a regionΩC .

Numerically, the minimization problem (9) is convex.
This means that the method of gradient descent will con-
verge to a unique minimizer, i.e. the global minimum of the
energy function, independent of the initial condition. The
significance of this equivalence is that by minimizing (9),
one can determine the global minimizer of the active con-
tour model (11) without the danger of trapping into any lo-
cal minimum and the uncertainty in picking an initial con-
figuration of the snake.

3 The New Energy

3.1 The Energy

Here, we propose a new model to combine the two re-
cent developments in image processing. Given an observed

Figure 2. Problem setting. Definition of the
set Ω′ (domain for inpainting), Ω̃′ (compliment
of Ω′) and ΩC (domain bounded by the curve
C).

imagef , we minimize the energy

E(u) =
∫

Ω

g(f)|∇u|+
∫

Ω

λ(x)|u− f | . (12)

This energy is similar to (9), except thatλ(x) is now
changed to a function in space and the weight in the
weighted TV-norm is also modified. The functionλ(x) has
the following properties.

λ(x) =





0 TV-inpainting
λ0 Denoising

λ∞ ' ∞ Unchanged.
(13)

In the subdomain for image inpainting,f(x) (and therefore
g̃(f)) might not be known. We therefore setg(f) = 1, or
β = 0. For the rest of the domain, we keepg(f) = g̃(f).
In other words, we have

g(f) =
{

1 if λ(x) = 0
g̃(f) ≡ (1 + β|∇f |2)−1 otherwise.

(14)

Mathematically, minimizing the above energy (12) is the
same as

min
u

∫

Ω

g(f)|∇u| (15)

such that ∫

Ω

ω(x)|u− f | = constant (16)

for some weighted functionω(x). Therefore, the way to
determineλ(x) is equivalent to the way to spread the error
in approximating the observed imagef .

Here we give some suggestions in picking suchλ(x) and
also provide a variation in using the above minimization al-
gorithm.
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For the salt-and-pepper noise, the followingλ(x) works
efficiently. We defined(x) to be the difference in the in-
tensities between the original imagef(x) and the modified
image after applying the median-type filterfMF(x), i.e.

d(x) = |f(x)− fMF(x)| . (17)

Then one can set

λ1(x) =
{

λ∞ if d(x) = 0 andx 6∈ Ω′

0 otherwise
(18)

whereΩ′ ⊂ Ω is a given subdomain for doing image in-
painting and is characterized by an user predefined mask
function. This means that ifx is in the inpainting domainΩ′

or if the noise-detector detects that the image atx is polluted
(thereforef(x) will be different from the intensity after ap-
plying the median-type filterfMF(x)), then the intensity at
x will be modified by a TV-type regularization. Otherwise,
the intensity at that location will remain unchanged.

If the impulse noise is random-valued instead, one can
use a similarλ(x)

λ2(x) =
{

λ0 if d(x) = 0 andx 6∈ Ω′

0 otherwise
(19)

with λ0 << λ∞.
For the Gaussian-type noise, one can simply use

λ3(x) =
{

λ0 if x 6∈ Ω′

0 otherwise.
(20)

In the case when the type of noise is not knowna priori,
one can try to minimize (12) iteratively. More specifically,
given the observed imageu0 = f , for m = 1, · · · ,mmax,
one minimizes

E(um) =
∫

Ω

g(um−1)|∇um|+
∫

Ω

λ4(x)|um − um−1|
(21)

iteratively with

λ4(x) =
{

λ0 if d(x) ≤ d∗ andx 6∈ Ω′

0 otherwise
(22)

whered∗ is a threshold in the intensity difference function
d(x) ≡ |um−1 − (um−1)MF|.

3.2 The Link Between Active Contour for Seg-
mentation, Denoising and TV-Inpainting

The relations between the minimization of the energy
functional (12), the active contour model and the TV-
inpainting model are explained here.

AssumingΩ′ = {x ∈ Ω : λ(x) = 0} is the subdomain
for inpainting (notice thatN ⊂ Ω′) andΩ̃′ = Ω \ Ω′, we

have

E(u) =
∫

Ω̃′
g(f)|∇u|+

∫

Ω̃′
λ0|u− f |+

∫

Ω′
|∇u|

= E1(u) + E2(u) (23)

where

E1(v) =
∫

Ω̃′
g(f)|∇v|+

∫

Ω̃′
λ0|v − f |

E2(w) =
∫

Ω′
|∇w| (24)

with v : Ω̃′ → [umin, umax] andw : Ω′ → [umin, umax]. So
minimizingE(u) is the same as

min
v

E1(v) + min
w

E2(w) , (25)

and the minimizer ofE(u) is given byu = 1Ω̃′(x) · v +
1Ω′(x) ·w in which1Ω̃′ is the characteristic function of the
setΩ̃′.

First we consider the energyE1(v). If ΩC is a set inΩ̃′

whose boundary is denoted byC and if the minimizer of
E1(v) is given byv = 1ΩC , then we have

E1(v) =
∫

Ω̃′
g(f)|∇1ΩC |+

∫

Ω̃′
λ0|1ΩC − f |

=
∫

C

g(f)ds +
∫

Ω̃′
λ0|1ΩC

− f | . (26)

Therefore, minimizingE1(v) in the subdomaiñΩ′ in the
case of a binary observed image is equivalent to minimizing
the active contour energy iñΩ′, given by

min
C

∫

C

g(f)ds (27)

while

approximatingf (in theL1 sense) iñΩ′

by a binary function of the set/regionΩC .

For the energyE2(w) defined in the complement,Ω′, we
have

E2(w) =
∫

Ω′
|∇w| (28)

together with the boundary conditionw|∂Ω′ = v|∂Ω′ where
v is the minimizer ofE1(v). In the case whenv is binary
on∂Ω′, we havew = 1ΩC′ again. This gives

E2(w) =
∫

Ω′
|∇1ΩC′ | =

∫

C′
ds . (29)

This implies that when the boundary∂Ω′ is binary valued,
minimizingE2(w) in Ω′ is equivalent to

min
C′

∫

C′
ds (30)

while the end points ofC ′ are fixed on∂Ω′. Further analysis
on the behavior of TV-inpainting can be found in [6].
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4 Numerical Method

To minimize the above energy, one can use the method
of gradient descent. The Euler-Lagrange equation of the
energy functional (12) is given by

∂u

∂t
= ∇ ·

(
g(x)
|∇u|∇u

)
− λ(x)

u− f

|u− f | . (31)

Here we give the details of the algorithm in updating
un+1 by solving (31) using the Alternative Direction Ex-
plicit (ADE) technique. This numerical scheme is second
order accurate in time for linear equations and fully explicit
but yet unconditionally stable for any time-step∆t. Given
the observed imagef and an intermediate approximation
un, we use the following procedures.

1. Definevn = un andwn = un.

2. Compute

hx±
i,j = {1 + β[(D±

x fi,j)2 + (D0
yfi,j)2]}−1

[(D±
x un

i,j)
2 + (D0

yun
i,j)

2 + δ2]−1/2

hy±
i,j = {1 + β[(D0

xfi,j)2 + (D±
y fi,j)2]}−1

[(D0
xun

i,j)
2 + (D±

y un
i,j)

2 + δ2]−1/2

αi,j =
∆t

2
(
hx+

i,j + hx−
i,j + hy+

i,j + hy−
i,j

)

+
λi,j∆t

2
√

(un
i,j − fi,j)2 + ε2

.

whereD±
x , D0

x, D±
y andD0

y are the standard forward,
backward and central difference operators in thex- and
y-directions respectively.

3. For i = 1, 2, · · · , nx andj = 1, 2, · · · , ny, compute

vn+1
i,j =

1
(1 + αi,j)

[(1− αi,j)vn
i,j + ∆t(hx+

i,j vn
i+1,j

+hx−
i,j vn+1

i−1,j + hy+
i,j vn

i,j+1 + hy−
i,j vn+1

i,j−1)

+
∆tλi,jfi,j√

(vn
i,j − f)2 + ε2

] (32)

4. For i = nx, nx − 1, · · · , 1 andj = ny, ny − 1, · · · , 1,
compute

wn+1
i,j =

1
(1 + αi,j)

[(1− αi,j)wn
i,j + ∆t(hx+

i,j wn+1
i+1,j

+hx−
i,j wn

i−1,j + hy+
i,j wn+1

i,j+1 + hy−
i,j wn

i,j−1)

+
∆tλi,jfi,j√

(wn
i,j − f)2 + ε2

] (33)

5. Compute

un+1
i,j =

1
2

(
vn+1

i,j + wn+1
i,j

)
. (34)

Figure 3. The original true image and the user
defined mask.

Figure 4. The original image with 75% salt-
and-pepper noise, 50% random-valued im-
pulse noise and additive Gaussian noise ( σ =
20) respectively.

5 Examples

In the following examples, we useu0(x, y) = 0 as the
initial condition for the Euler-Lagrange equation. Unlike
the classical active contour/snake model, different initial
guesses used here will give the sameglobal minimizer of
the segmentation model in the case of binary images.

As discussed before, the ADE scheme has no stability
condition imposed on∆t, and therefore we used∆t = 100
in all of the examples below.

5.1 Example 1

The true image used in this example has256× 256 pix-
els and is shown on the left in Figure 3. The user prede-
fined mask is shown on the right. The dark region is the
domainΩ′ where we want to perform TV-inpainting. Fig-
ure 4 shows the noisy versions of the true image.

Figure 5 shows the denoised together with the segmented
results of the image with 75% salt-and-pepper noise. The
graphs show the intensity contour of the minimizeru. The
salt-and-pepper noise is completely removed from the im-
age. The red curves on the graph are the boundaries of the
segmented regions. Unlike the minimization of the active
contour model, we can now easily reach the global mini-
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intensity=110 intensity=120

intensity=130 intensity=140

Figure 5. (Salt-and-Pepper) The minimizer for
the energy (12) without an extra mask.

intensity=110 intensity=120

intensity=130 intensity=140

Figure 6. (Salt-and-Pepper) The minimizer for
the energy (12) with an extra mask.

mum of the energy for this binary image regardless of the
initial condition of the Euler-Lagrange equation. In the case
of denoising together with image inpainting, the segmented
results are shown in Figure 6. Again, the salt-and-pepper
noise is removed completely from the image and we are able
to fill in the missing part of the image using only one energy
function. Figure 7 and 8 show the denoised, inpainted and
segmented results when the random-valued impulse noise is
added to the original true image. Figure 9 and 10 show the
case when the additive Gaussian noise is added to the true
image.

5.2 Example 2

The true image of Elaine used in this example has512×
512 pixels and is shown on the left of Figure 11. On the
right, we give the predefined mask. 75% salt-and-pepper
noise and 50% random-valued impulse noise are added to

intensity=110 intensity=120

intensity=130 intensity=140

Figure 7. (Random-valued Impulse) The min-
imizer for the energy (12) without an extra
mask.

intensity=110 intensity=120

intensity=130 intensity=140

Figure 8. (Random-valued Impulse) The mini-
mizer for the energy (12) with an extra mask.

intensity=110 intensity=120

intensity=130 intensity=140

Figure 9. (Additive Gaussian) The minimizer
for the energy (12) without an extra mask.
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intensity=110 intensity=120

intensity=130 intensity=140

Figure 10. (Additive Gaussian) The minimizer
for the energy (12) with an extra mask.

Figure 11. The original true image and the
user defined mask.

Figure 12. The original image with 75% salt-
and-pepper noise, 50% random-valued im-
pulse noise and additive Gaussian noise ( σ =
20) respectively.

Figure 13. (Salt-and-Pepper) The minimizer
for the energy (12) without (left) and with
(right) an extra mask.

Figure 14. (Random-valued impulse) The min-
imizer for the energy (12) without (left) and
with (right) an extra mask.

Figure 15. (Additive Gaussian) The minimizer
for the energy (12) without (left) and with
(right) an extra mask.
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Figure 16. Some noisy brain MRI images.

Figure 17. The corresponding denoised MRI
images.

the original image and these observed images are shown on
the left and middle of Figure 12, respectively. On the right
hand side, we show the image with additive Gaussian noise
with standard deviationσ = 20.

The minimizers of the energy functional (12) for these
noisy images are shown in Figure 13 to 15. Figure 13
shows the results for the salt-and-pepper noise without (left)
and with (right) an user defined mask function. Results for
the random-valued impulse noise and the additive Gaussian
noise are given in Figure 14 and 15.

5.3 Example 3

Figures 16 and 17 show the denoising results of a 3D
brain MRI image. The number of voxels are128 × 256 ×
256. The computational time is approximately 354 mins.
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