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Abstract. In this paper we generalize the iterated refinement method,
introduced by the authors in [8], to a time-continuous inverse scale-space
formulation. The iterated refinement procedure yields a sequence of con-
vex variational problems, evolving toward the noisy image.

The inverse scale space method arises as a limit for a penalization pa-
rameter tending to zero, while the number of iteration steps tends to
infinity. For the limiting flow, similar properties as for the iterated re-
finement procedure hold. Specifically, when a discrepancy principle is
used as the stopping criterion, the error between the reconstruction and
the noise-free image decreases until termination, even if only the noisy
image is available and a bound on the variance of the noise is known.
The inverse flow is computed directly for one-dimensional signals, yield-
ing high quality restorations. In higher spatial dimensions, we introduce
a relaxation technique using two evolution equations. These equations
allow accurate, efficient and straightforward implementation.

1 Introduction

The processing of noisy images is a central task in mathematical imaging. Over
the last decades, a variety of methods have been proposed ranging from filtering
methods to variational approaches to techniques based on the solution of partial
differential equations. Since the noise in images is usually expected to be a small
scale feature, particular attention has been paid to methods separating scales,
in particular those smoothing small scale features faster than large scale ones,
so-called scale space methods.

Scale space methods are obtained for example by nonlinear diffusion filters

[9] of the form

S = dv(r(IVu?) V), )

in 2 x Ry with u(z,0) = f(z), where f : 2 — R denotes the given image
intensity ({2 being a bounded open subset in R?) and u : 2 x Ry — R the flow
of smoothed images. The diffusion coefficient involves a positive and monotone
function . For such methods it can be shown that small scales are smoothed



faster than large ones, so if the method is stopped at a suitable final time, we may
expect that noise is smoothed while large-scale features are preserved to some
extent. Diffusion filters can be related to regularization theory (cf. [13]) with
certain regularization functionals, but foundations of choosing optimal stopping
times are still missing.

Recently, inverse scale space methods have been introduced in [12], which
are based on a different paradigm. Instead of starting with the noisy image
and gradually smoothing it, inverse scale space methods start with the image
u(z,0) = 0 and approach the noisy image f as time increases, with large scales
converging faster than small ones. Thus, if the method is stopped at a suitable
time, large scale features may already be incorporated into the reconstruction,
while small scale features (including the “noise”) are still missing. The inverse
scale space method can also be related to regularization theory, in particular
iterated Tikhonov regularization (cf. [6,12]) with the same regularization func-
tionals as for diffusion filters. The construction of inverse scale space methods
in [12] worked well for quadratic regularization functionals, but did not yield
convincing results for other important functionals, in particular for the total
variation. In this paper we present a different version of constructing inverse
scale space methods as the limit of an iterated refinement procedure previously
introduced by the authors (cf. [8]) and demonstrate its applicability to image
restoration. With the new approach we are able to perform inverse scale space
methods even for the total variation functional, and, in contrast to diffusion
filters, we obtain a simple stopping criterion for the methods.

2 TIterated Refinement

In [8], an iterated refinement procedure for total variation restoration was intro-
duced, motivated by the variational problem

A 2
= i = - 2 2
u=anguin {ludzy + 17 - ul: | @)
for some scale parameter A > 0, where BV ({2) denotes the space of functions
with bounded variation on {2, equipped with BV seminorm which is formally

given by
v = [ [ul,
0

also referred to as the total variation (TV) of u. This is the ROF model, intro-
duced to the field of image restoration in [11].

In [8] the authors showed that an iterative procedure (which turned out
to be equivalent to Bregman’s relaxation method, cf. [1], and proximal point
algorithms, cf. [3]) could be used to improve the quality of regularized solutions
to inverse problems, based on regularization functionals as in (2). Given a convex
functional J(u), e.g., J(u) = |u|pv, the iterated refinement method defines a
sequence {u} by:



— Set ug =0, pg=0;
— Given ug_1 and pg_1,
e step 1: compute uj, = arg min Q(u) with
u

Qr s ur— J(u) — J(up—1) — (Pr—1,u — up—1) + ng - “Hiw (3)

where (-, ) denotes the usual duality product;
e step 2: update the dual variable py = pr—1 + A(f — ug).
— Increase k by 1 and continue.

The quantity py is identified with dJ(ug), as discussed below. This procedure
improves the quality of reconstruction for many problems with discontinuous
solutions, e.g., deblurring and denoising of images (cf. [7,8]) when || f — ul|3, is
replaced by an appropriate fitting term for individual examples.

Note that the regularization term used in the first step is a so-called gener-
alized Bregman distance between u and uy_1, defined as follows,

D(u,v) = J(u) — J(v) — {(u —v,p), p € dJ(v),

where 0J(v) is the subgradient of the convex functional J(v). Note that the sub-
gradient may contain more than one element if the functional J is not continu-
ously differentiable, so that the distance would depend on the specific choice of
the subgradient. However, we shall suppress the dependence on the subgradient
in the notation below. Note that for strictly convex functionals the subgradient
contains at most one element and D(u,v) is a scalar distance, that is strictly
positive for u # v. We can then rewrite the functional @ minimized in each
iteration step as: Qr(u) = D(u,up—1) + 3||f — ul|3.. The Bregman distance
and the associated iteration were not used in this fashion previously, but they
have been rather employed to minimize functions H (u, f) where H is a (usually
complicated) convex function of u having a unique minimum (cf. e.g., [3]).

It was shown in [8] that the iterated refinement method yields a well-defined
sequence of minimizers uy and subgradients pp € 9J(uy). Moreover, it was
proved that the sequence {uy} satisfies |ur — f||32 < |lug—1 — f||3. and if f €
BV(£2), then |Jug — f[|2, < @, i.e., uj, converges monotonically to f in L?(2)
with a rate of ﬁ Of course, this convergence result does not give particular
information on the behavior of the method as a denoising method, in particular
for the typical case of a noisy image f.

The key denoising result obtained in [8] is as follows: for g € BV (£2) we have

D(g,ur) < D(g,up—1) if[[f —ukllr2 = 7llg = fllz2 4)

for any 7 > 1. Thus, the distance between a restored image uj and a possible
exact image ¢ is decreasing until the L2-distance of f and wuy is larger than the
L2-distance of f and g¢. This result can be used to construct a stopping rule for
our iterative procedure. If we have an estimate of the variance of the noise, i.e.,
f=g+n,|n|lL2 = o, where g € BV ({2) is the noise-free image and n is the



noise, then we can stop the iteration at the first k& for which || f — ug+1|lz, < 70.
The choice of 7 allows some freedom to apply the stopping rule also in the case
when we only know an upper bound for o.

It is interesting to note that for TV-based denoising where J(u) = |ulgv,
the sequence {u} has the following interpretation (cf. [8]):

— Let uy = argmin J(u) + 3| f — ul|?2;
— Define v1 = f — uq;
— Then inductively for k > 2, let

. A
uj = arg min {J(u) + §||f +Vk—1 — U||2L2}

and f + vi_1 = ug + vk.

In other words, we add the “small scales” vi_1 back to f and perform ROF
minimization with f replaced by f 4 vi—1 and decompose this function into
“large scales” (ug) plus “small scales” (vy). This interpretation already yields a
multiscale interpretation of the method, since the “small scales” are somehow
doubled in each step and so their larger parts can be incorporated into the large
scale part after the next iteration. A related procedure involving the ROF model
using Tikhonov-Morozov rather than Bregman iteration which multiplies A by
two in each step yields a multiscale method suggested in [6] and analyzed in [14].

3 Inverse Scale Space Methods

In the following we generalize the concept of inverse scale space theory introduced
in [6,12] in the context of Tikhonov regularization for the case

J(u) = %/Q\Vu\Z. (5)

We shall derive general inverse scale space methods as a limit of the iterated
refinement procedure for A\ — 0, concentrating in particular on the functional

() = /Q N (6)

Recall that for a special A > 0 the iterative refinement procedure constructs
sequences uy of primal and pp of dual variables such that u} = py = 0,

A
A ; A 2
=argmin D +
Y 5%3\/1(9){ (1 ) 2 If u”L2}

P = 0J (uy) = J'(u).
From the Euler-Lagrange equation J'(u) —pp_; +A(up— f) = 0 and pp = J'(up)
we are led to the relation:
Ph —Pho

\ =f—-uy, k=12,...



for the updates. We now reinterpret A = At as a time step and the difference
quotient on the left-hand side as an approximation of a time derivative. Setting
tr = kAt p?(ty) = pit, and u?t(ty) = uft, we have pit, = p2t(tp_1) =
pAt(t, — At) and

p2i(ty) — p2(t, — At)
At

= f—u?(ty).
For At | 0, dropping subindex k we arrive at the differential equation

0
SO =F—ult),  p(t) =T (u(t). (7)
with initial values given by u(0) = p(0) = 0. We assume [, f = 0.

If the flow u(t) according to (7) exists and is well behaved (which can be
shown under reasonable assumptions on the functional J, in particular for total
variation, cf. [2]), it is an inverse scale space method in the sense of [6]. This
means that the flow starts at w(0) = 0 and incorporates finer and finer scales
(with the concept of scale depending on the functional J) finally converging
again to the image f as t — oo, i.e. limy_, o, u(t) = f. Through (7) the image
u(t) flows from the smoothest possible image (u(0) = 0) to the noisy image f.
Our goal is to use the flow to denoise the image, and therefore we shall use a
finite stopping time for the flow. As we shall see below, we can use a simple
stopping criterion related to the fitting term ||u(t) — f||* only.

3.1 Behaviour for Quadratic Regularization

We start by briefly reviewing the results obtained in [6] for (5). In this case we
obtain from the variation of the functional J the equation p = —Auw in (2 with
boundary condition g—z = 0 on 9f2. Given p, pr = 0, there exists a unique
solution u = —A~!p (since [,u= [, f=0).

A simple manipulation (and the fact that % = 0) leads us to the equation
2 (u—f) = A Hu—f) = —A(u— f), with the notation 4 := —(A)~!. Thus, the
function v = u — f satisfies a simple linear ordinary differential equation in the

function space, whose solution is given by u(t) — f = v(t) = e *4v(0) = —e~ 4 f.
It is well-known that A is a positive definite operator and thus, e 4 f decays to
zero. As a consequence, the difference u(t) — f = —e*4 f decays exponentially
as t — oo.

3.2 General Convex Regularization

We consider the case of general convex functionals on the digital image space, i.e.,
J : RN — R. If J is continuously differentiable, we can compute the implicitly
defined v = u(p) as the solution of J'(u(p)) = p. Note that if J is smooth and
strictly convex, the Jacobian of J’ given by J” is positive definite, and hence, the
existence of a solution is guaranteed under a standard condition like J(0) = 0
by the inverse function theorem.



A possibility to invert the equation for u is the use of the the dual functional
(cf. [4]), defined by J*(p) := sup, {(u, p) — J(u)}. Then one can easily show that
p = 0y J(u) is equivalent to u = 0,J*(p) and we obtain an explicit relation for
u(p) provided we can compute the dual functional J*.

Under the above conditions, we can obtain some important estimates for the
inverse scale space flow (7) associated to J. We start by computing the time-
derivative of the fitting functional and the (partial) time derivative of w:

1d 9
S llu(e) — I3 = Gu(t) ~ £, 0u(t)

Opu(t) = %(@»J* (p()) = H*(p(£))0ep(t) = —H* (p(t)) (u(t) — f),

where we used the notation H* = 8§pJ * for the Hessian of the dual functional.
If J* is strictly convex, then there exists a constant a > 0 such that H*(¢) > a
for all ¢ € R. Hence, combining the above estimates we deduce

1d
2 dt
and from a standard ordinary differential equation argument we deduce

() = fllze < e uls) = fllez < e | fllre

if t > s. Thus, as t — oo we obtain convergence u(t) — f with exponential decay
of the error in the L2-norm.

Note that for the above L?-estimates, we do not need severe assumptions on
f, so that the estimate holds for a clean image as well as for a noisy version used
in the algorithm. If we assume that f is a clean image and J(f) < oo, then we
can also obtain a decay estimate on the error in the Bregman distance via

d

SD(f.ult)

lu— flIe < —(u(t) = f, H* (p(t)) (u(t) — f)) < —allu— fll7-

= L1~ Tult) — (7 — u(t) p(0)]
= (= u(t), Dp(6)) = —llu(t) — fI2 < — | FIPe2.

In fact
D(f,u(®)) = D(f,u(s)) < 5| fFale™ — ] <0,

DUf,u(®)) < 5 fFsle™ = 1]+ 7).

All results so far give information about the convergence of u to the clean
image f (with finite value J(f)) only. In a more practical situation, f is the
noisy version of an image g to be restored, and we might even have J(f) = oo,
while J(g) < co. In this case we can derive a similar estimate as follows:

2 D(g,u) = (~Bip(t). g — u(t)) = —(f — u(t),g — u(t))

dt
Ol — (f —ult)g - gy <~ O T o




The last term on the right-hand side is negative if || f —u(t)|| 2 > || f —gllz2. This
means that u(t) approaches any “noise free” image ¢ in the sense of Bregman
distance, as long as the residual (the L? difference between u(t) and f) is larger
than the difference between the noisy image f and g. The left-hand side, namely
the residual || f — u(t)||z2 can be monitored during the iteration, it only involves
the known noisy image f and the computed restoration «(t). The right-hand side
is not known for the "real” image g to be restored, since g itself is unknown. How-
ever, in typical imaging situations, an estimate for the noise variance is known,
which yields a bound of the form || f — g||rz < 0. The above estimate guarantees
that the distance D(g,u) is decreasing at least as long as ||f — u(t)||rz > o,
and one could terminate the inverse scale space flow for the minimal ¢, such
that ||f — w(t.)||2 = o. This stopping criterion is well-known in the theory of
iterative regularization of inverse problems as the so-called discrepancy principle
(cf. [5,10] for a detailed discussion).

4 Direct Solution for Regularized Total Variation in 1D

In the following we discuss the numerical solution of (7) in 1D. We recall here
that p(t) € 90J(u(t)) and v € 9J*(p). For the (nondifferentiable) total vari-
ation functional we only have (multivalued) subgradients instead of deriva-
tives and therefore we shall instead consider the regularized total variation
J(u) = [ /|Vul?> + €2, with

8J(u(t)) = —div (\/qujﬁ> = p(t). (8)

Note that since 0J(u + ¢) = 9J(u), the solution of (8) is not unique if we
take the standard assumption that u satisfies homogeneous Neumann boundary
condition. In this case, the solvability condition is [ p(z,t)dz = 0 for all ¢ and
the conservation of mean value gives an additional property implying uniqueness,
namely [u dz= [ f dz=0.

For a fixed time ¢, we have to solve

b
_<\/ugwﬁ> =p in D = (a,b), /udx:O, (9)

Ug

q(z,t) = — /g:p(s,t) ds = / p(s,t)ds (10)

q

V-7
T gyt

. )
u(z,t) = T D dy+C (11)

If we denote q := , then

and hence, u, =€ . Therefore,



where C' is a constant chosen to normalize f; u(z)dz = 0. We mention that
the same formula for u can be obtained by duality arguments, since J* can be
explicitly calculated in spatial dimension one.

5 Relaxed Inverse Scale Space Flow

In order to implement the process in any dimension we resort to a new kind of
approximation.
Consider the following coupled equations:

u = —p(u) + M(f +v —u),
Uy = a(f_u)v

where uli—g = v[t=0 = 0 and a > 0 is a constant. These equations can be
viewed as a time-continuous interpretation of the discrete iterated refinements
procedure.

It is easy to see that the steady state of these equations (u; = 0,v; = 0) is:
u=f,v= @. We still would like to show that for any f € BV, the solutions
converge to this steady state. We will do the analogue of this only for the simple
linear case below. Our numerical evidence indicates that this is indeed true for
the regularized TV flow in one and two dimensions.

By taking the time derivative of the first equation in (12) and substituting
for v; by using the second equation, we can view this process as a single, second
order in time, evolution:

(12)

g + (A + pu)us + adu = a\f, (13)

where uli—g = 0, ut|t=0 = Af. Here we assume p(0) = 0. We now analyze the
linear case, where —p(u) = Au. Rewriting the flow in the frequency domain £, by
taking the Fourier transform, the characteristic equation is 72+ (A +|¢]?)r+a) =
0, with the solutions

o =~ IR £ VO PP~ dax
( |

(14)

Using the Taylor approximation v/1+ 2z ~ 1+ 3, z < 1, one can approximate
(for frequencies for which [£]* > a))

SO IER(1 £ (1 - 22))
2 b)

r4 ~ (15)

obtaining two roots with different characteristic behavior: ry ~ —(A+|¢]?), 7 ~

A_T“?‘Q. The Fourier transform of the solution is
U) = (cpe™' +c_e™ " +1)F(¢) (16)
A _ A
where ¢y = L, c_ = i
ry —Tr— r— —Tr4



We observe that the first part, containing 7, corresponds to a Gaussian
convolution, which decays very quickly with time. The approximate second part,
containing r_, corresponds to the inverse scale-space solution (with some scaling
in time) which we actually want to solve. Our numerical results indicate that
this kind of behavior extends to the nonlinear process.

From (14) we see that for both parts to have decaying exponential solutions
(real valued ry) we should require o < %. In the numerical experiments below
we set o = %.

The relaxed inverse scale space flow has about the same complexity as the
standard gradient descent to steady state approach of ROF. Moreover, for the
linear case, where J(u) = 1 [|Vu|?, as shown in [12], we obtain a step size
estimation of O(1) for the direct solution of inverse scale space flow.

6 Results

In this section we present some numerical examples. We solve the 1D problems by
the direct approach discussed above and the relaxed inverse flow in order to test
and compare their behavior. Motivated by the accordance of one-dimensional re-
sults, we only used the computationally cheaper relaxed flow for two-dimensional
tests. In all experiments we use a uniform spatial grid of size h = 1, a standard
assumption in imaging problems.

Example 1: We first consider a 1D denoising problem. Figure 1 shows the
clean signal g, the noisy signal f, the noise n (o = ||n||zz = 10 = 24%||g||2) and
the solutions recovered from ROF, direct inverse flow and relaxed inverse flow,
respectively. The typical signal loss can be observed in the result of ROF, and as
expected the loss is much smaller in the results of the inverse scale flows. This
confirms the intuition that the inverse TV flows yields better restorations than
the original ROF model.

The regularization parameter was chosen as € = 1.5 and for all three exper-
iments, and all restored images u satisfy ||f — u||r2 & o. The reason we use a
relatively large € here is that the direct solver method is sensitive to numerical er-
ror. Moreover, we used the parameter A = 0.02 for ROF, time step At = 5x 107
for the inverse TV flow, and A = 0.001, At = 0.1 for the relaxed inverse TV flow.
However, the difference of At and ¢ in these two inverse flow experiments are
only due to the different scaling, the number of time steps until the stopping
time t* = min{t : ||f — u(t)||2 < o} was reached, is about the same.

Example 2: Now we turn to the denoising of 2D images. In this example we
consider an image with different scales and shapes and corrupted by Gaussian
noise, which is shown in Figure 2. SNR(f) = 7.4,0 = ||f — g||2 = 40. Figure
3 shows the results from ROF, iterated TV refinement (Bregman ROF), and
relaxed inverse TV flow, row-by-row respectively. In each row we display the
resulting restoration u and its corresponding residual w = f — u and part of w.
One observes that for the ROF model, visible signal is still contained in w (e.g.
the small blocks and grids) and it’s much smaller in the other two models. This



(@) clean signal g (b) noisy signal f, SNR=12.5 (¢) noise n=f-g. |n||,=10
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Fig. 1. 1D denoising. (a): clean g; (b): noisy f; (c): noise n; (d)-(f): u recovered from
ROF, direct inverse flow and relaxed inverse flow.

is also quantified by the signal-to-noise ratios SN R(u) = 9.9,11.8,12.5 obtained
for these three experiments respectively.

(a) original image (b) noisy image, SNR=7.4 (c) Gaussian noise, 0=40
. S

pp

Fig. 2. 2D shape image. (a): original image; (b): noisy image; (c): Gaussian noise.

Example 3: In this final example we denoise a real satellite image with the
same methods as used in example 2. Figure 4 shows the data and results. Here
we have SNR(f) = 6.3 and SNR(u) = 14.3,15.1, 14.8 for ROF, Bregman ROF
and inverse TV flow, respectively. Again one can see some visible signal in w
(such as the long antenna) for the ROF model, but less signal for the other two
experiments.
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