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Abstract mentation but can also be used as an image denoising tool.
Extension of the Mumford-Shah model to image inpainting
The active contour model [9, 10, 2] is one of the most was also carried out in [8].
well-known variational methods in image segmentation. In  There are two interesting recent developments about the
a recent paper by Bresson, Esefla Vandergheynst, Thi- connection between different fields in image processing.
ran and Osher [1], a link between the active contour model We will discuss later in this paper how they link different
and the variational denoising model of Rudin-Osher-Fatemi fields in an interesting way. The first development con-
(ROF) [12] was demonstrated. This relation provides a cerns the impulse-noise removal method and the variational
method to determine tlggobal minimizer of the active con-  method for image regularization. In two recent papers by
tour model. In this paper, we propose a variation of this Chan, Nikolova et al. [3, 4], a two-phase method was
method to determine the global minimizer of the active con- proposed to remove impulse-type noise. For a true image
tour model in the case when there are missing regions in v*(x) and an observed imag#x) defined in a domaix,
the observed image. The idea is to turn off fefidelity impulse-type noise is defined by
term in some subdomains, in particular the regions for im-
age inpainting. Minimizing this proposed energy provides flz) = { r(z)  with probabilityrg
a unified way to perform image denoising, image segmen- u*(x)  with probability (1 — 7).
tation and image inpainting. To determine the minimizer of
this energy functional, we use the method of gradient de-As an example, for the so-called salt-and-pepper no{sg,
scent. But unlike the usual numerical method which usesis simply the maximum or the minimum of the image in-
the standard fully explicit scheme, we apply the Alternat- tensity (0 and 255 for grey-scaled images). The main idea
ing Direction Explicit (ADE) scheme. This scheme provides in those papers is to separate the denoising process into a
a faster and a more robust way to minimize the proposed noise detection phase and a noise removal phase. In the first
energy functional. stage, a median-type filter is applied to the observed image
to detect the possible locations of the impulse noise. Then
in the second phase, instead of replacing the intensity at all
locations by the median intensity around a certain neighbor-
hood, aL!-regularization method is applied only to those
locations reported in the first phase while keeping the other
Image segmentation, image restoration and image in-pixels unchanged. The resulting method was shown to be
painting are a few basic yet important areas in image able to remove the salt-and-pepper noise efficiently even at
processing and computer vision. Traditionally, these closely a very high noise level (for examplg = 0.75). The main
related fields were developed independently. However, thereason for its success is that this method retains those pixels
use of the level set method and variational methods in recenthat are unlikely to be polluted and maintains sharp edges
years started to bring all these fields together. One examplégn the whole image.
is the TV-inpainting model [7]. We can perform inpainting Another interesting development is a new model that
in a desired domain while applying the ROF model [12] to uses variational method for image segmentation [5, 1]. The
remove noise from the rest of the domain using only one idea of the model is to minimize an energy functional con-
energy functional. Another example is the Mumford-Shah sisting of a weighted TV-norm with &*-fidelity term. For
model [11] which was originally designed for image seg- the segmentation of a binary image, the papers showed an
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1 Introduction



equivalence between the new energy functional and that ofchoice for¢ is
the active contour model. This relation can be used to over- o(t) = V2 + e (5)

come the problem of the active contour model in which the ] )

be trapped in docal minimizer thus giving unsatisfactory 1S @L'-fidelity term. The terms in the square-bracket can be
segmentation results. The link between these two energiesinterpreted as an approximation of the total variation (TV)

as demonstrated in the above papers, provides a convenierff u-
way to determine thglobal minimizer of the active contour In the simple case when the noise can be separated accu-
energy. rately in the first step, the fidelity term is not important. A

In this paper, we will combine the two recent advances in simplification of this whole algorithm is therefore the same
image processing mentioned above. This provides an effi-aS an image inpainting algorithm. For example, if ROF [12]
cient and unified way to perform image denoising (for both Of L*-fidelity is used instead, we arrive at the TV-inpainting
impulse-type and Gaussian-type noises), image segmental/]- Thatis, given an observed imageone minimizes the

tion, and image inpainting at the same time. following energy

The rest of the paper will be organized as follows. In 1
Section 2, we will briefly review the denoising model by Ei(u) = / |Vul| + —/ ANz)|u— f]? (6)
Chan, Nikolova et al. [3, 4] and also restate the link be- Q2 2 Ja

tween the active contour model and the ROF model as in
[1]. A new model will be given in Section 3. Section 4 con-
tains some details in the numerical implementation. Some Az) = { 0 if f(x)= fue(x)

where

numerical results will be given in Section 5. Aoo © 00 otherwise. )
The idea of using a piecewise constakfx) in TV-
inpainting is not new [7]. However, it is interesting to see
here the relationship between the impulse-type noise re-
moval and image inpainting by using a piecewise constant
A(z) determined by a median-type filter.

2 Two Recent Developments

2.1 A Two-Phase Method to Remove Impulse-
type Noise

Unlike the usual way to denoise impulse noise by ap- 22 Global
plying the median-type filter to the image and replacing the ~ Model
image intensity everywhere, the idea in [3, 4] is to separate
the denoising processing into a noise-detection phase and a

noise-removal phase. Mathematically, the first phase can be In the classic.al active contour mgdel, the initial guess of
formulated as determining a noise candidate set the segmented image plays a very important role. We show
in Figure 1 some minimizers of the active contour model.

N={zeQ: f(x) # ful(x)} 2) As we can see, different initial conditions in the evolution
will give different segmented region. More importantly,
in which ) is the image domairy;(x) is the observed image  none of these results corresponds tottie segmented re-
intensity at the pixek, andf,(z) is the intensity at: after sults, i.e. curves which separate all regions with different
applying a median-type filter, such as the classical medianintensities in the whole image. One reason for these un-
filter or the adaptive median filter. In the second phase, thesatisfactory results is that the minimization problem of the
following functional is minimized active contour is not convex, and therefore it is very likely
that the energy minimization could be trapped intoeal
Fln(u) = / {|u(x) — fl2)| + E[Sl(u) + Sg(u)]} minimizer, as shown in the left most case.
N 2 Recently, a few algorithms were proposed [5, 1] to de-
@) termine theglobal minimizers of some image segmentation
models. In particular, an algorithm to determine the global
minimizer of the active contour model based on the ROF
Si(u) = /V(:c)ﬁ(Q\N) 2¢u(x) - f(y)ldy model was given in [1]. The idea is to modify the ROF en-
ergy

B0 = [, Sl @ Balu N = [ [Ful+5 [lu-1P @

V(z) is the neighborhood centeredaatand ¢ is an edge- by first replacing the TV-norm by a weighted TV-norm and
preserving potential function. As seen in[3, 4], one possible then, more importantly, changing the measure in the fidelity

Minimizer of the Active Contour

where



E

Figure 1. Segmentation results using the ac-
tive contour model. We show different initial
configurations of the snake on the first row.
The corresponding segmented results using
these initial conditions are shown on the sec-
ond row.

Figure 2. Problem setting. Definition of the
set Q' (domain for inpainting), Q' (compliment
of ) and Q¢ (domain bounded by the curve
0).

imagef, we minimize the energy
term fromL2-norm to L' -norm. This gives

Bw) = | g(NIVul+ [ A@lu—-fl.  (12)
Eaw ) = [ GOVl +3 [ lu=pl @ /, /,

) ) This energy is similar to (9), except thaiz) is now
in which 1 changed to a function in space and the weight in the

9(f) = =33 - (10) weighted TV-norm is also modified. The functioz) has
1+ BV - :
. . . . ) the following properties.
As pointed out in [1], ifu is the characteristic function
of a setQ) with boundary given by the curv@ (i.e. u = 0 TV-inpainting
1. ), the minimizer of the above enerdy, is the same as Az) = Ao Denoising (13)
the minimizer of the active contour energy Ao o0 Unchanged.
E.(C) = / G(f)ds (11) In the subdomain for image inpainting§i(z) (and therefore
c g(f)) might not be known. We therefore sgtf) = 1, or
with f approximated (in the sense bt) by a binary func- 3 = 0. For the rest of the domain, we kegpf) = g(f).
tion of a regiomc_ In other Words, we have
Numerically, the minimization problem (9) is convex. 1 if A(z) = 0
This means that the method of gradient descent will con- g(f) = { Q)= (14 8VF2)~! otherwise. (14)

verge to a unique minimizer, i.e. the global minimum of the
energy function, independent of the initial condition. The Mathematically, minimizing the above energy (12) is the
significance of this equivalence is that by minimizing (9), same as

one can determin_e the global minimizer of.the_ active con- mm/ 9(f)|Vul (15)
tour model (11) without the danger of trapping into any lo- v Ja

cal minimum and the uncertainty in picking an initial con- such that

figuration of the snake. / w(z)ju — f| = constant (16)
Q
3 The New Energy for some weighted function(z). Therefore, the way to
determine\(x) is equivalent to the way to spread the error
3.1 The Energy in approximating the observed image

Here we give some suggestions in picking si¢h) and
Here, we propose a new model to combine the two re- also provide a variation in using the above minimization al-
cent developments in image processing. Given an observedjorithm.



For the salt-and-pepper noise, the followikg:) works
efficiently. We defined(z) to be the difference in the in-
tensities between the original imagéxr) and the modified
image after applying the median-type filtgr (x), i.e.

d(z) = |f(z) — fue(z)]. 17)
Then one can set
A“@:{/%)”Mm&éxﬁigw (18)

whereQ)’ C Q is a given subdomain for doing image in-

have

Bw = [ oivul+ [ dolufl+ [ 9u
= E'u)+ E*(u) (23)

where
2w = [ o+ [ dolo-s
O (22)

with v : O/ — [Umins Umax] @Ndw : Q' — [Umin, Umax]. SO

painting and is characterized by an user predefined maskminimizing E(u) is the same as

function. This means thatif is in the inpainting domaif’

or if the noise-detector detects that the imageiatpolluted
(thereforef () will be different from the intensity after ap-
plying the median-type filtef,-(x)), then the intensity at
2 will be modified by a TV-type regularization. Otherwise,
the intensity at that location will remain unchanged.

If the impulse noise is random-valued instead, one can

use a similan\(x)

M@y:{?

with \g << Ao.
For the Gaussian-type noise, one can simply use

if d(x) =0andz ¢

otherwise (19)

M@y:{?

In the case when the type of noise is not knavpriori,
one can try to minimize (12) iteratively. More specifically,
given the observed image, = f,form = 1, -, muyax,
one minimizes

if © &

otherwise. (20)

E(u’rn) - / g(u"rrL—l)|vu’rrL| + /\4(37)|um - um—1|
Q

Q
(21)
Ao
i

whered* is a threshold in the intensity difference function
d(x) = ‘um—l - (um—l)MF|-

iteratively with

if d(z) <d*andz ¢ Q'

M) = otherwise

(22)

3.2 The Link Between Active Contour for Seg-
mentation, Denoising and TV-Inpainting

The relations between the minimization of the energy
functional (12), the active contour model and the TV-

inpainting model are explained here.
AssumingQ’ = {z € 2 : A(x) = 0} is the subdomain
for inpainting (notice that\V" c Q') andQ)’ = Q\ @/, we

mvinEl(v) +min F*(w), (25)
and the minimizer of£/(u) is given byu = 1¢,(z) - v +
1o/(x) - win which1g, is the characteristic function of the
set(Y.

First we consider the enerdy' (v). If Q¢ is a set int’
whose boundary is denoted loy and if the minimizer of
El(v)is given byv = 1q_, then we have

J

- /Mﬁ®+[Am%—ﬂ~ (26)
C Q/

E'(o) = Mﬁwma+/Am%*ﬂ
JQ/

Therefore, minimizing=! (v) in the subdomaifl?’ in the
case of a binary observed image is equivalent to minimizing
the active contour energy iy, given by

min/ g(f)ds (27)
C

C
while
approximatingf (in the L' sense) i’
by a binary function of the set/regidd.

For the energye? (w) defined in the complemert?/, we
have

() = [ [Vul

together with the boundary conditian s, = v|s Where
v is the minimizer of ' (v). In the case when is binary
on oY, we havew = 1q_, again. This gives

EZ(w):/ |V190,|:/ ds.
944 c’

This implies that when the bounda#}’ is binary valued,
minimizing £2%(w) in Q' is equivalent to

(28)

(29)

ds

min

oin /| (30)

while the end points of” are fixed ord€)’. Further analysis
on the behavior of TV-inpainting can be found in [6].



4 Numerical Method

To minimize the above energy, one can use the method
of gradient descent. The Euler-Lagrange equation of the

energy functional (12) is given by

du 9(x) u—f
7 =V (o) =g
Here we give the details of the algorithm in updating

u™*! by solving (31) using the Alternative Direction Ex-
plicit (ADE) technique. This numerical scheme is second
order accurate in time for linear equations and fully explicit
but yet unconditionally stable for any time-sté&y. Given
the observed imag¢ and an intermediate approximation
u™, we use the following procedures.

(31)

1. Definev™ = «™ andw™ = u™.

2. Compute
hey = {1+ BID3 fi ) + (Dyfi)* ]}
(DEuP;)? + (DYur;)? + 6% /2
WE = {1+81(DY i) + (D)2
[(DOuf! ) + (Dfup;)? + 621/
Qg = S (R R )

I )\i)jAt
2 flit; — i) + €
whereDZ, DY, D and D are the standard forward,

backward and central difference operators inithand
y-directions respectively.

3. Fori=1,2,---,n,andj =1,2,---,n,, compute
1
1 +
zn;r = (1+a¢j)[(1 — ;)i + At(hy vl
— + —
+hg o Rl R o)
AtNifi
Z’wa ] (32)
(o, — f)? + €
4. Fori =ng,ng, —1,---,1andj = ny,n, —1,---,1,
compute
1
n+1 _ . n x+  n+1
w; 4 1+ aiy) [(1— az,y)wi,j + At(hi,j Wiy1,j
Wiy B wi A RS wl )
AtAi fii
wlis ) (33)
(wp; — f)* +e
5. Compute
1
it =g @i i) (34)

Figure 3. The original true image and the user
defined mask.

Figure 4. The original image with 75% salt-
and-pepper noise, 50% random-valued im-
pulse noise and additive Gaussian noise (
20) respectively.

g =

5 Examples

In the following examples, we usé’(z,y) = 0 as the
initial condition for the Euler-Lagrange equation. Unlike
the classical active contour/snake model, different initial
guesses used here will give the saghebal minimizer of
the segmentation model in the case of binary images.

As discussed before, the ADE scheme has no stability
condition imposed or\¢, and therefore we usetit = 100
in all of the examples below.

5.1 Example 1l

The true image used in this example &6 x 256 pix-
els and is shown on the left in Figure 3. The user prede-
fined mask is shown on the right. The dark region is the
domain)’ where we want to perform TV-inpainting. Fig-
ure 4 shows the noisy versions of the true image.

Figure 5 shows the denoised together with the segmented
results of the image with 75% salt-and-pepper noise. The
graphs show the intensity contour of the minimizerThe
salt-and-pepper noise is completely removed from the im-
age. The red curves on the graph are the boundaries of the
segmented regions. Unlike the minimization of the active
contour model, we can now easily reach the global mini-



intensity=110 intensity=120 , _—
intensity=110 intensity=120

intensity=130 intensity=140
intensity=130 intensity=140

Figure 5. (Salt-and-Pepper) The minimizer for

: Figure 7. (Random-valued Impulse) The min-
the energy (12) without an extra mask.

imizer for the energy (12) without an extra
mask.

intensity=110 intensity=120

intensity=110 intensity=120

intensity=130 intensity=140

intensity=130 intensity=140

Figure 6. (Salt-and-Pepper) The minimizer for

the energy (12) with an extra mask. Figure 8. (Random-valued Impulse) The mini-

mizer for the energy (12) with an extra mask.

mum of the energy for this binary image regardless of the
initial condition of the Euler-Lagrange equation. In the case enst0 ensy=129
of denoising together with image inpainting, the segmented
results are shown in Figure 6. Again, the salt-and-pepper
noise is removed completely from the image and we are able
to fill in the missing part of the image using only one energy
function. Figure 7 and 8 show the denoised, inpainted and
segmented results when the random-valued impulse noise is
added to the original true image. Figure 9 and 10 show the
case when the additive Gaussian noise is added to the true
image.

intensity=130 intensity=140

5.2 Example 2

The true image of Elaine used in this example fibs x ) - ) o
512 pixels and is shown on the left of Figure 11. On the  Figure 9. (Additive Gaussian) The minimizer
right, we give the predefined mask. 75% salt-and-pepper OF the energy (12) without an extra mask.
noise and 50% random-valued impulse noise are added to



intensity=110 intensity=120

intensity=130 intensity=140

Figure 13. (Salt-and-Pepper) The minimizer
for the energy (12) without (left) and with
(right) an extra mask.

Figure 10. (Additive Gaussian) The minimizer
for the energy (12) with an extra mask.

Figure 14. (Random-valued impulse) The min-
imizer for the energy (12) without (left) and

Figure 11. The original true image and the with (right) an extra mask,

user defined mask.

Figure 12. The original image with 75% salt-

and-pepper noise, 50% random-valued im- Figure 15. (Additive Gaussian) The minimizer
pulse noise and additive Gaussian noise ( o = for the energy (12) without (left) and with
20) respectively. (right) an extra mask.
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Figure 17. The corresponding denoised MRI
images.
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