A LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE
KORTEWEG-DE VRIES EQUATION WITH BOUNDARY EFFECT

HAILTIANG LIU AND JUE YAN

ABSTRACT. A local discontinuous Galerkin method for solving Korteweg-de Vries (KdV)
type equations with non-homogeneous boundary effect is developed. We provide a criterion
for imposing appropriate boundary conditions for general KdV type equations. The discus-
sion is then focused on the KdV equation posed on the negative half plane, which arises
in the modelling of transition dynamics in the plasma sheath formation [25]. The guiding
principle for selecting inter-cell fluxes and boundary fluxes is to ensure the L? stability and
to incorporate given boundary conditions. The local discontinuous Galerkin method thus
constructed is shown to be stable and efficient. Numerical examples are given to confirm the
theoretical result and the capability of this method for capturing soliton wave phenomena
and various boundary wave patterns.
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1. INTRODUCTION

In applications the interesting phenomena frequently occur near the boundary and conse-
quently the design of effective numerical procedures to capture the right boundary behavior
is highly desirable, see e.g. [23]. In this paper we treat the Korteweg-de Vries (KdV) equa-
tion in one space dimension with an interval as spatial domain. The KdV equation is a
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generic equation for the study of weakly nonlinear long waves. It arises in many physical
situations, such as surface water waves, plasma waves, Rossby waves and harmonic lattices.

The KdV equation is integrable and can be solved on the infinite line using the celebrated
inverse scattering approach [14]. For KdV equation posed on the infinite line, there has
been several quite successful numerical methods available such as spectral/pseudospectral
methods, finite difference methods as well as local discontinuous Galerkin (LDG, for short)
methods developed by many authors from both theoretical and computational points of view.
For initial boundary value (IBV ) problems the boundary effect poses additional difficulties
and requires special treatment. Among others, spectral Galerkin type methods have been
recently introduced by several authors to handle non-periodic boundary conditions, see e.g.
(21, 26, 27, 19, 29]. However, using the spectral type method one often needs to properly
choose collocation points to minimize the number of unstable modes.

In this work we are interested in developing a stable LDG method for approximating
solutions of the KdV equation with non-homogeneous boundary conditions. Our discussion
will focus on the following setting

Up 4+ 6Uly + Ugzy = 0, 2 € (—00,0]
subject to side conditions
u(z,0) = uo(z),
u(0,t) = a(t), uL(0,t) = b(t).

The negative quarter-plane problem is of special interest to us because of several physical
applications. It arises in the modelling of transition dynamics hidden in the plasma sheath
formation, see [25] where the authors derived a perturbed KdV model to approximate a 1-D
Euler-Poisson model for the motion of weakly ionized plasma. Another example is weakly
nonlinear long waves propagating on a fluid with surface tension [22]. We note that the
positive quarter-plane problem requires only one boundary condition at z = 0, for which the
boundary effect was studied by Chu et al [9] numerically. A number of different physical
applications exist for positive quarter-plane problem, such as the generation of waves in a
shallow channel by a wave-making device or the critical withdrawal of a stratified fluid from
a reservoir, see [10]. The positive quarter-plane problem was also examined via the inverse
scattering method, see e.g. [8, 15, 16]. For the study of well-posedness of positive-quarter
problems we refer to [2, 4, 13] and references therein. The objective of this paper is to present
an efficient LDG method with incorporation of boundary conditions and to show that the
method is able to capture various boundary wave phenomena, including those classified in
[28].

The type of discontinuous Galerkin methods we will discuss in this paper is to use a
discontinuous Galerkin finite element approximation for the spatial variables and couple
with explicit, nonlinearly stable high order Runge-Kutta method in time discretization [30].
It was first developed for the conservation laws containing first derivatives by Cockburn
et al. in a series of papers, see e.g. [11] and a review paper [12]. We should point out
that, among others, one advantage of the discontinuous Galerkin method is its ability to
capture the boundary behavior easily through boundary fluxes. This property is crucial to
the implementation of non-homogeneous boundary conditions in this work.

For equations containing higher order spatial derivatives, discontinuous Galerkin methods
cannot be directly applied. This is because the solution space, which consists of discontinuous
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piecewise polynomials, is not regular enough to handle higher derivatives. This led to the
invention and development of the LDG method.

The first LDG method was developed by Cockburn and Shu [11], for time-dependent
convection diffusion systems. Later, this method has been successfully extended to a general
KdV-type equation containing third order derivatives [33], to PDEs with fourth and fifth
spatial derivatives [34], to nonlinear Schrodinger equations [32] and other nonlinear dispersive
equations [24]. However, the application of this method to boundary value problems has not
been done yet and will be carried out in this paper.

The idea of local discontinuous Galerkin methods for time-dependent PDEs with higher
derivatives is to rewrite the original equation into a first order system, and only then apply the
discontinuous Galerkin methods. The local auxiliary variables, introduced to approximate
the derivatives of the solution, are superficial and can be easily removed for linear problems.
A key ingredient for the success of such methods is the careful design of the cell interface
numerical fluxes. All fluxes must be designed to guarantee stability and local solvability of
the auxiliary variables.

The novel idea of the LDG method proposed in this paper is to construct proper numerical
fluxes for both the interior interfaces and the boundaries. Especially the boundary fluxes are
to be chosen to incorporate the imposed boundary data. One crucial difficulty when deriving
the L? stability for the IBV problem is that we have to deal with a term like uu,, on the
right boundary, but u,, is not known a priori. Our strategy to circumvent this difficulty is
via two steps: 1) introduce an auxiliary problem with zero boundary data u(0,t) = 0, with
which the term wu,, vanishes; 2) convert the original IBV problem with non-homogeneous
boundary data to the auxiliary problem through a simple transformation. We refer to [23]
for transformation methods applied to a class of linearized evolution equations.

In our LDG formulation, we construct boundary fluxes in such a way that we use the
boundary data whenever it is available, and take other boundary fluxes as the value evaluated
from the numerical solutions. In contrast one often needs to assume the value u,, when
pursuing the inverse scattering method, see, e.g., [8].

For the stability analysis we first formulate a stability criterion for the continuous model,
and then justify such a stability property to be well preserved also by the numerical solution
from our LDG method. We should point out that for non-homogeneous data the transfor-
mation is introduced mainly to establish the stability property of the scheme, and it is not
used in real computations. The method is easily implemented and can be extended to more
general equations.

The organization of the paper is as follows. In Section 2, we first discuss how to impose
admissible boundary conditions for a general KdV-type equation, we then give an energy
estimate for the KAV IBV problem on the negative quarter plane. In Section 3, we describe
the formulation of our LDG method and prove the nonlinear L? stability. Section 4 is
devoted to a discussion of various wave patterns near the boundary. Numerical examples
are presented in Section 5 and results are consistent with the wave patterns described. We
end the paper with a few concluding remarks in Section 6.

2. BOUNDARY CONDITIONS AND WELL-POSEDNESS

2.1. Boundary conditions. For the KdV equation, the initial boundary value problem is
often set in a quarter-plane, see for instance [1, 2, 3, 19]. The KdV equation on a finite
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spatial interval has also been considered by several authors, see e.g. [5, 26, 29]. For the IBV
problem to be well-posed one has to give proper boundary conditions. We refer to [16] for
giving appropriate number of boundary conditions for linear KdV equations.

To highlight the reasoning of what boundary conditions are admissible, we start with a
more general dispersive wave equation from [33]

(2.1) ut + f(u)e + (7' (w)g(r(u)a)s)z = 0

in the strip L < z < R. The functions f(u),r(u), and g(u) are arbitrary (smooth) functions.
It’s easy to see KAV equation is a special case of (2.1) (for the choice f(u) = 3u?, g(u) = u,
and r(u) = u).

We prescribe an initial condition

u(z,0) = uo(z),
and require boundary conditions
u(L,t) = u(R,t) = 0.

The third order derivative in space requires one more boundary condition. A formulation of
a third boundary condition requires careful thoughts. This is related to the well-posedness
concept of the problem. The initial boundary value problem is said to be well-posed if for all
smooth compatible data there is a unique smooth solution, and in every finite time interval
0 <t < T the solution can be estimated in terms of the initial and boundary data, see, e.g.,
[23].

Set

Glg) = / "g(6)de, Flu) = / " f(e)de.

Multiplying the equation (2.1) by u with proper regroup we have

(2.2) %(UQ)?& + {uf(u) = F(u) + ur'(u)g(r(u)s)e — r(u)2g(r(u)s) + G(r(u)z)}z = 0.

This indicates the conservation of the kinetic energy on the whole domain. However the
energy conservation is not the case on the finite domain because of the boundary effect.
We thus need to propose proper boundary conditions so that the kinetic energy is still
controllable. Note that

29(0) - G(g) = / "£g/(€)de = B(g).

Integration of (2.2) over [L, R], using the data u(¢, L) = u(t, R) = 0, leads to

11R

2. -
(2:3) 2dt J,

u?dr = B(r(w)z)le=r — B(r(v)z)le=t,

which is clearly bounded if u, were given at two boundaries. However the spatial order of
the equation allows only one more boundary condition besides u(L,t) = u(R,t) = 0. A
third boundary condition can be chosen such that the right hand side is bounded by the
given data if B is of one sign. For example, if B(g) > 0, the RHS of (2.3) is bounded by
B(r(u)4)|z=r, for which u, (¢, R) needs to be given; if B(q) < 0, u,(¢, L) needs to be known.



5

Proposition 2.1. Consider the IBV problem (2.1) in the domain (L, R) x (0,T), subject to
u(z,0) = ug(x) and u(L,t) = u(R,t) = 0. For the problem to be well-posed a third boundary
condition s necessarily imposed in such a way that

i) uz(t, R) is imposed for B(q) > 0;

ii) ug(t, L) is imposed for B(q) < 0.

We note that for a positive quarter-plane problem, Chu et al. [9] used energy conservation
law for KdV equation to deduce that one boundary condition should be applied at = 0, with
the other two being bounded conditions on the solution as x — oco. Using the above argument
one could discuss more general boundary conditions such as the form Z?:o aldtu(z,t), j=

2,3 prescribed at z = L, R, see [6, 7] for choices of a’s for linearized KdV equations.

2.2. Half-space problem. In this paper we focus on the well-known KdV equation posed
on the negative half space {2 = (—o00,0]. Using Proposition 2.1 for boundary conditions we
formulate the problem as follows:

Uy + 6uUy + Uggr = 0, x € (—00, 0],

u(z,0) = uo(x), z € (—o0,0],
(24) u(0,1) = af(), t>0,
ux(() t) = b(t), t>0.
We seek the solution decaying at + = —oo. For the equation posed on the positive half space

x > 0, one just needs one condition u(0,t) at the end 2 = 0. The existence and uniqueness
of the solution for this problem may be established in the spirit of [3, 5].

Our goal is to design a stable numerical method for the above IBV problem. However, we
would like to first on the PDE level establish an energy estimate of the following form,

[u(, )]l < K(|[uoll, a(t), b(t)), ¢ €0,T],

where || - || is the L? norm and K is a proper functional. In order to obtain such a priori
estimate we need to consider the following auxiliary problem with homogeneous first order
boundary condition

f(/U7‘7’IJ t)I + Ul‘l‘l‘ = 07
=

Vg +
v(z,0) = vy(x),

(2.5) UEOa t)): v(—o)o,t) =0,
vz (0,

;1) = g(t).

Assume the time-space dependent function f has the property

T

(2'6) < Kl(t)||v(':t)||2 + KZ(t)a te [OaT]:

895/ f(s,z,t)dsdx
o Jo

for T > 0 and some known smooth functions K;(t),7 = 1,2. Thus we have

Lemma 2.2. Given f(v,z,t) satisfying (2.6). Then for any T > 0 the smooth solution of
problem (2.5) satisfies the estimate

27) o0l < exp (2 /OtKl(T)dr){nvon% /Ot(g2(f)+2f<2(f))dr}, 0<t<T.



6 HAILIANG LIU AND JUE YAN

Proof Set F(v,x,t) fo s, x,t)ds. If v solves the above IBV problem, then

2o, )12 = (v,0)

= (v, —f(v,2,t) s — Vgzz)
/aFU x t)da:—/ [vf(v z,t) — F(v,x,t)—%vvm—%vi dx

Ot /aFv:Et

Using boundary data and the assumption on f we have

2dt

%Ilv(u I* < g*(t) + 2K1 (1) |[v (-, 1)|* + 2Ka ().

By Gronwall inequality, the above reduces to (2.7) as desired.
O

Equipped with Lemma 2.2 and through a simple transformation we are able to derive a prior
estimate for the original problem (2.4).
Set,

u:=v+ e“al(t),

and substitute it into the equation for u, we find that v solves the auxiliary problem (2.5)
with

and
fw,z,t) = (alt) + a'(t))e” + 3(v + e”a(t))”.
A straightforward calculation shows that (2.6) is satisfied with
Ki(t) :== (3la(t)] +0.5), Ks(t) = (la(t)| + |d'(t)| + 6a*)?/2.

Note here we use the fact that e < 1 on the negative half plane.
Using the estimate in Lemma 2.2 and the substitution v = u — ea(t), we obtain the
estimate for the original problem(2.4) as the following,

(2.8) [u(-, )l < K(lluoll, a(t), b(t) — a(t)), t € [0,T].

In next section we will show that such a stability property is preserved by the LDG numerical
solution.

3. THE LDG METHOD AND ITS L? STABILITY

3.1. Review: local discontinuous Galerkin method for KdV-type equations. In
[33] Yan and Shu presented and analyzed a local discontinuous Galerkin method for KdV-
type equations of the form (2.1), i.e

(3.1) u+ f(w)z + (7' (w)g(r(u)z)z) =0, z€Q

augmented with initial data u(x,t=0) = ug(x), and periodic boundary conditions.
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This general equation turns to be a natural extension of the KdV equation that still
allows one to write a stable DG method. The idea of LDG method is to rewrite (3.1) into a
first-order system,

u + (f (u) + r'(w)p)e = 0,
(3.2) p—9(2) =0,

q—r(w)sz=0
then apply discontinuous Galerkin method on these equations. At each time step, we first
compute auxiliary variable g through last equation in (3.2), then compute variable p through
the second equation with new data of ¢, finally coupled with the TVB Runge-Kutta method
in time, we could update u through the first equation in (3.2).

We recall that the LDG method designed in [33] for initial value problem enjoys the L?

stability of the following form

lu(, Ollz2@) < lluo()llz2@)
For the IBV problem considered in this paper we need to establish a similar stability estimate,
which reflects the boundary effect.

3.2. Initial boundary value problem with LDG method. In this section we first
present a detailed formulation of a local discontinuous Galerkin method for the KdV IBV
problem. We then prove L? stability of the numerical solutions with LDG method.

The initial boundary value problem (2.4) is set in domain (—o0, 0]. In real computations,
we approximate the infinite domain by Q = [—M, 0] with large enough M and impose an
artificial boundary condition u(—M,t) = u(—oo,t) = 0. One difficulty in deriving the L2
stability estimate is that one has to deal with a term like uu,, on the right boundary, but
is not known a priori. As discussed in §2, our approach is to introduce an auxiliary problem
with zero boundary data u(0,t) = 0, with which the term wu,, vanishes. The original IBV
problem with non-homogeneous boundary data is shown to be converted to this auxiliary
problem by a simple transformation. With this in mind we only need to study the LDG
method for the auxiliary equation with more general function f(u,z,t), subject to suitable
boundary conditions.

Now consider the following equation (new solution notation v(z,t)),

(3.3) Vet f(0,2,1), + Vge5 =0, z€Q
subject to the initial and boundary conditions

v(z,0) = vy(z), z €9,
v(0,t) =0, t>0,
v:(0,1) = g(t), t>0,
v(=M,t) =0, t>0.

We start with a brief description of discontinuous Galerkin method. Divide the domain
Q= [—M, 0] into N computational cells, and denote the mesh by I; = [z;_1/2,%}41/2), for
j= 1 ., N. The center of the cell is z; = (z;_1/2 + %;1+1/2)/2, and Ax] |I;|. We denote
by v )2 the value of v at x;,/, evaluated from the right cell I, and v i1/ the value of

v at z;,1/2 evaluated from the left cell I; . We then define the finite dlmensmnal space Va,
as the space of piecewise polynomials of degree k in each cell, i.e.,

—{v v e PH(I (1) foerIj,jzl,...,N}.

(3.4)
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In a word, we seek numerical solutions in the form v|;, = SF, vkt (x), here ¢%(x) is the
polynomial base function on I; and 1);- is the corresponding coefficient.

Now we construct LDG method for (3.3-3.4). With two additional auxiliary variables p
and ¢ we rewrite the equation as a first-order system

(3.5) p—q; =0,
q—vy =0,

where the variable ¢ is used to approximate v, and p to approximate v,,.

We search for a solution of (3.5) such that for any t € [0,7], v,p,q € Va4, that satisfy
(3.5) in a weak sense. Hence, we multiply (3.5) by arbitrary test functions r, w, z € VA, and
integrate over I;, after a simple integration by parts we obtain, for all 1 < j < N,

/ vrdx — / (f (v, 2, t) + p)rade + (f (v, 2,8) ;1 + Dy 1)
I 1

j j
—(f(v, @, t);_1 +]§j_%)r;.r_% =0,

(3.6) /1 pwdw—i—/ qugzdr — ch%wj_Jr% —i—cjj_%w“_L , =0,

J1—5
J I; ?

zdx + Vepdt — 0, 12 4 0,127, =0.
/I'(] /I e t3%+3 T i3 %-3

Since the solution is discontinuous on the cell interface x;11/2, we must carefully choose
the so-called numerical fluxes f (v,z,t), P, G, and v to enforce stability and at the same time
incorporate boundary conditions. Test functions 7, w, z are also discontinuous on z; /2, but
they are only none-zero on cell I;. Easily we see at z;,1/5, we should take r—,w™, 2™, which
are exactly the values of r, w, z evaluated at point x;1/o. Similar arguments apply to z;_1/2
also.

All numerical fluxes are defined on the cell boundary x;.1/2, for the moment we simply

drop the subscripts. The convective flux f (v, ,t) is given in the form of

flo,z,t) = f(v_,v+,a:,t),

where f(v™,v", x,t) is a monotone flux for f(u,z,t), namely f(v—,v", z,¢) is a Lipschitz
continuous function in both arguments v~ and v™, and consistent with the nonlinearity
f(v,z,t) such that f(v,v,z,t) = f(v,z,t). Also f(v~,v",z,t) is uniquely defined on cell
boundary z;11/2, which guarantees the nice conservative property. Examples of monotone
fluxes which are suitable for discontinuous Galerkin methods can be found in, e.g., [12].
Here, we simply choose the Lax-Friedrichs flux

(3.7) fw™, vt z,t) = % (fv™,z,t) + f(vT, 2, t) — alvt —v7)),

where o = max, | f,(v, z,1)| for z € Q.

We embed boundary conditions (3.4) into the numerical flux (3.7) in such a way that
at right boundary zni1/2 we take vt = v(0,%), and at the left boundary z;,,, we take
vT =v(=M,1).
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It still remains to determine other numerical fluxes p, ¢, and ¢ in (3.6). Following [33],
we choose opposite signs of p and ¢ in order to ensure the stability. Flux ¢ has to be chosen
as ¢t since the sign of the dispersive term wv,,, is positive, which is consistent with the
admissible criterion for boundary conditions in Proposition 2.1. Yet we also need to embed
the boundary conditions into boundary fluxes for (p, ¢, v) whenever the boundary conditions
are given.

We now define all numerical fluxes to complete the LDG method

(P}.1:0f 1,v7,)  JELN-1,
(3-8) (Bj1sdj1,951) = ¢ (P14, 01) i=0,
(p]_v+%,q;+%,1);+%) j=N,
or
(p;%,q;%,vjt%) jel---N—-1,
(3-9) (Bjsts GjasrBy4y) =  (P1.41501) i=0,
(Pyy1oGns1 Ung1)

For the three given boundary conditions in (3.4), the corresponding boundary fluxes are
defined as follows.

(3.10) Uy = vy =0, UNt1/2 = U;\rfﬂ/g =0, qny12= (]]\L;H/g =g(t).

For other cases we simply take boundary fluxes as the value evaluated from the inside of the
cell as listed in (3.8).

3.3. Stability analysis. We claim that the LDG method defined above is L? stable.

Proposition 3.1. The L?-norm of the solution of (3.6)—(3.10) is bounded by initial and bound-
ary conditions as,

t
I < RO [+ [T6) + 26cs]| e o7
0

provided f(v,z,t) satisfies

/Qaz /Ov f(s,z,t)dsdx

Proof. Since (3.6) holds for any test functions in Va,, in particular we can choose r = v,
w=gq, and z = —p. Let F(v,z,t) = [* f(s,x,1)ds, also we have the equality

(3.11) < Ki(@)llo(- D)l + Ka(2).

fo,z,t)ve(z,t) = %—f(v, x,t)vg(x,t)

= %(v,x,t) — %—5(1},36,15).
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With these test functions, equation (3.6) becomes

dF F
/Iv vvdr — /I E(’U,m,t)dﬂ? + /I g—x(v,x,t)dx — /I pUgdx

J J J J

F - F + 5 - st
+f(U,x,t)j+%Uj+% - f(v,l‘,t)j_%vj_% + j+%vj+% - j_%/uj—% = 0;
(3.12) /1 pgdz + 3 /I (0)ade = Gj 10,4 + 4514, =0,

J J

_/1 qua;—/I vadx+vj+%p;+%—vj7%pj7%

J J

>
+
I
o=}

Adding three equations in (3.12) and summing over all j we obtain

/vtvdx-f—Z( l,x t)-l—F(v;’é,x,t)—l—f]ﬂ 4l fj_%v;.’_ )

1
- 2 + V2 _ 4 - - +
(3.13) +Z(§(qj+;) =500 )" = g1y T j_;>
J

i
oF
——/Q%(v,a:,t)dx

Now we regroup (3.13) with interior and boundary terms denoted by I’ and I,

1d , - OF
ol Ol + 1 +17 == [ 00,0, )
where I” is defined by (for simplicity we drop subscripts j + 1 € Q/, the interior of domain

)

(3.14)

I —Z( ,T,t) + F(vt x,t)-l—f(v,x,t)v_—f(v,:v,t)v+>
+ <§(Q_)2 - §(q+)2 —qq + éq*)
+3 (=(wp)™ + (wp)t +pv — ot +op” —ip'),

and I® collects all boundary terms,

B = (—F(UN+1,xN+1,t) + F(v1 T, t)+ f(v,x t)N+1UN+7 - f(v,m,t)%v‘g)
1, _ 1 ; _ .
+(G (@) = 5(@)° = Ay 2y, +01a))
+(=(vP) yy 1 + (WD)} + Py svy 1 = PVl +Ony1Py 0 — B1p]).
We note that, besides domain boundaries T = = —M and zy 1= = 0, all interior cell interfaces

Tip1 for 7 = 1...N — 1 have two values contributed from left and right cells. This explains

why only one-side terms present in I5.
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We now show that I” > 0. Using numerical fluxes p, 4, 9, f(v), as described in (3.7) or
(3.8), we find that all terms related to vp are cancelled. This with the relation F(v,z,t) =
[° f(s,z,t)ds gives

vt

r-x(f

ol

(F(s,2,1) — F(v,2,))ds + % ( - q+)2) >0,

where we have used the consistency and monotonicity of the flux f (v, z,t) to ensure the
following

vt vt

/ (f(s,x,t)—f(v,x,t))ds:/ (f(s,s,2,t) — f(v™, v, z,t))ds > 0.

We now turn to estimate /2. Using boundary fluxes defined in (3.8) and (3.10), we simplify
all terms involving the right boundary zy,1/2 as follows

_F( N+1a$7t) + f(vaxat)N—i—lv;H_l

:F(UNJr%,ac,t) —F(UN+1,.Z‘ )+ flv,x t)N+%v;]+% —f(v,x,t)NJr%U;\’H%

+
v 1 ~
:/N+7(f(s,x,t)—f(v,x,t)N+%)ds>0,
v;[_l_%
1, 1 1 1
Oy 1)’ = via s = 50y, — dy,)” = 5lay, ) > =50

_(vp)N+% +pN+%UN+% +UN+%pN+% = 0.

Similarly terms involving the left boundary x1/2 reduce to

F(Ul,.T t)— flv,z t);v‘{z/v (f(s,2,t) = f(v,z,t)1)ds > 0,

(vp); =P

Collecting all terms estimated above we have
1
1% > —§g(t)2.
This with I7 > 0 and the assumption (3.11) leads equality (3.14) to
1d 1

5 VDI < Ka@lloC D)l + 59(8)° + Ko (2)
By Gronwall inequality, we obtain the desired estimate. O

Equipped with the above L? estimate we turn to establish the stability for the LDG
method applied to the original problem. Let u(z,t) denote the solution of original problem
(2.4), as discussed in §2 we use the transformation v(x,t) = u(x,t) — e®a(t) such that v(z, t)
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satisfies the auxiliary problem (2.5), i.e. (3.4) on computational domain [—M, 0]. Applying
the L? estimate stated in Proposition 3.1 we are able to summarize the L? stability of LDG
method for the IBV problem (2.4) as follows.

Theorem 3.1. The L?-norm of the numerical solution of (2.4) is bounded by the initial and
boundary data

lu(-, )lz2@) < K(alt),b(t), [|luollz2y), VYt €[0,T].

We would like to specify the fact that the transformation is introduced mainly for the
purpose of L? stability analysis, we do not use it in real computations. To avoid any confu-
sion, we simply reclaim the LDG scheme for problem (2.4). Let f(u) = 3u?, with 2 auxiliary
variables ¢ and p, we rewrite the KdV equation into a first-order system,

Ut + (f(u) +p)zc =0,
(3.15) p—q; =0,
q— Ug = Oa
Then apply discontinuous Galerkin method on the system. For convection term, we choose
the Lax-Friedrichs flux,

_— 1 - B
(3.16) flum,ut) = 5 (f(u )+ flut) — a(ut —u )) ’
where « := max, |f,(u)| for z € Q, and numerical fluxes for ¢,p,u are
+ ot - ,
(317) (ﬁj+%7q\j+%7a‘j+%) = (p%’q%’u%) J = Oa

- + + ; —
(pN—I—%’qN—i—%’uN—F%) J= N:

To impose the given boundary conditions in (2.4), the corresponding boundary fluxes are
defined as,

(318) 1)1/2 = ’ul_/2 = 0, aN+1/2 = u_]|\—l+1/2 = a(t), CjN_H/Q = q]_\|}+1/2 = b(t)
All numerical examples in §5 are based on the above fluxes choices.

3.4. Possible extensions. The methodology taken here can be extended in various ways.
For instance for the KdV equation posed on a finite domain =z € [L, R|, with boundary
conditions

Us + Uy + Ugyy = 0, x € [L, R,
u(z,0) = ug(x), x € [L, R,
u(L,t) =a1(t), u(R,t)=as(t), t>0,
uz (R, t) = b(t), t> 0.

We apply a transformation of the form

s — a1 Ra; — Las

R-L'" R-L

to convert the above problem to an auxiliary problem with the following data

Cas(t) —au(?)
R—-L ~

U=v+

w(L,t) = v(R,t) =0, v,(R,t)=b(t)

to which our proposed method can be applied.
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This transformation also applies to a more general equation

Uy + f(u)zc + (T,(u)g(r(u)w)w)w =0,
posed on a finite domain z € [L, R]. According to Proposition 2.1, for the case B(u) < 0,
the admissible side conditions are

u(L,t) = a1(t), u(R,t)=as(t), u.(L,t)=0(t), t>0.

In this case the above transformation still leads to an auxiliary problem with homogeneous
data v(L,t) = v(R,t) = 0. For this more general equation the detailed stability analysis and
further numerical experiments will not be given in this work.

4. WAVE PATTERNS NEAR BOUNDARY

The solution behavior of the KdV equation on the infinite line may well exist in the
boundary pattern formation. The boundary effect will force some waves generated from the
boundary to proceed by a transient front to match waves induced from the initial data. A
particular solution of the KdV equation is the conoidal wave solution [31] expressed in terms
of the mean height @, the amplitude A, phase shift ¢, wave number and dispersion relation.
A special case of the conoidal wave solution is the soliton solution

(4.1) u =0+ 24sech®V Az — (67 + 4A)t + ¢].

For constant boundary data five different approximate wave patterns are recently studied by
Marchant and Smyth [28]. Transient solutions are constructed based on modulation theory
for the KdV equation, which was derived by Whitham [31]. The modulation equations give
a simple wave solution, called un undular bore, first derived by Gurevich & Pitaevskii [20]
and Fornberg & Whitham [17]. Such a wave solution is formed as an expansion fan on the
characteristics, which links a level A; ahead of the bore to a level Ay behind the bore for
Ay > Ay. The range of the bore is

(124; — 6A,)t <z <4A;+24;, 0<m<1,

on which

u=a+24m™ -1 —m P(m) + en? (K(m)(kx s ¢)> :

T
with

= (Ag—Al)m+2A1 —A2+2(A2 —Al)P(m), A= (A2 —Al)m
ﬁ\/@ — Ay, w=6ak+44k(2m™! — 1 — 3m~P(m)).
Here cn is the Jacobian elliptic cosine function of parameter m. P(m) = E(m)/K(m) with
K (m) and E(m) being complete elliptic integrals of the first and second kinds, respectively.
At the leading edge m = 1 solitons of amplitude 2(A; — A;) occur.

For the case Ay < Ay, one sees a resolution of a step down in mean height, such a solution
is the mean height variation and given by
x
aa
with u = A; for x > 6A;t and u = A, for x < 6A5t. This is in contrast to the undular
bore solution which is the resolution of a step up in mean height. Both transition waves are
constructed in [17] for step initial conditions.

U
k

u = 6A2t S T S 6A1t,
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Here below we recall briefly results obtained in [28] about five asymptotic wave patterns
subject to constant initial and boundary data, say a(t) = a € R, b(t) = 0 and ug(z) = up € R.

For positive a, the soliton (4.1) can be made steady by taking 4 = —2A/3. The steady
soliton profile satisfying boundary conditions is

1 3 1
ut = —Ea—i- 5@866/125 3ax — —a/2, u*(0)=a, wui(0)=0.
But u* — —a/2 as x — —oo does not satisfy the initial condition. Following [28] one can
match this steady wave onto transient front. More precisely the approximate wave profile
has the following cases.

o if uy < —a/2, a step down is made by the mean height variation, the approximate
solution is

u*, —3at <z <0,

& buet < < —3at,
Uy, T < 6ugt.

(4.2) u=

o if a/4 > up > —a/2, one sees a step up in mean height via an undular bore

u*, (dug —a)t <z <0,
(4.3) u = ¢ undular bore, —6(ug+ a)t <z < (4ug — a)t,
U, x < —6(a + up)t.

e if a > uy > a/4, the undular bore would propagate into z > 0, which is clearly not
possible. In this case a steady conoidal wave is formed near the boundary, matched by
a partial undular bore (0 < m < mgy < 1) in order to bring the mean level up to ug and
so satisfy the initial condition.

steady conoidal wave, 7t <z <0,

(4.4) u =< partial undular bore, 6(uy—2A49/mo)t <z <71yt
Ug, x < 6(ug — 249/myo)t,
where my = 292%0)  A; = g — yy and

a+2ug ’

4A0(1 — mo)

= 24y — 4Agmg ' — .
Tf 611,0 + 0 0y P(mo) — (1 — mo)

e if uy > a, the wave pattern is similar to the case a > uy > a/4. In this case the conoidal
wave train has modulus 0 < my < 0.5.

For the negative a, one still takes 2 = —2A/3 to make a steady wave. Boundary conditions
require ¢ = 00, so near boundary one only sees the uniform shelf ©* = a. The further
matching to the initial condition is determined in the similar manner.

e if ug < a < 0, the solution is in the following form

a, 6at <z <0,
(4.5) u=1< &, 6ugt <z <6at,
Uy, T < 6Bupt.
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e if a <uy < —a/2, then the solution is

a, 2(a + 2ug)t <z <0,
(4.6) u =< undular bore, 6(2a — ug)t <z < 2(a + 2uo)t,
Uo, x < 6(2a — up)t.

o if ug > —%a, the solution in this regime is a steady conoidal wave matched to a partial
undular bore as given in (4.4). In this case the conoidal wave train has modulus

The above cases tell us that there are five qualitatively different types of approximate solu-
tions of the negative quarter-plane problem (2.4). The particular solution depends on the
relation between initial and boundary values.

We point out that the dispersive nature of the equation suggests that the real solution may
oscillate around the constructed approximate solution, in particular at transition points of
different waves. These wave patterns are well resolved by our LDG method to be presented
in next section.

5. NUMERICAL EXAMPLES

In this section we present a few numerical examples to demonstrate the accuracy and
capacity of the LDG method described in Section 3. For temporal discretization, we use
explicit, nonlinearly stable 3rd order Runge-Kutta method [30]. Other ODE solvers can be
used instead. We would like to first illustrate the high order accuracy of the method through
examples I and II, propagation and interaction of solitons. Then we would like to show
the ability of the method in capturing various boundary wave patterns, through cases with
constant initial and boundary data, where approximate solutions are outlined in Section 4.
Note the computational domain is set to be [—M,0]. We choose suitable M to fit in with
different examples.

5.1. One soliton propagation and two soliton collision. We use single solitary wave
propagation and double solitary waves interaction to test the high order accuracy of the
LDG method.

Example I: We compute the classical soliton solution of the KdV equation in [—10, 0].
The initial condition is given by

u(z,0) = 2sech?(z + 4),
and the exact solution is
u(z,t) = 2sech®(z + 4 — ct), c=4.

For boundary conditions u(—M,t),u(0,¢) and u,(0,t), we simply use the values extracted
from the exact solution. The L? and L™ errors are obtained in Table 5.1 for t = 0.75. We
can clearly see the method with P* element gives a uniform (k+1)th order of accuracy. Note
the single soliton propagates to the right with speed ¢ = 4. At ¢t = 0.75, one third of the
solitary wave is absorbed into the right boundary. The solution value at the right boundary
is thus of O(1) and non-ignorable. We also draw the space-time 2-D graph in Figure 5.1.
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k N=20 N=40 N=80 N=160
error error order error order error order
1] L? | 4.3405e-02 | 6.3455e-03 | 2.77 | 1.1416e-03 | 2.47

3.0019e-04 | 1.92
2.8453e-03 | 1.78
3.2382e-06 | 3.03
3.3270e-05 | 3.00

TABLE 5.1. Computational domain € is [-10,0] u(z,0) = 2sech®(z —4.0) . L?
and L errors. LDG method with £ = 1,2 at ¢t = 0.75.

L°° | 1.4799e-01 | 2.7271e-02 | 2.44 | 9.8230e-03 | 1.47
2| L? [1.65693-03 | 2.1397e-04 | 2.95 | 2.6492e-05 | 3.01
L%° | 1.4879e-02 | 2.1157e-03 | 2.81 | 2.6631e-04 | 2.99

One solitary wave propogation
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FIGURE 5.1. space time graph of the solution up to t = 2, with P! polynomial
and 160 cells.

Example II: In this example we study the interaction of two solitary waves. The initial
data is given by

4.5csch?1.5(x + 14.5) + 2sech? (z + 12)
(5.1) uo(z) = 2
{3coth1.5(x + 14.5) — 2tanh(z + 12)}

The exact solution is

(.1 54.5csch21.5(x — 9t + 14.5) + 2sech?(z — 4t + 12)
u\x = .
’ {3cothl.5(x — 9t + 14.5) — 2tanh(z — 4t + 12)}2

We refer to [18] for the derivation of a class of solutions of this type. Similar to previous
example, we extract from the exact solution three required boundary conditions. The in-
teraction process can be visualized from a series of snapshots: ¢ = 0 (two peaks), t = 0.1
(approach), ¢t = 0.5 (overlap), t = 0.6 (depart) and ¢ = 1 (post-interaction). In Table 5.2
and Table 5.3, we compute the L? and L™ errors at time ¢t = 0.5 during the interaction and
at time ¢ = 1.5 after the interaction. We also draw the space-time 2-D graph in Figure 5.2.




N=100

N=200

N=300

N=400

error

error

order

error

order

error

order

1.9085e-02

1.9207e-03

3.31

5.8413e-04

2.93

3.3356e-04

1.95

6.3925e-02

9.9892e-03

2.67

4.3447e-03

2.05

2.8492e-03

1.47

8.9649¢-03

2.2848e-03

1.97

1.0179e-03

1.99

5.7290e-04

1.99

2.9421e-02

7.3416e-03

2.00

3.2333e-03

2.02

1.8087e-03

2.01

TABLE 5.2. Computational domain € is [—20, 0]. Initial condition is given in
(5.1). L? and L* errors. LDG methods with k¥ = 1,2 at ¢ = 0.5. During the

two soliton collision.

k N=100 N=200 N=300 N=400
error error order error order error order
1| L? | 2.0533e-01 | 2.4773e-02 | 3.05 | 6.1727e-03 | 3.42 | 2.0944e-03 | 3.75
L | 1.0383e+00 | 1.2435e-01 | 3.06 | 3.1383e-02 | 3.39 | 1.0717e-02 | 3.73
2| L? | 3.4777e-02 | 9.1446e-03 | 1.93 | 4.0897e-03 | 1.99 | 2.3043e-03 | 1.99
L> | 1.6544e-01 | 4.3889¢-02 | 1.92 | 1.9680e-02 | 1.98 | 1.1096e-02 | 1.99

TABLE 5.3. Computational domain € is [-20,0] Initial condition is given in
(5.1). L? and L™ errors. LDG methods with & = 1,2 at ¢t = 1.5. After the
collision.

Two sollitary waves collision

FIGURE 5.2. Initial data is given in (5.1). P' polynomial and 400 cells, space
time graph of the solution up to t = 2
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5.2. Boundary wave patterns. In the following series of examples, we would like to nu-
merically capture the 5 wave patterns discussed in §4. Thus we choose suitable constant
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initial and boundary data as required in §4. Here we need to take big enough M to simulate
0o, and with an artificial left boundary condition u(—M,t) = 0.

Example ITI: The initial and boundary data are in the form of

uo(z) = —0.5, =z € [-150,0],
(5.2) a(t) = 0.5, t>0,
b(t) =0, t>0.

As we see the right boundary condition a(t) = 0.5 is positive and its relation to initial data
satisfies ug < —$%, so the wave pattern should have the form (4.2). Our numerical solution is
shown in Figure 5.3. As we observe, half of a single wave is formed near the right boundary,
a mean height variation is formed in the middle to connect to the left smaller initial data,
and for x < 6ugt, the solution behaves more or less like a constant close to the initial value.

Example IV: For this case, the initial and boundary data are of the form

uo(z) = —1.0, =z € [—120,0],
(5.3) a(t) =-05, ¢>0,
b(t) =0, t>0.

Here the right boundary data is negative a(t) = —0.5 and its value is bigger than the initial
data up < a < 0, as discussed in section §4 the wave pattern should have the form (4.5).
Our numerical solution is shown in Figure 5.4, and the result is consistent with the analysis.
Near the right boundary solution is just a uniform shelf equals to right boundary value
a(t) = —0.5, a linear function is formed in the middle to connect to the left smaller initial
data, which is similar to Example III, and for x < 6ugt, the solution behaves more like a
constant close to the initial data.
Example V: For this case, the initial and boundary data are of the form

up(z) =0, z € [=150,0],
(5.4) a(t) = 1.0, t>0,
b(t) =0, t>0
Here the right boundary data is positive a(t) = 1.0 and its value to initial data satisfies

—5 < wuy < ¢, from §4 we know that the wave pattern should have the form (4.3). Our
numerical solution is shown in Figure 5.5, and the result is consistent with the analysis. Half
of a soliton wave is formed near the right boundary, an undular bore is formed in the middle
to connect to the left smaller initial data, and for z < 6(ug + @)t the solution behaves more
like a constant close to the initial data.

Example VI: In this example the initial and boundary data are of the form

up(z) =0, =z € [-150,0],
(5.5) a(t) = —1, t>0,
b(t) =0, t>0.

Here the right boundary data is negative a(t) = —1.0 and its value to initial data satisfies
a < ug < —3. As discussed in §4 we know the wave pattern should have the form (4.6). Our
numerical solutions are shown in Figure 5.6, and the results are consistent with the analysis.
Near the right boundary a uniform shelf equals to right boundary data is formed, an undular
bore is formed in the middle to connect to the left larger initial data and for z < 6(2a — u)t,
the solution behaves more like a constant close to the initial data.
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FIGURE 5.3. uy(z) = —0.5,u(—150,t

) = 0,u(0,t) = 0.5,u,(0,t) = 0. with
P! polynomial and 600 cells, at t = 0,0.5,5

,10, 15, and 20.

Example VII: For this case, the initial and boundary data are of the form
uo(z) =1, z € [-300,0],
(5.6) a(t)=0, t>0,
b(t)y=0, t>0.
As we see the right boundary data and initial data satisfy the inequality uy > ia and
uy > —%a, so as discussed in §4 we know that the wave pattern should have the form (4.4), a
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FIGURE 5.4. ug(z) = —1.0,u(—120,¢) = 0,u(0,t) = —0.5,u;(0,t) = 0, with
P! polynomial and 400 cells, at t = 0,0.5,4, 6,8, and 10.

conoidal wave should be formed near the right boundary matched to a partial undular bore.
Our numerical solutions are shown in Fig.5.7. We do observe a conoidal wave formed near
the right boundary matched to a partial undular bore to further connect to the left bigger
initial data. Since the solution has strong oscillatory wave patterns, we also compute the L?
energy norm in Table 5.4, we see the energy is well conserved, which is consistent with the
L? stability analysis 3.1.
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FIGURE 5.5. up(z) = 0,u(—150,¢) = 0,u(0,t) = 1,u,(0,t) = 0. with P!
polynomial and 600 cells, at t = 0,0.5, 5,10, 12, and 15.

L?’norm| T=0 [ T=0.5| T=1 | T=2 | T=4 | T=6 | T=8 | T=10

n = 1000 | 1.0000 | 0.9977 | 0.9964 | 0.9919 | 0.9792 | 0.9645 | 0.9493 | 0.9340

TABLE 5.4. The L?-norm at different time for Example VII with P! polyno-
mials.
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FIGURE 5.6. ug(z) = 0,u(—150,t

) = 0,u(0,t) = —1,u,(0,¢) = 0. with P!
polynomial and 600 cells, at ¢t = 0,0.5,4

U
,6,8, and 10.

6. CONCLUSION REMARKS

We have introduced a systematic LDG method for computing dispersive wave equations
posed on a negative quarter-plane or finite domain, using the KdV equation as a canoni-
cal testing example. In our approach, non-homogeneous boundary conditions are first con-
verted into the homogeneous one by a simple transformation, then propose the LDG method
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FIGURE 5.7. uo(z) = 1,u(=300,t) = 0,u(0,t) = 0,u,(0,¢) = 0. with P!
polynomial and 1000 cells, at ¢ = 0,0.5,2,4,6, and 10.

through an auxiliary problem. The inter-cell fluxes and boundary flux are chosen to ensure
stability and incorporate given boundary conditions.

Our method can be applied to a class of problems arising in surface water waves, plasma
waves where the computation of boundary wave patterns is desirable. Recently there has
been an increasing interest in the study of initial boundary problems for dispersive wave
equations, see e.g. [3, 19, 28, 5, 26, 29, 16, 25]. The techniques discussed in this paper are
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very well suited for handling equations with high order derivatives and non-homogeneous
boundary conditions.
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