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Abstract

We consider the image-decomposition into a cartoon and texture part
proposed by Yves Meyer. We formulate the corresponding optimization
problem as a saddle point problem and show the existence of a saddle
point. This also leads to a dual problem from which we can find condi-
tions on the regularization parameter when a trivial decomposition occurs.
The saddle point formulation allows us to state the Euler-Lagrange equa-
tions for optimality, which take the form of a nonlinear indefinite system.
We propose to choose the dual parameter as regularization parameter.
Finally, we discuss some numerical algorithms for solving the optimality
conditions and investigate their convergence numerically.

1 Introduction

The task of image decomposition is to split a given image f into a sum of two
terms f = u+v where u and v represent different information in the image. For
instance, in the process of denoising a successful split of a noisy image f should
result in a clean image u and a pure noisy part v. A closely related problem is
to decompose an image into a ’cartoon’ part u which is a sketch of the original
image and a part v which contains the textures.

A useful framework to obtain a decomposition is the variational approach,
where u is found by minimizing a certain functional. In general, such functionals
are made of two terms: a fidelity term measuring the distance to the original
image f and a regularization term, which penalizes high frequencies.

One of the best-known nonlinear method in this class is the Rudin-Osher-
Fatemi functional (ROF) [19]: For a given grey scale image f ∈ L2 the cartoon
part u is defined as minimizer of

J(u) := λ‖u− f‖2L2 + |u|BV . (1)
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Here λ > 0 is a regularization parameter, which determines the regularity of
the outcome u, and |u|BV is the bounded variation seminorm (2). The ROF-
functional has been generalized in many ways by using different norms in (1)
(see e.g. [8, 18]).

In this work we consider the generalization of the ROF-functional proposed
by Y. Meyer [14]. The idea is to obtain a better image decomposition into a
cartoon and texture part by replacing the L2-norm in (1) with a norm suitable
for textures. Note that v = f−u is the texture component of the decomposition.
In [14] the author proposed the use of the G-norm as a reasonable norm for os-
cillating patterns such as textures, which leads to the functional (11). However,
the analysis and computation of the related optimization problem is much more
involved compared to the ROF-model.

The aim of this paper is to analyze the Meyer functional (11) theoretically
and numerically. We will reformulate the problem of minimizing this functional
into an equivalent saddle point problem. We will proof the existence of a saddle
point and hence also the existence of a minimizer for (11). The saddle point
formulation also gives rise to a dual problem, which can be used to derive some
properties of a minimizer. Moreover, we derive the optimality condition for the
saddle point problem in Euler-Lagrange form which leads to a nonlinear indefi-
nite system of partial differential equations. For the numerical computation we
propose some iterative algorithms and the use of the dual parameter µ instead
of the usual choice λ as tuning parameter. In the final part we perform some
numerical experiments comparing different algorithms to solve the optimality
conditions.

The paper is organized as follows: In Section 2 we introduce the G-norm
and state some of its properties. In Section 3 we define the Meyer-functional
and examine the corresponding saddle point problem. In Section 4 we discuss
some numerical schemes and test their performance.

2 G-norm

The G-norm has been introduced in [14] as an appropriate norm for textures
in images. While in a ROF-decomposition the cartoon part u is related to the
BV -norm it is considered that the right norm for the texture part is the G-
norm, which we will define in the following. In order to have useful embedding
properties we will restrict ourselves to dimensions less than 3, although definition
(3) is valid in any dimension. Let us assume that Ω ⊂ Rn, with n = 1 or n = 2,
is a simply connected domain with Lipschitz boundary. Denote by BV the space
of functions of bounded variations

BV := {u ∈ L1(Ω) | ‖u‖BV := ‖u‖L1 + |u|BV < ∞},

with the BV -seminorm (∇. denotes the divergence operator)

|u|BV := sup
φ∈[C∞0 (Ω)]2,‖φ‖L∞≤1

∫

Ω

u(x)∇.φdx. (2)

2



We start with the definition for the case Ω = Rn following [14]: Let f ∈ L2(Rn),
then the G-norm ‖.‖∗ is defined as

‖f‖∗ := inf{‖g‖L∞(Rn) | ∇.g = f}. (3)

For Ω being a bounded domain, this definition has been generalized in [3].
It turns out, that in order to develop a similar theory as for Ω = Rn some
additionally boundary conditions for g are needed in this case. Denote by n the
unit outward normal on ∂Ω, then the G-norm on a bounded domain is defined
by

‖f‖∗ := inf{‖g‖L∞ | ∇.g = f, g.n = 0 on ∂Ω}. (4)

If for a given function f no vector field g exists with the properties in (4), then
we set ‖f‖∗ := ∞. However, this pathological case is not very important, as
any function f in L2(Ω) can be redefined to have finite G-norm by subtracting
a constant. In fact it was proven in [3], that for a bounded domain the function
with finite G-norm are precisely those which have zero mean:

‖f‖∗ < ∞⇔
∫

Ω

f(x)dx = 0 ∀f ∈ L2(Ω).

In the following we always assume that for bounded domains this normalization
condition holds: ∫

Ω

f(x)dx = 0. (5)

Of course, this condition is not necessary if Ω = Rn.
The previous definitions are not very well suited for practical purposes, since

it it rather difficult to minimize over all vector fields with ∇.g = f . In this paper
we use the G-norm with a different but equivalent definition. In [13] it was shown
that definitions (3) or (4), respectively, are equivalent to

‖f‖∗ = sup
u∈BV

∫
Ω

f(x)u(x)dx

|u|BV
. (6)

Moreover, if f is in L2(Ω) and additionally satisfies condition (5) in the case of
a bounded domain Ω the supremum in (6) is attained by a function u ∈ BV .
This definition has the advantage that it avoids the computation of a vector
field g.

The following fundamental inequality is extremely useful in the analysis of
the G-norm: For f ∈ L2(Ω) and any u ∈ BV we have

∫

Ω

f(x)u(x)dx ≤ |u|BV ‖f‖∗ (7)

which simply follows from (6). An important case occurs when for a pair of
functions the previous inequality is an equality. Y. Meyer calls such a pair an
extremal pair. Let us cite the defintion from [14]:
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Definition 2.1. Two functions u ∈ BV (Ω), f ∈ L2(Ω) are called an extremal
pair (u, f) if ∫

Ω

f(x)u(x)dx = |u|BV ‖f‖∗. (8)

It is trivial to show that for a given f u is a maximizer in (6) if and only
if (u, f) is an extremal pair. It is known that an extremal pair is related by a
partial differential equation (see [13, 14]). In fact, (u, f) is an extremal pair if
and only if

f

‖f‖∗ = −∇.
∇u

|∇u| . (9)

The function u is not uniquely determined by conditions (8) or (9) because
a multiplication by a nonzero scalar λu gives another extremal pair. Moreover,
it was shown in [13] that if (u, f) is an extremal pair, than almost all the upper
level set χτ := H(u− τ) of u also form extremal pairs (χτ , f). (Here H denotes
the Heaviside function). It should also be noted that the notion of extremal pairs
is not symmetric, if (u, f) is one then (f, u) does not have to be an extremal
pair.

By the G-norm and the notion of extremal pair a complete characterization
of the ROF-decomposition can be given. The following theorem was proven in
[14]:

Theorem 2.2. Let f ∈ L2 and u ∈ BV be nonzero. Then u is a minimizer of
(1), if and only if (u, f − u) is an extremal pair.

There are very few examples of functions f for which the G-norm can be
computed analytically. For instance, when f is the characteristic function of a
circle with radius R, then its G-norm is R

2 . If f is the characteristic function
of a square, it can be proven that the G-norm proportional to the length of the
square. These cases can be computed, since functions are known which form
an extremal pair with f . For the characteristic function of a circle f makes an
extremal pair with itself [14], while for the square the corresponding function is
a rounded square [13, 20].

Finally we state some useful embedding theorems. If the dimension n is less
than 3 then it is well known that the space BV can be embedded into L2 ([1]).
By (6) it is easy to show that the space L2 (with the normalization condition
(5)) can be continuously embedded into the space of functions with finite G-
norm. Hencec for functions f satisfying (5) we have the following embedding
inequality:

‖f‖∗ ≤ C1‖f‖L2 ≤ C2|f |BV . (10)

This inequality was proven in [14]. For the case Ω = R2 the embedding constants
can be taken as C1 = 1

2
√

π
and C2 = 1

4π ([11]).

3 Meyer-decomposition

This image decomposition was introduced by Yves Meyer in [14] as a variant of
the ROF-decomposition. The main difference is that the G-norm is used instead
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of the L2-norm to measure the texture part. The motivation for this lies in the
fact that the v-component should contain textures, hence it seems reasonable
to measure the residual part v = f − u by the G-norm, which is considered a
good norm for textures. Similar as for the ROF-model this leads to a variational
problem. In fact, the Meyer-decomposition f = u + v defines the cartoon-part
u as a minimizer of the following functional

M(u) := λ‖f − u‖∗ + |u|BV , (11)

where λ is the regularization parameter.
The use of the G-norm should give a better decomposition of an image into

texture and cartoon part. However, it is more difficult to handle theoretically
and numerically. Existence of a minimizer has been proven in [4] for the discrete
case. (For the continuous case this will also follow from the saddle point formu-
lation below in Theorem 3.3). Differently to the ROF-functional the minimizers
are not unique in general. An example with a non unique decomposition is the
case when f is the characteristic function of a disc, as was shown in [11].

Let us remark that in the case of Ω being bounded we can without loss of
generality assume that

∫
Ω

f(x)dx =
∫
Ω

u(x)dx = 0. From the definition of the
G-norm it follows that M(u) < ∞ implies

∫
Ω

f(x) =
∫
Ω

u(x). If f does not have
zero mean we can redefine f̃ := f(x) − ∫

Ω
f(x)dx, and ũ := u(x) − ∫

Ω
f(x)dx.

Then u is minimizer of M(u) with f if and only if ũ is a minimizer of (11) with
f̃ in place of f . Moreover, a necessary condition for ũ is then

∫
Ω

ũ(x)dx = 0.
Let us briefly discuss some related models. The main difficulty in this vari-

ational problem is the computation of the G-norm. Several variants of the
functional (11) have been proposed. Vese and Osher [21, 22], replaced the L∞-
norm in Definition by an Lp-norm with p < ∞. They used the the following
functional

FV O(u, g) = |u|BV + λ‖f − u−∇.g‖2L2 + µ‖g‖Lp . (12)

Here λ, µ are real parameter, u plays the role of the cartoon part, g is a vector
field, and p ∈ N. The cartoon-part for this image decomposition is found by a
joint minimization over u and the vector field g. The use of the Lp-norm with
p < ∞ instead of the L∞-norm makes it easier to deduce the Euler-Lagrange-
equation and also easier to compute a numerical solution.

Another variant was proposed by Osher, Solè and Vese in [15]: The idea is
to assume that the vector field g is a gradient field: g = ∇P . Motivated by the
definition of the G-norm the authors proposed to minimize the functional

JOSV (u) := |u|BV + λ‖∇∆−1(f − u)‖L2 , (13)

where ∆ is the Laplace-operator. In contrast to (12), this is a one-parameter
model with a minimization only over u.

Another approach was suggested by Aujol et al. [4]. Their model is similar
to the Vese-Osher version, but they use the full G-norm. Similar as (12) it is a
model with two tuning parameter λ, µ, hence it gives a decomposition into three
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parts f = u + v + w. Here u is regarded as the cartoon part, v the texture part
and w the noise part. The authors in [4] propose to minimize the functional

FAABC(u, v) = |u|BV + λ‖f − u− v‖2L2 + µJ∗(v), (14)

where

J∗(v) :=
{

0 if ‖v‖∗ ≤ 1
∞ else

The u-part in an image decomposition is computed by minimizing over u and
v. A minimizer of this functional can be computed by performing two ROF-
decompositions simultaneously. We will describe this algorithm below. More-
over, it was shown that for λ → ∞ the minimizers of (14) are also minimizers
of (11).

Finally let us mention that for the the discretized case a method based on
second-order cone programming was proposed in [23].

Our starting point comes directly form the functional (11). We will refor-
mulate the problem as an inf-sup problem, which allows as to apply methods of
convex analysis to the problem. But in contrast to (12) and (14) we do not get
a threefold decomposition f = u+v+w, since we only consider a one-parameter
model.

Using definition (6) we can reformulate the optimization problem (11) into

inf
u∈BV

M(u) = inf
u∈BV

sup
p∈BV, |p|BV ≤1

L(u, p)

with
L(u, p) = λ

∫

Ω

(f(x)− u(x)) p(x)dx + |u|BV . (15)

It is clear from definition (6) that ū is a minimizer of (11) if and only if it also
satisfies

ū = argmin
u∈BV

sup
p∈BV, |p|BV ≤1

L(u, p).

The formulation as a inf-sup problem allows us to look at the dual problem,
which is obtained by swapping the infimum and supremum:

Definition 3.1. The dual problem to (11) is to find a p̄ ∈ BV , |p̄|BV ≤ 1,
solution to the following optimization problem

G(p̄) = sup
p∈BV, |p|BV ≤1

G(p),

where
G(p) := inf

u∈BV
L(u, p). (16)

The following lemma shows, that the variable u in (16) can be completely
eliminated, hence, the dual problem can be rewritten as a simple constraint
optimization problem:
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Lemma 3.2. Let f ∈ L2(Ω), λ > 0, then

G(p) =
{

λ
∫
Ω

f(x)p(x)dx if ‖p‖∗ ≤ 1
λ

−∞ if ‖p‖∗ > 1
λ

. (17)

p̄ is a solution to the dual problem if and only if it is a solution to the constraint
problem

p̄ = argmax
‖p‖∗≤ 1

λ ,|p|BV ≤1

λ

∫

Ω

p(x)f(x)dx. (18)

Moreover, under the given assumptions on f and λ this optimization problem
always has a solution p̄.

Proof. First we show equation (17). For p ∈ BV fixed we have to compute

inf
u∈BV

L(u, p) = λ

∫

Ω

f(x)p(x)dx + inf
u∈BV

−λ

∫

Ω

u(x)p(x)dx + |u|BV

By (7) and (10) we can estimate

K(u) := −λ

∫

Ω

u(x)p(x)dx + |u|BV ≥ (−λ‖p‖∗ + 1)|u|BV .

Now if −λ‖p‖∗ + 1 ≥ 0 then the infimum of K(u) is 0 since we may choose
u = 0. On the other hand, for any p with bounded G-norm we always find a u0

which is a maximum in (6), i.e. it satisfies
∫

Ω

p(x)u0(x)dx = ‖p‖∗|u0|BV .

For the case −λ‖p‖∗ + 1 < 0 we get with such an u0

−λ

∫
p(x)u0(x)dx + |u0|BV = (−λ‖p‖∗ + 1)|u0|BV ,

hence we may choose u = αu0, α ∈ R to see that the infimum of K(u) is −∞.
This shows

inf
u∈BV

−λ

∫

Ω

p(x)u(x)dx + |u|BV =
{

0 if ‖p‖∗ ≤ 1
λ

−∞ if ‖p‖∗ > 1
λ

and (17). Since there always exists a p with ‖p‖∗ ≤ 1
λ (e.g. p = 0), the dual

problem can be restricted to the constraint problem (18).
Now we show that the dual problem has a solution. Consider the set

Y = {p ∈ BV | |p|BV ≤ 1, ‖p‖∗ ≤ 1
λ
}.

This is not empty since 0 ∈ Y . Let pn be a maximizing sequence in Y for (18).
From |pn|BV ≤ 1, ‖pn‖∗ < ∞ and the continuous embedding of BV into L2

([1]) it follows that ‖pn‖L2 ≤ C, with some embedding constant C. Note that
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by definition of the G-norm the normalization condition
∫

pn(x)dx = 0 has to
hold if Ω is bounded, and hence we can apply the Poincaré-inequality ([1]) to
get the L2-bound. If Ω = Rn, this follows directly from the embedding.

Since pn is bounded in L2 it has a weakly convergent subsequence i.e. some
p ∈ L2 exists such that

∫

Ω

g(x)p̃n(x)dx →
∫

Ω

g(x)p(x)dx ∀g ∈ L2.

Moreover by the weak lower semicontinuity |p|BV ≤ 1. From (10) we get the
estimate ‖p‖∗ ≤ C‖p‖L2 < ∞ and by definition in (6) there exists a g ∈ BV
with ∫

Ω

p(x)g(x)dx = |g|BV ‖p‖∗.

By weak convergence it follows that
∫

Ω

p(x)g(x) = lim
n→∞

∫

Ω

p̃n(x)g(x)dx ≤ lim sup
n→∞

|g|BV ‖p̃n‖∗ ≤ |g|BV

λ
.

This shows that ‖p‖∗ ≤ 1
λ , thus p ∈ Y . Again by weak convergence we conclude

limn→∞
∫
Ω

f(x)pn(x) =
∫
Ω

f(x)p(x)dx. Since pn was a maximizing sequence p
is a maximizing element.

We have shown, that the dual problem has a solution. We now deal with
the question how this problem is related to the original one. It is well known
in convex analysis [17] that the dual problem is always smaller then the primal:
for all |q|BV ≤ 1, ‖q‖∗ ≤ 1

λ , and v ∈ BV we have

G(q) ≤ sup
|p|BV ≤1,‖p‖∗≤ 1

λ

G(p) ≤ inf
u∈BV

sup
|p|BV ≤1

L(u, p) = inf
u∈BV

M(u) ≤ M(v).

If the inequality between the dual problem and the primal one is strict, then
there is a duality gap. For the Meyer-decomposition this does not happen as
we will show in Theorem 3.3:

sup
|p|BV ≤1,‖p‖∗≤ 1

λ

G(p) = sup
|p|BV ≤1

inf
u∈BV

L(u, p) = inf
u∈BV

sup
|p|BV ≤1

L(u, p) = inf
u∈BV

M(u)

(19)
If (19) holds we are faced with a saddle point problem. A pair (ū, p̄) which
satisfies

L(ū, p̄) = sup
|p|BV ≤1

inf
u∈BV

L(u, p) = inf
u∈BV

sup
|p|BV ≤1

L(u, p) (20)

is a saddle point. In the next lemma we show the existence of a saddle point.
Moreover, the u-part of a saddle point is a minimizer of M(u), and vice versa:

Theorem 3.3. Let f ∈ L2, λ > 0, then (19) holds and a saddle point (ū, p̄)
with (20) exists. For any saddle point (ū, p̄), ū is a minimizer of M(u), and for
any minimizer ū of M(u) a p̄ exists such that (ū, p̄) is a saddle point.
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Proof. If (ū, p̄) is a saddle point, then by definition ū is a minimizer of M(u).
On the other hand, if a saddle point exists, then

max
|p|BV ≤1

G(p) = min
u∈BV

M(u),

and any minimizer ū of M(ū) = max|p|BV ≤1 G(p). For such a ū we find a p̄ such
that

M(ū) = L(ū, p̄)

hence (ū, p̄) is a saddle point.
We have to show the existence of a saddle point. We use the theorem in [7,

Prop. 2.1, 2.2] (see also Remark 2.1 there). Let us define L(u, p) as in (15) on
the space L2(Ω): L(u, p) : L2

0(Ω) × L2
0(Ω) → R ∪ {∞}, where L2

0(Ω) = L2(Ω)
if Ω = Rn and L2

0(Ω) = {p ∈ L2(Ω) | ∫
Ω

p(x)dx = 0} for the case Ω being
bounded. (According to the remark after (11) we can assume the normalization
condition

∫
Ω

u(x)dx = 0). The saddle point problem (20) can then be rewritten

sup
p∈B

inf
u∈A

L(u, p) = inf
u∈A

sup
p∈B

L(u, p),

with B = {p ∈ BV | |p|BV ≤ 1} and A = BV . Both A,B are closed, convex and
nonempty sets. Moreover L : A×B is obviously convex in u and concave in p (in
fact, it is affine in p). We additionally need that L(u, p) is upper semicontinuous
in p and lower semicontinous in u. This latter simply follows from the lower
semicontinuity of |u|BV and the continuous embedding of BV → L2 [1]. Since
L(u, p) is affine in p it is continuous and in particular upper semicontinuous.
Moreover B is bounded in L2 by the Poincaré-inequality [1]. According to [7]
have to show the following coercivity condition:

∃p0∈B : lim
u∈A,‖u‖L2→∞

L(u, p0) = ∞. (21)

But we can simply take p0 = 0, with L(u, p0) = |u|BV . Again by the Poincaré-
inequality and the normalization condition we have |u|BV ≥ C‖u‖L2 for some
constant C. This implies the coercivity (21) and using the results in [7] also the
existence of a saddle point.

The previous theorem also proves the existence of a minimizer for the func-
tional (11). Moreover the formulation as a saddle point problem is very useful,
as it automatically give a lower bound G(p) for the functional. In the next the-
orem we state the optimality conditions for a saddle point in terms of extremal
pairs, similar to the optimality conditions for the ROF-model in Theorem 2.2:

Theorem 3.4. (ū, p̄) is a saddle point for L(u, p) if and only if it satisfies the
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following conditions

|ū|BV = λ

∫

Ω

ū(x)p̄(x)dx (22)

‖f − ū‖∗ =
∫

Ω

(f(x)− ū(x))p̄(x)dx (23)

‖p̄‖∗ ≤ 1
λ

(24)

|p̄|BV ≤ 1. (25)

Proof. According to the definition, for a saddle point (ū, p̄), |p̄|BV < 1, ‖p̄‖∗ ≤ 1
λ

has to hold together with

G(p̄) = L(ū, p̄) = M(ū).

The second equation L(u, p) = M(u) is equivalent to

p̄ = argmax
|p|BV ≤1

∫

Ω

(f(x)− ū(x))p(x)dx,

which means that (f − ū, p̄) are an extremal pair. By (8) this is equivalent
to (23) and (25). The first equation G(p̄) = L(ū, p̄) is equivalent to (22) and
(24).

Theorem 3.4 can be rephrased in terms of extremal pairs:

Corollary 3.5. ū is a minimizer of M(u) if a p̄ exists such that both (p̄, f − ū)
and (ū, p̄) are extremal pairs.

This shows that the optimality conditions are very similar to the ROF-case.
For the latter (ū, f−ū) has to be an extremal pair. For the Meyer-decomposition,
ū, and the texture f − ū are not directly coupled, but by an additional function
p̄.

Theorem 3.4 allows us to conclude certain properties of the optimal decom-
position. Some of these were already investigated in [11]. We will deal with the
question when the decomposition f = u + v is trivial:

Definition 3.6. We say f = u + v is a trivial decomposition if either u = 0 or
v = 0.

The following theorem gives an answer, when a Meyer-decomposition is triv-
ial.

Theorem 3.7. Let f ∈ L2, f 6= 0, λ > 0, and let p̄ be a maximizer of the
functional G(p), i.e.

p̄ = argmax
‖p‖∗≤ 1

λ ,|p|BV ≤1

λ

∫

Ω

p(x)f(x)dx.

If ‖p̄‖∗ < 1
λ then the Meyer-decomposition is trivial with u = 0. If |p̄|BV < 1

then the Meyer-decomposition is trivial with v = 0.
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Proof. The optimality condition (22) can only hold if ‖p̄‖∗ = 1
λ or ū = 0, this

proves the first assertion. If |p̄|BV < 1 and f − ū 6= 0 we define q := p̄
|p̄|BV

,
which satisfies |q|BV = 1. Form (23) we can conclude that

∫

Ω

(f(x)− ū(x))q(x)dx > ‖f − ū‖∗,

which contradicts the definition of the G-norm (6). Hence the texture part has
to vanish: f − ū = 0.

This shows that the only interesting case occurs when both |p|BV = 1 and
‖p‖∗ = 1

λ are satisfied for the dual problem.
Theorem 3.7 is an extension of some results proven in [11]. There the authors

show that for Ω = Rn and λ < 4π the Meyer-decomposition is trivial with
u = 0. This can be easily deduced form Theorem 3.7 and the embedding (10).
In fact, |p|BV ≤ 1 implies that ‖p‖∗ ≤ C, where C is the embedding constant
of BV → G. For Ω = Rn this constant is 1

4π . Hence, if 1
λ > C, then |p|∗ = 1

λ
can never hold and the decomposition is trivial. In [11] the author also find a
criteria when a trivial decomposition with v = 0 occurs. This is the case for
so-called plain images and λ sufficiently large. Let us give the definition of a
plain image according to [11]:

Definition 3.8. A function f ∈ BV is a plain image if a function g exists such
that ∫

Ω

f(x)g(x)dx = |f |BV and ‖g‖∗ = 1 (26)

The notion of plain images is useful, because for them the BV -norm can be
expressed via the ‖.‖∗-norm. For a plain image f we have from (7) and (26)

|f |BV = sup
‖g‖∗≤1

∫

Ω

f(x)g(x)dx.

Note that this equation is not true for an arbitrary f since BV is not a reflexive
Banach space.

The observation of Haddard and Meyer is that for plain images f with g
as in (26) and λ > |g|BV the decomposition is trivial with v = 0. Again this
can be easily proven by Theorem 3.7. Taking p = g

|g|BV
gives an element with

|p|BV = 1 and ‖p‖∗ = 1
|g|BV

≤ 1
λ , but by (26) we get

G(p) = λ

∫

Ω

f(x)p(x)dx = λ
|f |BV

|g|BV
≥ |f |BV = M(f).

Since G(p) is always smaller than M(u) this means that M(f) is the minimum
value of (11), yielding u = f , v = 0.

Finally, we state the optimality conditions in Euler-Lagrange form.
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Corollary 3.9. Let u be a minimizer of the functional (11), which is nontrivial
(i.e. u 6= 0 and u 6= f). Then a p ∈ BV , p 6= 0 and a µ ∈ R exists with

− 1
λ
∇.

∇u

|∇u| = p (27)

−µ∇.
∇p

|∇p| = f − u (28)

|p|BV = 1 (29)
µ = ‖f − u‖∗ (30)

‖p‖∗ =
1
λ

. (31)

On the other hand, if these conditions hold for (u, p) and a µ then u is a mini-
mizer of (11).

Proof. According to [14] the partial differential equations (27), (28) are equiva-
lent to the statement that (u, p) and (p, f−u) are extremal pairs. The assertion
follows from Theorem 3.4.

Note that the last two conditions (30),(31) are not really necessary, but are
a consequence of (27) and (28). We included them, because for our numerical
approximation of (27) and (28) they do not follow from these equations.

The optimality conditions have a very interesting scaling behavior. We can
eliminate the parameter λ in (27) and (28) by an appropriate scaling: Define
ũ = 1

µu, p̃ = λp, then the equations can be transformed to

−∇.
∇ũ

|∇ũ| = p̃ (32)

−∇.
∇p̃

|∇p̃| =
1
µ

f − ũ, (33)

where (29) is now replaced by
|p̃|BV = λ (34)

and (31) by |p|∗ = 1.
The form of (32) and (33) indicates that the important parameter for the

Meyer-decomposition is not λ but µ. In fact, starting from these equations we
can consider µ as the tuning parameter and λ as a derived parameter. If µ is
selected and a solution to (32) and (33) is found, then λ can be computed by
(34). In this way we arrive with an one-parameter model, but with µ instead
of λ as a regularization parameter. From the form of the optimality condition
it therefore seems more natural to choose µ as tuning parameter instead of λ.
This can also be seem by a reformulation of the Meyer-decomposition in terms
of a constraint problem:

This constraint problem is very similar to (11) and is defined the following
way (compare [23]): Find u such that

|u|BV → min subject to ‖f − u‖∗ ≤ µ.

12



It is clear, that the minimum is either attained at the boundary of the con-
straint set ‖f − u‖∗ = µ or in its interior, in which case the minimum u is 0
and the decomposition is trivial. If the minimum is attained at the boundary
then we can use a Lagrange multiplier and we end up with an unconstrained
optimization problem (11), where λ is the Lagrange multiplier. This observation
indicates again that λ should be considered a derived parameter instead of the
regularization parameter.

Summing up we can formulate a sketch of our algorithm for computing a
decomposition:

Algorithm:

1. Given f ∈ L2(Ω), select µ > 0 as regularization parameter

2. Solve (32) and (33) for ũ and p̃

3. Compute the solution u = µũ, and the parameter λ = |p̃|BV .

The main computation is of course step 2, solving the optimality conditions. In
the next section we discuss the numerical aspects of these equations.

For the sake of completeness let us also state the optimality condition in an
alternative form: In the equations (32) and (33) we can eliminate p, which gives
a nonlinear fourth order equation for u:

∇.
∇∇. ∇ũ

|∇ũ|
|∇∇. ∇ũ

|∇ũ| |
=

1
µ

f − ũ.

Although this represents an equation only in u it seems to be quite difficult to
deal with from a computational point of view. For the numerics we will stick to
the (u, p) formulation of the problem.

Let us compare the optimality conditions above with those for the func-
tional (14). In [4] the authors solve the minimization problem by a projection
algorithm: u, v is defined by

ū = f − v̄ − P 1
2λ

(f − v̄) (35)

v̄ = Pµ(f − ū), (36)

where Pλ denotes the projection onto the set {z ∈ L2 | ‖z‖∗ ≤ λ}. It is well-
known [6] that this projection is another way of finding the ROF minimizer:

ū = argmin
1
2λ
‖f − u‖L2 + |∇u| ⇔ ū = f − Pλ(f).

We may rewrite (35), (36) in a more convenient form using ROF-functionals.
By the previous identity they are equivalent to

ū = argmin
u

λ‖f − v̄ − u‖2L2 + |u|BV

w̄ = argmin
w

1
2µ
‖f − ū− w‖2L2 + |∇w|

v̄ = f − ū− w̄.

13



The optimality conditions for these equations are

− 1
2λ
∇.

∇u

|∇u| + u + v = f

u− µ∇.
∇w

|∇w| + w = f

u + v + w = f

Eliminating v in the first equation and a scaling ũ := 1
µu, w̃ = 2λw leads to

−∇.
∇ũ

|∇ũ| − w̃ = 0

ũ−∇.
∇w̃

|∇w̃| +
1

2λµ
w =

1
µ

f.

It was shown in [4] that for λ →∞ the solution of (14) approximate the solutions
of (11). Now this also can immediately be seen the optimality conditions, since
for λ →∞ the Euler-Lagrange equations coincide. The role of the dual variable
p is precisely the role of the ’noise’ w = f − u − v in the Aujol-Aubert-Blanc-
F’errand-Chambolle method.

4 Numerical Algorithms

In the following we study the nonlinear saddle point from a numerical point of
view with the focus on the optimality conditions in Euler-Lagrange form. Let us
define the second order differential operator which is central to Euler-Lagrange
equations for BV-related functionals:

A(u) := ∇.
1

|∇u|∇.

To avoid the singularity at |∇u| = 0, in numerical computations this operator
is usually approximated by the ε-regularization

Aε(u) := ∇.
1√

|∇u|2 + ε
∇. (37)

Using this approximation the equations (32), (33) can be written as

Lε(u, p)
(

p
u

)
:=

( −Aε(p) I
−I −Aε(u)

)(
p
u

)
=

( 1
µf

0

)
.

Note that the diagonal parts of Lε are symmetric positive semidefinite operators
which makes Lε in total an antisymmetric matrix. By a different choice of
variables we can easily transform the system into a symmetric but indefinite
form. Using q := −p as dual variable gives
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L̃ε(u, q)
(

q
u

)
:=

( Aε(q) I
I −Aε(u)

)(
q
u

)
=

( 1
µf

0

)
. (38)

For a simplified case we may look at the eigenvalues of L̃ε: Assume that
Aε(u) = Aε(q), then from the equation for the eigenvectors it follows that the
eigenvalues of L̃ε are symmetric around the origin, and the eigenvalues are the
same as that of Aε(u), but one taken with a positive sign and one taken with
a negative sign. This shows some of the difficulties for the numerical computa-
tions: Although the matrix −Aε(u) is positive semidefinite its eigenvalues might
be very small, since in general there is no lower bound on

√
|∇u|2 + ε

−1
. This

makes the equation difficult for convergence analysis and also for computation.
In particular, the usual analysis for such saddle point problem requires some
sort of ellipticity (the LBB-condition [5]) such as (Aε(q)q, q) ≥ C‖q‖2. How-
ever, such a condition cannot hold, since (Aε(q)q, q) ∼ |q|BV . This indicates
that a standard convergence analysis cannot be used. We leave a rigorous con-
vergence analysis of our numerical schemes for future work and only examine
convergence numerically.

As we have already pointed out, we consider µ the tuning parameter and
not λ. After selecting µ the core of the computation is to solve the discretized
nonlinear indefinite problem (38). Of course, there are many possibilities to do
this, either by a direct or an iterative solver. The matrix in (38) is a sparse
one, hence for iterative solvers the matrix L̃ does not have to be stored, if only
matrix-vector multiplications are used. This is a big advantage especially for
large images.

Let us look at some algorithms for solving (38). The simplest one is a
Richardson iteration: Denote by r the combined vector r = (u, p)T , and g :=
(µ−1f, 0)T then it is defined as

rn+1 = rn + τ
(
L̃h(rn)rn − g

)
,

with τ > 0. It turns out, that for practical purposes this method is much to
slow and not very useful, and does not converge when τ is too large.

A similar variant is the Uzawa-algorithm [2]. Here un+1 is computed by
solving the second line in equation (38) and then it is used for the computation
of the dual variable qn+1.

−Aε(un+1)un+1 = −qn

qn+1 = qn + τ
(Aε(qn)qn + un+1 − µ−1f

)
.

Still, this requires the solution of a nonlinear problem for un+1, which is not easy.
In this iteration τ > 0 is a stepsize parameter, which has to be sufficiently small.
Unfortunately, the usual convergence theory (see e.g. [7]) does not apply for this
iteration. The main obstacle is again the lack of strict positive definiteness of A.
In our numerical computations we observed that the Uzawa iteration does not
converge, or requires unreasonable small stepsizes. A main obstacle is that the
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matrix −Aε(un+1) is not strictly positive definite, hence the equation for un+1 is
an almost singular problem. If we compare this equation with the corresponding
Euler-Lagrange equation for the ROF problem we see that in the latter a matrix
of the form −Aε(un+1) + I has to be inverted, which is not singular due to the
added identity matrix. Hence, it seems reasonable to reformulate the Uzawa-
iteration into a form with a similar matrix. This can be done by adding the
first line in (38) to the second.

As a result we obtain the so called the augmented Lagrangian method [9,
12, 16]:

−Aε(un+1)un+1 + un+1 = −qn −Aε(qn) + µ−1f
qn+1 = qn + τ

(Aε(qn)qn + un+1 − µ−1f
)
.

(39)

This method looks very appealing, since the first equation is equivalent to an
ROF-minimization

un+1 = argminu∈BV

1
2
‖(−qn −Aε(qn) + µ−1f)− u‖2L2 + |u|BV ,

for which standard methods can be used. By definition of (39) we need to solve
a nonlinear equation in each step. From a computational point of view this is
too expensive, instead we propose to use just one step of solving for un+1. This
leads to the following iteration, where we only have to solve a linear system:

−Aε(un)un+1 + un+1 = −qn −Aε(qn) + µ−1f (40)
qn+1 = qn + τ

(Aε(qn)qn + un+1 − µ−1f
)
. (41)

We can also improve (41) which is similar to a steepest descent method for
an ROF-minimization. Such iterations usually have severe restrictions on the
stepsize τ . If we use an implicit method instead we can expect larger stepsize for
the cost of solving a linear system. Putting the term involving Aε(qn)qn on the
left hand side and replacing qn by qn+1 in (41) we get the following iteration:

−Aε(un)un+1 + un+1 = −qn −Aε(qn) + µ−1f
−τAε(qn)qn+1 + qn+1 = qn + τ

(
un+1 − µ−1f

)
.

(42)

This iteration is similar to two implicit Euler steps for an minimization of (1).
In our numerical computations we observed that the additional computation of
a linear equation in (42) gives a faster convergence than (41).

Finally, we can try to solve the whole equation (38) by a fixed point iteration.
For rn := (un, pn) we compute the next iterate rn+1 by solving the indefinite
linear problem

L̃ε(rn)rn+1 = (µ−1f, 0). (43)

The main effort in this iteration is the solution of an linear symmetric indefinite
system. Below we will study some algorithm for the linear problem.

Let us now compare the performance of the two inexact augmented la-
grangian methods (40)-(41) and (42) with the fixed point iteration (43). In
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Figure 1: Residual µ = 0.1 Figure 2: Residual µ = 1

Figure 1 and Figure 2 we show the evolution of the relative residual

resn :=
‖L̃ε(qn, un)− (µ−1f, 0)‖
‖L̃ε(q0, u0)− (µ1f, 0)‖

over the iteration index on a logarithmic scale. For both Figures we choose f the
Barbara image with pixel size 128 × 128, ε = 10−4 in (37) and an initial guess
u0 = q0 = 0. The dashed line represents the iteration (40)-(41) with τ = 0.01,
the dashed-dotted line (42) with τ = 0.1 and the full line corresponds to the
fixed point iteration (43). Figure 1 shows the result for the parameter choice
µ = 0.1 and Figure 2 for µ = 1. It can be seen that the first inexact augmented
lagrangian iteration (40)-(41) shows very bad convergence result. However, the
second augmented lagrangian variant (42) is almost similar to the fixed point
method. However, one fixed-point iteration takes about four times as long as
one combined step in (42), which makes this latter method the most efficient
one in this case.

Let us now consider the linear indefinite problem for solving one step in
the iteration (43). This equation can either been solved directly or by iterative
methods. For linear indefinite problems a range of iterative solver have been
proposed. The benefit of iterative solver is that the matrix L̃ε does not have
to be computed and stored, but only matrix-vector multiplication have to be
implemented. On the other hand, storing the matrix does not require much
resources, since all the matrices in Lε are sparse.

The most common iterative procedure for positive definite sparse matrices
is the conjugate gradient (CG) method, but since problem (43) is indefinite this
method cannot be used in our case. Instead, a couple of generalizations of the
CG iteration are available: We consider the Minimal Residual (MINRES), the
GMRES method the quasi minimal residual (QMR) and the conjugate gradient
method for the normal equation (LSQR). We used these iterations as they are
implemented in MATLAB (Version 6.5) and compare the computation time
with MATLAB’s direct solver for sparse matrices [10]. Our observation is that
the iterative solvers cannot compete with MATLAB’s direct solver.
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Figure 3: Residual-linear Figure 4: Residual-linear

Method res1000 Ex. 1 Time Ex 1 res1000 Ex. 2 Time Ex 2
direct < 10−8 0.45 s < 10−8 0.41 s

MINRES 0.991 6.7s 0.05 6.9s
GMRES 0.964 472.8s 0.05 425.8s
LSQR 0.999 14.7s 0.25 14.5s
QMR 0.991 13.6 s 0.05 13.5 s

Table 1: Residual and computation time for iterative and direct method

The computations were done with the same picture as for the previous re-
sults with the same parameter ε = 10−4, µ = 0.1 but on a smaller 64× 64 grid.
We performed two experiments: for the first one we tried to solve (43) for rn+1,
where rn was set to 0, which makes Aε the Laplace-operator. The results of the
relative residual of (43) versus the iteration number is shown in Figure 3. The
full line corresponds to the MINRES-iteration, the dashed one to the GMRES,
the dashed-dotted one to the LSQR and the dotted one to the QMR iteration.
In Figure 4 we set rn = (un, qn), where un, qn were the previously computed
solution of equation (38). In this case the matrix Aε corresponds to a second
order differential operator with highly discontinuous coefficients. This makes
some difficulties for the iterative solvers, as in Figure 4 the convergence is much
slower than in Figure 3. Moreover, it can be seen from the results that there
is not much difference between the MINRES, the QMR and the GMRES itera-
tion. Only in Figure 4 the GMRES-method shows a slightly faster convergence
whereas the LSQR-method is all cases the worst method.

Table 1 shows a comparison of the relative residual after 1000 iterations and
the total computation time needed on a Pentium 4/2.2 GHz PC. The second
and third row corresponds to the choice rn = 0 as in Figure 3 and the fourth
and fifth row to choice of rn as in Figure 4. It is obvious that the iterative
solvers cannot compete with the direct one. Amongst the iterative solver the
MINRES is the best one in terms of computation time. Although the GMRES
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has a smaller residual for the second example its computation is about 60 times
slower than the MINRES method. The GMRES is therefore not suited for this
problem, because it is too slow.

We come to the conclusion that iterative solver are not suited for the linear
problem. However, we should point out that we do not used any preconditioning,
which surely can improve convergence. On the other hand, it is not yet clear
how to construct good preconditioners for (43).

Comparing the nonlinear iterations (40)-(43) we prefer to use the augmented
Lagrangian (42), over the other methods.

We end this section with some computed decompositions for different param-
eter µ. In Figure 5 we computed the cartoon part u for the Meyer-decomposition
(11) and the ROF-decomposition (1) on the right for different choices of µ. The
values were µ = 1, 0.5, 0.01, 0.05 from top to bottom. The regularization pa-
rameter λ for the ROF-method was as λ = 1

2µ . We used the same scaling trick
as before also for the the ROF-method, such that the Euler-Lagrange equations
for (1) have the form −∇. ∇u

|∇u| + u = µ−1f . By Theorem 2.2, [14] and (30)
both methods are comparable with this parameter setting in the sense that the
residual f − u has the same G-norm in both cases. It can be seen from the
pictures that the results quite similar. The Meyer-decomposition seems to give
a more precise texture removal as can be seen on parts of the table cloth and
the scarf. It also does not suffer from staircasing as the ROF-model, which has
problems to recover shaded structures.

5 Conclusion

We have formulated the minimization problem (11) as a saddle point problem,
which allows to derive the Euler-Lagrange equations without introducing an
additional approximation such as in (12), (13) or (14). Moreover, it leads to a
dual problem, which is interesting in its own. Although the dual problem (18)
appears to be simpler, we did not make use of it for the numerical computa-
tions. The difficulty herein lies in the computation of the norm ‖p‖∗. Still, it
might be interesting to consider a numerical approach based solely on the dual
problem. In contrast to alternative approaches we considered a one-parameter
model, where we choose µ as the tuning parameter and not λ. In our opin-
ion, this is more natural and it is similar to the regularization parameter for
the ROF-method. Finally, we discussed some numerical procedures for solving
the optimality conditions. Our favorite method is an inexact augmented La-
grangian method (42), which shows good numerical convergence. Of course, a
convergence proof of this scheme is desirable and will be considered in future
work. For the linear problem the construction of appropriate preconditions for
iterative method would be necessary to make iterative solvers competitive.
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Figure 5: Solution u for Meyer (left) and ROF (right) for µ = 1, 0.5, 0.01, 0.05
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