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Abstract—We develop two algorithms for the surveillance of
underwater perimeters by a group of unmanned vehicles, and
compare their performance.
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I. INTRODUCTION

Wc consider the general problem of finding and patrolling
an underwater perimeter with N UUVs that use a scalar
sensor. We define a perimeter as a curve of constant
concentration, ie. a curve (X(s)Y(s)) that satisfies
C(X(s). Y(s))=C, where C(X,Y) is a two-dimensional scalar
field, s is the curve parameter, and C, is the perimeter
concentration. Starting from an initial configuration, a team of
N UUVs must find the perimeter and maintain a lock on it.
This problem is of practical importance for thin layer
monitering [1], harmful algae bloom monitoring [2], tactical
oceanography [3]-[6], harbor protection [7], and possibly
many other problems.

Underwater perimeter surveillance is challenging. First, the
UUVs can only use a scalar semsor. Second, only low
throughput (acoustic) or intermittent and asynchronous
communication (surface RF) are available. Third, some of the
UUVs are expected to die during the mission. A successful
algorithm must therefore able to function given these
constraints.

We develop two algorithms. The first uses an image
segmentation technique called snakes. The second treats the
vehicles as a gas of particles affecting each other's speed. We
examing their respective stability, convergence, and
robustness, and compare them. Of the two, we find that the
UUV-gas algorithm works best because it does not rely on a
gradient and because it loosely couples the vehicles.
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II. SNAKE ALGORITHM

A. Formulation

Snakes were originally developed for image segmentation
where the goal is to find a structure inside a noisy 2D image.
A snake is a curve that, when placed near the structure,
quickly wraps itself around it.

The core of the snake algorithm is a partial differential
equation that controls the shape of the curve:
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where Z(s,1) = X{(s,1)+iY(s,t) is the curve, ¢ is the evolution

Q)]

variable, SE[O, 271'] is the curve parameter, o is called

elasticity parameter, and P = (C-c, ) {8]-[9]. The first term
on the right-hand side contracts the curve and the second ties
it to the perimeter.

In practice, the snake is not a continuous curve but an array
of ¥ points approximating a curve. Its temporal evolution is
also done in steps rather than continuously. The transition
from the continuous {o the discrete case is done with finite
differencing:

Z(t+ Aty = Z()+ At(@DZ(n) - 0(Z (1)) %))
where Z is the N-dimensional vector whose component Z, is
the position of point n, @ =Q(Z ), and D is the second

difference operator with periodic boundary conditions:
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where At is the time step,

In the image segmentation problem, each of the N points is
a pixel-like element that moves in an image. Nothing limits
the points to be pixel-like objects however. In particular, we
could treat each of them as the location of a vehicle moving in
a concentration field. Z,(#} would then be the location of

vehicle » at time £, Z, (# 4+ Af) its next waypoint, 0, the data

measured by », and the (DZ) term would be computed by each
vehicle using its own position measurements and data
received form the other vehicles.
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Two examples are shown in Figure 1. The first is a circular
perimeter (derived form a Gaussian concentration field)
patrolled by 5 UUVs. Under the combined effect of O and
curve elasticity, the vehicles converge to the perimeter and
wrap themselves around it. The second example is a "figure 8"
perimeter patrolled by 15 UUVs. As in the first example, the
vehicles are able to successfully find the perimeter .
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Figure 1. Time lapse sequence of simple snake dynamics. Left
column: Gaussian field monitored by 5 vehicles. Right
column: "figure 8" pattern monitored by 15 vehicles. The
elasticity parameter is 0.05.

The snake algerithm is a decentralized algorithm. Each
vehicle uses data from its sensors and data from the other
vehicles to determine where to go next but no guidance is
received from a central controller. The algorithm is therefore
naturally immune to central controller failures.

In vehicle language, equation (2) is a guidance law. It

specifies where each vehicle should go next. The guidance
law of vehicle n has two terms, one that depends on the
concentration gradient (at the vehicle's current location), and
one that depends on vehicle #'s.current location and the
current Jocations of its two neighbors. (We note that equation
(2) presupposes synchronous vehicle updates; in [10] we
show how asynchronous updates can be handled.) Different
guidance laws can be used besides (2). Implicit temporal
discretization of equation (1) gives:

Zt+A) = Z()+ At(aDZ(e + A - Q(Z (1 + A1) @
and semi-implicit discretization gives:

Z(t+My=Z(t)+ At{aDZ(t+ A0 -0(2(1))). (5)
The guidance law can also be augmented with additional
terms. The term iaJ(BSC +i0 C ) , where o is a constant, adds

patrolling, i.e. vehicle rotation around the perimeter [9]-[10].
A two-body repulsive term can also be added to create curve
inflation.

B. Stability
To examine the stability of the algorithm, we consider the

" simpler field C=C_—ZZ‘/2 where C,. is an arbitrary

constant, and the circular perimeter Zz(s)=Re"

(corresponding to C =C_ - R /2).

The steady-state solutions of the equation
0Z=at’zZ+(R -2Z")z (6)
are discussed in [11]. The solution that matches the perimeter
is Z (s) = de” where 4” = R® —a . Linearization about this
solution gives
0z=(ad +a-A")z- A7 0

where z is the perturbation. The eigenvalues are:
A =—[akl+A1 +Vaa'k* +A":|. (8)

The condition for stability is « < 2/ 5R’. There is therefore a

critical value of the elasticity above which the algorithm is
unstable.

Analysis of the discrete-space discrete-time problem
proceeds along similar lines: '

a < KR’
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Stability is again conditioned to the amount of elasticity.
Additionally however, the discrete-time nature of the
algorithms creates an extra stability condition on the time-
step:
1
t < 3 .
R +2a(N/2z) (2cos(2n / N)-1)

For the implicit scheme, we find the same stability condition

(10)

@ < 2{5R’ but find no time-step constraints.

L UUV GAS

A. Formulation

The snake algorithm has a few drawbacks: it is
conditionally stable and it relies on knowledge of the gradient.
We have shown in the previous section that stability can be
restored by reducing the elasticity parameter (although the
critical elasticity parameter decreases as more vehicles are
lost). Loss of stability is directly attributable to the tight
coordination imposed by the algorithm. The dependence on
the gradient is more problematic. Real ocean signals are rarely
smooth and it is not clear how to construct a reliable gradient
estimator from real data. Noise and limited resolution of real
sensors will dominate the gradient estimator in regions of low
gradient. Finally, some sensors can only detect the presence or
absence of a signal — an example is an alarm detector. There
are good reasons to design an alternative algorithm that uses
looser coordination and that does not require a gradient,
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B. Removal of dependence on gradient

We first introduce the single-vehicle case before discussing
the multi-vehicle algorithm. The method is shown in Figure 2:
whenever the UUV is inside the perimeter, it turns clockwise
and whenever it is outside, it turns counterclockwise:

de +&  inside

dt | -w outside
where @ is a constant and 8 is the heading. This simple
procedure allows the UUV to, using only knowledge of

whether it is inside or outside the perimeter, patrol the
perimeter.

(11

Figure 2. Description of gradient-free method.

Figure 3 shows three examples. The first is a perimeter of
constant curvature, the second is a perimeter of variable and
sign-changing curvature, and the third is a "city-block"
perimeter. In all cases, the UUV is able to patrol the
perimeter.

1) Stability
The algorithm creates a necklace-like sequence of
connected circular segments of radius r. While on a segment,
the UUV is al most within 2r of the perimeter. Because this
always holds, the algorithm is stable.
2) Convergence
We assume that the vehicle is given a-priori knowledge of a
point X, inside the perimeter. To achieve comvergence, we
implement a two-state transition machine. While in state 1
(searching), the vehicle moves towards X, if it is outside the
perimeter and away from it if it is inside. Transition to state 2
(patrolling) occurs when a crossing is detected. Transition
back to searching is initiated if the time since the last crossing
exceeds a timeout (set to a few times the expected delay
between crossings). Starting from any point, this state
machine guarantees that the UUV will find the perimeter. This
shows that the algorithm is convergent.
3) Coverage
Stability and convergence do not guarantee that the entire
perimeter will be searched (Figure 4). We now show that
coverage is complete provided that the perimeter is smooth.
Each UUV trajectory intersects the perimeter at

8§,8,:.5 ,.... To show coverage, we need to show that
(i)s,,, > s,¥n, and (ii) the entire perimeter is contained within

the necklace.

D

"
Figure 3. Gradient-free algorithm on three perimeters. The UUV arrives from
the left in the searching state and switches to the patrolling state when it
crosses the perimeter. While patrolling, the UUV trajectory is a series of
circular segments around the perimeter. The gray line is the perimeter and the

black line is the UUV trajectory. Top: circular perimeter. Middle: "figure 8"
perimeter. Bottom: city block perimeter. ’

Figure 4. Necklace. Left: complete coverage. Right: incomplete coverage.

We consider a smooth perimeter with minimum radius of
curvature R, and a trajectory with r<R, The circle that
completes the circular segment at A (Figure 5) contains the
perimeter segment from A to B. To prevent this circle from
containing other sections of the perimeter, we impose

r<R*=min(D_/2,R) where D_is the minimum
distance between any two perimeter points C and D subject
to |s (C) - S(D)l >2zR,.

Within this restriction, the trajectory crosses at A and exits .
at B. The vector that joins A to B has a positive projection on

the vector tangent to the perimeter at A. This implies that s
increases from A to B. Since the argument can be repeated at
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every crossing point, 5, > s Vn.

Because a unique perimeter segment is contained within
each circle and because the parametrization is continuous, all
perimeter points between s, and s,:; are contained within
circle n. Because circles n and #+/ touch at s,.;, there are no
gaps in 5. Because the increase of s within a circle has a lower

bound (s, -5, >zr{2) and since nothing limits the length

1
of the sequence, the entire perimeter is therefore contained in
the necklace. Coverage is therefore complete.

x \ /"

inside

Figure 5. The UUV covers the perimeter without skipping sections if the
radius of the circle is small enough.

C. Coordination

If N UUVs are launched, each running the gradient-free
algorithm, they will find the perimeter and patrol it but will
not spread themselves evenly. UUV-gas coordination spreads
the vehicles by changing their speed as a function to their
proximity (in contrast to changing their velocity, as was done

in [9F »:
2 =U0(1+gtn-2f(2m —Z"))

dt o

1 (2)=z/|z]exp(-|2]/ 2)
where ,, the vector tangent to the perimeter, is dotted with the
repulsion vector f, g is a speed gain, U, is the speed in the
absence of other vehicles, and A is the interaction decay
length. The gain g is typically of order 0.1-0.5, higher values
producing faster spreading. The interaction decay length is of
order 0.1-0.5 times the size of the perimeter, lower values
tending to emphasize local interaction. The tangent vector is
estimated from the mean vehicle heading. The speed update
law is applied on a timescale long compared with the time
between perimeter crossings.

An example is shown in Figure 6. Initially the UUVs form a
cluster. Because of the repulsion, the head and tail vehicles
move faster and slower respectively. Eventuaily the UUVs
cover the perimeter homogeneously.

UUV-gas coordination preserves the stability and
convergence properties of the single vehicle algorithm
because speed only affects bead radius and because
convergence and stability are independent of bead radius.

Regardless of the number of vehicles or their distribution,
the algorithm functions. The algorithm is therefore robust to
loss of vehicle.

(12)

D

Figure 6. Time lapse sequence of UUV-gas algorithm on a “figure 8"
perimeter. The UUVs are initially clustered, Through pair repulsion, they are
able to spread around the perimeter.

IV, DISCussiON

A. Comparison

Table 1 compares the properties of the two algorithms.
Snake properties are based on the circular perimeter.

The main differences are type of signal, convergence, and
stability. The UUV-gas algorithm works with either a gradient
or a binary signal; the snake requires a gradient. Convergence
for UUV-gas is guaranteed; the snake has multiple solutions
and the final state depends on initial conditions. The UUV-gas
algorithm is stable; the snake is conditionally stable.

TABLE I
COMPARISON BETWEEN ALGORITHMS
PROPERTY SNAKE UUV-GAS
SIGNAL GRADIENT GRADIENT OR BINARY
CONVERGENCE DEPENDS ON INITIAL CONVERGENT
CONDITIONS
MULTIPLE SOLUTIONS
STABILITY UP TO MAXIMUM STABLE
FLASTICITY
NOISE ROBUST ROBUST
COMM SYNCHRONOUS OR SYNCHRONOUS OR
ASYNCHRONOUS ASYNCHRONOUS
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B. Extension

Can the snake algorithm be analyzed for a general
perimeter? We believe that in general, at most a semi-
quantitative theory is possible. Consider for example the
problem of finding the steady state solution. When =0, the
steady-state coincides with the perimeter. Expanding in
powers of ¢ around the perimeter gives Z = perimeter + z(3),

where |z(s)|=a/R(s)|VC(s)|’ and R(s) is the radius of

curvature at s. To first order, we find that the steady-state
snake is separated from the perimeter by an amount that
depends on the radius of curvature. Compared with Section
I, this is only an approximate result, but however
approximate, it does provide important insight into the
problem.

Similarly with stability. Qur analysis of the circular
perimeter showed that stability cannot in general be
understood in terms of local properties which in retrospect can
be attributed to the extended nature of the eigenstates.

An analogy with electronic states in 1D solids might be
useful. Electronic eigenstates obey an equation similar to the
linearized snake equation {Schrodinger's

equation, Ey = —aiw + ¥V{s)y ). Because of its importance in

the theory of disordered solids, the properties of the
eigenstates when the potential V is irregular have been well
studied. It is now understood that the eigenstates are
delocalized when the potential ¥ has translational symmetry
and localized when it doesn't (Anderson theorem, [12]). The
similarity of the two equations suggests that for complex
perimeters, the eigenmodes might be localized, in which case
a local theory of stability might be possible.

C. Coordinaiion

UUV coordination has been discussed by a number of
authors [13]-[22). It is often recognized that limited
communication bandwidth and vehicle loss are crucial factors.
Often, it is also tacitly held that efficiency, for example
mission time optimization is an equally important ojective.
We argue that in comparison with the first three, efficiency is
relatively unimportant.

A perfectly efficient algorithm would spread UUVs evenly
around the perimeter. One could then compare algorithms on
the basis of how well they spread the vehicles. Imagine two
algorithms, one that guarantees a perfectly even distribution
but that is mot robust, and one that spreads the vehicles
"acceptably" but is robust. The second algorithm is clearly
better regardless of its optimality. It is better because the most
important mission determinants are getting the vehicles back
and surviving any loss of communication. Efficiency is
secondary, unless one redefines it to explicitly incorporate
these factors.
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