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This paper introduces a new level set method based on projected gradient flows for problems that can be solved by a recently
introduced relaxation approach. For the class of problems the relaxation is exact, it can be shown that the solution of the
flow converges to a solution of the relaxed problem for large time, and the level sets of the limit are solutions of the original
problem. We introduce a simple computational scheme based on explicit time discretization and apply the method to imaging
examples.

1 Introduction

The solution of optimization problems with unknown topology is a challenging task appearing in various applications ranging
from image processing (cf. e.g. [12] for an overview) over inverse problems (cf. e.g. [4]) to structural optimization (cf. e.g.
[2]). In the last years, significant progress in the development of computational methods for these problems has been made,
using the level set approach and shape sensitivity analysis as basic ingredients (cf. [4, 9, 12] and the references therein).

Level set based optimization methods can handle rather general structures and even changes of topology as opposed to
classical shape design approaches. However, already from their construction it is clear that these techniques are of a local
nature and might converge to local rather than global minimizers for the usually highly nonconvex problem. An example of
such a local minimum is well-known in applications to image segmentation, where standard level set approaches fail to obtain
inner contours in most cases. In general the computation of global minimizers is open and might even be impossible unless
special assumptions on the problem are made. As shown in [6] (see also [5] for a related problem) such a global minimization
is possible for an interesting special class, namely optimization problems of the form∫

Ω

g u dx + J(u) → min
u∈BV (Ω;{0,1})

, (1)

whereg ∈ L1(Ω), BV (Ω; {0, 1}) denotes the subset of functionsu of bounded variation such thatu(x) ∈ {0, 1} for almost
everyx ∈ Ω, and the functionalJ denotes the total variation seminorm, formally given as

∫
Ω
|∇u| dx. The main idea of the

global minimization is to consider the convex relaxation

Jg(u) :=
∫

Ω

g u dx + J(u) → min
u∈BV (Ω;[0,1])

, (2)

BV (Ω; [0, 1]) denotes the subset of functionsu of bounded variation such that0 ≤ u(x) ≤ 1 for almost everyx ∈ Ω.
Roughly speaking, the main reason for the exactness of the relaxation is that the non-coercive objective functional will not
prevent bang-bang type controls caused by the constraint0 ≤ u ≤ 1. Besides the exactness of the relaxation one can also
show that almost every level set of a minimizer of (2) is a solution of the original topology optimization problem. The proof
is based on the co-area formula for functions of bounded variation and will be detailed in Section 2.

Once the exactness of the relaxation and the relation of minimizers for (1) and (2) is understood, the remaining open
problem amounts to solve the convex problem (2). In [6], the minimization was carried out via a gradient flow for a penalized
unconstrained functional, which gave reasonable results but still enforces the tuning of penalization parameters. In this paper
we introduce a projected gradient flow, whose convergence to the solution of (2) can be shown and which is straight-forward
to implement. The method is then applied to (suitable reformulations of) some imaging problems.

2 BV / Level Set Relaxation

In this section, we briefly recall the basic results on the exactness of the convex relaxation (2) following the approach in [11, 6].
For this sake assume thatu is a minimizer of (1) and̂u is a minimizer of (2). For0 < t < 1 define (in an almost everywhere
sense)

ut(x) =
{

1 if û(x) > t
0 else
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Then, with a simple transformation of variables we obtain

∫

Ω

g û dx =
∫

Ω

∫ û(x)

0

g(x) dt dx =
∫ 1

0

∫

Ω

g ut dx dt.

Moreover, the co-area formula for functions of bounded variation implies

J(û) =
∫ 1

0

Per({u > t}) dt =
∫ 1

0

J(ut) dt.

By combining the two identities we conclude

Jg(û) =
∫ 1

0

Jg(ut) dt. (3)

Sinceut ∈ BV (Ω; {0, 1}), we clearly haveJg(ut) ≥ J(u) for all t. On the other hand, the inequalityJg(u) ≥ Jg(û) holds
due to the relaxation. Hence, we have

Jg(û) =
∫ 1

0

Jg(ut) dt ≥
∫ 1

0

Jg(u) dt = Jg(u) ≥ Jg(û). (4)

From (4) we can conclude thatJg(û) = Jg(u) = Jg(ut), i.e., the relaxation is exact and for each minimizerû of the relaxed
problem (2) we can compute minimizers of (1) by taking level sets (respectively the indicator functionsut of the level sets of
û).

The benefit of this BV / level set relaxation is the possibility to solve a convex minimization problem with bound constraints
instead of a problem with non-convex constraints, which corresponds to an infinite-dimensional version of a combinatorial
optimization problem, and to determine minimizers of the original problem by a simple procedure. Due to the convexity of
the relaxed problem, one can also be sure that each minimizer is a global one, so we compute global minimizers of the original
non-convex problem.

3 A Projected Gradient Flow

In the following we construct a simple projected gradient flow for the solution of the relaxed problem (2). The gradient flow
for the functionalJg is atotal variation flowwith sourceg, given (in a formal way) as

∂u

∂t
= div

( ∇u

|∇u|
)
− g.

Since we are looking for a solution withu ∈ [0, 1], we introduce a formal version of the projected gradient flow

∂u

∂t
=





max
{

div

( ∇u

|∇u|
)
− g, 0

}
if u = 0,

min
{

div

( ∇u

|∇u|
)
− g, 0

}
if u = 1,

div

( ∇u

|∇u|
)
− g else.

(5)

In this way, we have that∂u
∂t ≤ 0 if u = 1 and ∂u

∂t ≥ 0 if u = 0, and hence, the solution must satisfy0 ≤ u ≤ 1 for all t ≥ 0.
A mathematically sound definition of a solution can be given by a variational inequality similar to the one derived for the

total variation flow by Feng and Prohl [7]. We look for a solution in

u ∈ K := {ϕ ∈ L1(0, T ; BV ) ∩ C(0, T ; L2) | 0 ≤ ϕ ≤ 1 a.e.},

such that
∫ s

0

∫

Ω

∂v

∂t
(v − u) dx dt +

∫ s

0

[Jg(v)− Jg(u)] dt ≥ 1
2

∫

Ω

(u− v)2 dx

∣∣∣∣
s

0

∀ v ∈ K ∩H1(0, T ;BV ). (6)

The existence of such a solutionu ∈ K can be proved in a standard way by considering the time-discrete version on a time
grid {tk = kτ}j=0,...,N with τ = t

N . An approximate solution can be defined as

uN (t) = uN (tk+1) for t ∈ (tk, tk+1],



3

whereuN (tk+1) is defined iteratively via

uN (tk+1) = arg min
u∈BV (Ω;[0,1])

[
Jg(u) +

1
2τ

∫

Ω

(u− uN (tk))2 dx

]
. (7)

This sequential optimization problems provide a-priori bounds foru(t), by standard weak convergence and lower semiconuity
techniques one can construct a convergent subsequence ofuN and verify that the variational inequality holds for its limit.
Thus, we obtain (cf. [1, Chapter 3] for a detailed proof in a more general setup)

Proposition 3.1 There exists a weak solutionu ∈ K of the projected gradient flow according to the definition(6).

Besides the existence of a solution to the flow, we are interested in its long time behaviour, since the motivation of con-
structing the flow is to obtain convergence to a solution of the relaxed problem:

Theorem 3.2 Let u ∈ K be a weak solution of(6). Then there exists a subsequenceu(tk) converging in the weak-*
topology of BV, and each accumulation point (in the weak-* topology) of(u(t))t∈R+ is a solution of(2).

P r o o f. Letû be a minimizer of (2), thenv = û is an admissible test function in (6), since∂v
∂t = 0. Hence, we obtain

∫ s

0

[Jg(û)− Jg(u)] dt ≥ 1
2

∫

Ω

(u− û)2 dx

∣∣∣∣
s

0

,

which implies in particular that
∫ s

0
[Jg(u)− Jg(û)] dt and

∫
Ω
(u− û)2 dx are uniformly bounded from above with respect to

s. Moreover, we haveJg(u) ≥ Jg(û) due to the definition of the minimizer and hence, there exists a sequencetk →∞ such
thatJg(u(tk)) → Jg(û). On the other one can show by standard means thatJg(u(t)) is nonincreasing with respect tot and
hence,Jg(u(t)) → Jg(û) From the uniform boundedness we can extract a weak-* convergent subsequence (again denoted
by u(tk)). From the lower semicontinuity ofJg we deduce that for each for each limitũ ∈ BV (Ω; [0, 1]), the inequality
Jg(ũ) ≤ Jg(û) holds, and thus,̃u is a minimizer of (2).

In order to construct numerical approximations to the projected gradient flow, one could either use an implicit time dis-
cretization based on the sequential optimization problems, or an explicit time discretization based on the formal version (5).

An explicit time discretization is rather easy to perform. Assume thatD∆x(u) is a discretization of div
(
∇u
|∇u|

)
on a grid of

size∆x, then we compute a time step (of size∆t) as

v(t + ∆t) = u(t) + ∆t D∆x(u(t))− g, u(t + ∆t) = P[0,1](v(t + ∆t)),

whereP[0,1] is the pointwise projection operator to the interval[0, 1]. As usual for explicit time discretizations of second order
parabolic equations, we have to choose the time step as∆t = O((∆x)2) in order to obtain stability.

Note that the projected gradient flow can be interpreted as a level set method, the right-hand side of the flow corresponds
to the mean curvature of level sets ofu. Moreover, the level sets of long time limits are solution of the original problem and
it therefore seems reasonable to expect some kind of convergence of the level sets ofu(t), which will be confirmed by the
numerical tests below.

4 Applications

In the following we discuss the application of the approach to two prominent model problems in image processing, namely
the denoising of binary images via the ROF-model and the segmentation of images via the Mumford-Shah model.

4.1 ROF-Model for Binary Images

The classical ROF-model (cf. [10]) for denoising blocky imagesf is given by the minimization of the functional

Jλ(u) = λ

∫

Ω

(u− f)2 dx + J(u)

for some positive parameterλ to be chosen in dependence on the noise in the image. If one looks for binary images, one
minimizesJλ overu ∈ BV (Ω; {0, 1}). Sinceu ∈ {0, 1} almost everywhere, we obtain

(u− f)2 = u2 − 2uf + f2 = u− 2uf + f2.

For the minimization we can ignore the constant term, and hence the ROF-model for binary images is equivalent to (1) with
g = λ(1− 2f). Hence, we can directly apply the relaxation and the corresponding gradient flow for the ROF model.

In order to illustrate the behaviour for the ROF model we perform the gradient flow on a binary image with256 × 256
pixels, corrupted by Gaussian noise with mean zero and variance10%, with parameterλ = 20. The figure below shows the
noisy image (left), and the level sets∂{u > 0.5} for the initial guess and the time steps100, 200, 1000, and1500 (from left
to right). One observes that the noise is eliminated successfully, with the payoff of losing a small part of the letter R, but the
letters are still clearly recognizable.
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4.2 Mumford-Shah Segmentation

The most frequently used approach for image segmentation is the so-called Mumford-Shah model (cf. [8]), which adds
penalties on the smoothness of the image in the segmented regions and on the length of interfaces between segmented regions.
In the case of segmentation to binary images, the Mumford-Shah model can be written as

Jλ(u) = λ

∫

Ω

[
u(c1 − f)2 + (1− u)(c2 − f)2

]
dx + J(u)

to be minimized overu ∈ BV (Ω; {0, 1}) and (c1, c2) ∈ R2. Note that for fixedu the minimizer(c1(u), c2(u)) can be
computed explicitely. On the other hand, for fixed(c1, c2), the minimization overu is equivalent to (1) withg = λ(c1 −
f)2 − λ(c2 − f)2. Hence, it seems natural to perform an alternate minimization with respect to(c1, c2) and with respect to
u. Instead of an exact minimization ofu in each step, we only perform a few time steps of the projected gradient flow, which
yields a computationally efficient method.

As an example for the application of the method we investigated the segmentation of an image with256× 256 pixels. For
the segmentation we use a noisy image (not binary, but with a significant discontinuity) perturbed by additive random noise
with mean zero and variance of10%. The initial value for the projected gradient flow was the indicator function of a large
ball, the parameterλ was chosen as103. The figure below shows the noisy image (first on the left) and subsequently the
reconstructed level set functionsu at different time steps of the flow. One observes that intermediate values are encountered
during the flow, but the image becomes again binary for large time.
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