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Electrowetting has recently been explored as a mechanism for moving small amounts

of fluid in confined spaces. We propose a diffuse interface model for droplet motion,

due to electrowetting, in Hele-Shaw geometry. In the limit of small interface thickness,

asymptotic analysis shows the model is equivalent to Hele-Shaw flow with a voltage-

modified Young-Laplace boundary condition on the free surface. We show that details of

the contact angle significantly affect the timescale of motion in the model. We measure

receding and advancing contact angles in the experiments and derive their influences

through a reduced order model. These measurements suggest a range of timescales in the

Hele-Shaw model which include those observed in the experiment. The shape dynamics

and topology changes in the model agree well with the experiment, down to the length

scale of the diffuse interface thickness.

1. Introduction

The dominance of capillarity as an actuation mechanism in the micro-scale has received

serious attention. Darhuber & Troian (2005) recently reviewed various microfluidic actu-
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ators by manipulation of surface tension. Due to the ease of electronic control and low

power consumption, electrowetting has become a popular mechanism for microfluidic

actuations. Lippman (1875) first studied electrocapillary in the context of a mercury-

electrolyte interface. The electric double layer is treated as a parallel plate capacitor,

γsl (V ) = γsl (0)− 1
2
cV 2, (1.1)

where c is the capacitance per area of the electric double layer, and V is the voltage

across the double layer. The potential energy stored in the capacitor is expended toward

lowering the surface energy. Kang (2002) calculated the electro-hydrodynamic forces of

a conducting liquid wedge on a perfect dielectric, and recovered equation (1.1).

The amount of applicable voltage across the liquid-metal interface without current

leakage is limited. Berge (1993) first introduced a thick layer of dielectric (∼ 10 µm)

between the fluid-metal interface and observed electrowetting behavior for the electrolyte

solution. For such configuration, c in (1.1) represents the capacitance per area of the

dielectric. The dielectric prevents the current leakage but incurs a significant voltage

penalty (> 200 V ). Depositing a thin dielectric film (∼ 0.1 µm) using micro-fabrication

techniques common in micro electromechanical systems (MEMS) decreases the driving

voltage (see Moon, Cho, Garrel & Kim 2002), making electrowetting on dielectric a

practical mechanism of micro-scale droplet manipulation.

Experimental studies have revealed saturation of the contact angle when the voltage

is raised above a critical level. The cause of the saturation is still under considerable de-

bate. Peykov, Quinn & Ralston (2000) modelled saturation when the liquid-solid surface

energy reaches zero. Verheijen & Prins (1999) proposed charge trapping in the dielectric

layer as a saturation mechanism. Seyrat & Hayes (2001) suggested the dielectric material

defects as the cause of saturation. Vallet, Vallade & Berge (1999) observed ejection of fine

droplets and luminescence due to air ionization. The loss of charge due to gas ionization
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Figure 1. Illustration of the electrowetting device considered.

is proposed as the cause of saturation. Despite the saturation of contact angle, engineers

have successfully developed a wide range of electrocapillary devices. Lee & Kim (1998)

demonstrated the first working micro device driven by electrically controlled surface ten-

sion with mercury droplet in water. Kim (2000) and Lee, Moon, Fowler, Schoellhammer

& Kim (2001, 2002b) subsequently reported handling of water in air. Cho, Moon, Fowler,

Fan & Kim (2001), and Pollack, Fair & Shenderov (2000) demonstrated cutting, merging,

and transport of droplets by electrowetting in Hele-Shaw cell geometry. Hayes & Feenstra

(2003) utilized the same principle to produce a video speed display device.

The electrowetting device we consider is shown in figure 1. It consists of a fluid droplet

constrained between two solid substrates separated by a distance, b. The bottom substrate

is patterned with electrodes and covered with a dielectric layer. Both substrates are coated

with a thin layer of fluoropolymer to increase liquid-solid surface energy. For simplicity,

we neglect the thin fluoropolymer coating on the top substrate. The aspect ratio of the

droplet, α = b/R, can be controlled by droplet volume and substrate separation. Here we

consider experiments where α ≤ 0.1 with scaled Reynolds number Re∗ = Re∗α2 ∼ 0.01.

For a constrained droplet of radius R much greater than the droplet height b, the

geometry approximates a Hele-Shaw cell (see Hele-Shaw 1898) for which one can use
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lubrication theory to provide a simple model. Taylor & Saffman (1958) and Chouke, van

Meurs & van der Poel (1959) studied viscous fingering in a Hele-Shaw cell as a model

problem for immiscible fluid displacement in a porous medium. Experiments of a less

viscous fluid displacing a more viscous fluid initially showed the development of multiple

fingers. Over the long time scale, one finger gradually grows to approximately half of

the channel width at the expense of the other fingers. On the contrary, the theoretical

model allows the development of fingers with a continuous spectrum of width. In ad-

dition, stability analysis shows the observed stable fingers are unstable to infinitesimal

disturbances. This paradoxical result sparked 50 years of investigations into the fluid

dynamics in a Hele-Shaw cell. Advances in this field are well reviewed in literature (see

Saffman 1986; Homsy 1987; Bensimon, Kadanoff, Liang & Shraiman 1986; Howison 1992;

Tanveer 2000). One problem that has been extensively studied is the fluid dynamics of a

bubble inside a Hele-Shaw cell in the absence of electrowetting. Taylor & Saffman (1959)

considered a bubble with zero surface tension and found two families of bubble shapes

parameterized by the bubble velocity and area. Tanveer (1986, 1987) and Tanveer &

Saffman (1987) solved the equations including small surface tension and found multi-

ple branches of bubble shapes parameterized by relative droplet size, aspect ratio, and

capillary number.

Despite the extensive theoretical investigation, experimental validation of the bubble

shapes and velocities has been difficult due to the sensitivity to the conditions at the

bubble interface. Maxworthy (1986) experimentally studied buoyancy driven bubbles and

showed a dazzling array of bubble interactions at high inclination angle. He also observed

slight discrepancies of velocity with the theory of Taylor & Saffman (1959) and attributed

it to the additional viscous dissipation in the dynamic meniscus. For pressure driven fluid

in a horizontal cell, Kopfsill & Homsy (1988) observed a variety of unusual bubble shapes.
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In addition, they found nearly circular bubbles travelling at a velocity nearly an order of

magnitude slower than the theoretical prediction. Tanveer & Saffman (1989) qualitatively

attributed the disagreement to perturbation of boundary conditions due to contact angle

hysteresis. Park, Maruvada & Yoon (1994) suggests the velocity disagreement and the

unusual shapes may be due to surface-active contaminants. In these studies, the pressure

jump at the free surface was determined from balancing surface tension against the local

hydrodynamic pressure that is implicit in the fluid dynamics problem. Electrowetting

provides an unique way to directly vary the pressure on the free boundary. Knowledge of

the electrowetting droplet may provide a direct means to investigate the correct boundary

condition for the multiphase fluid dynamics in a Hele-Shaw cell.

Due to the intense interest in the Hele-Shaw problems, the last ten years has also seen

a development of numerical methods for Hele-Shaw problem. The boundary integral

method developed by Hou, Lowengrub & Shelly (1994) has been quite successful in

simulating the long time evolution of free boundary fluid problems in a Hele-Shaw cell.

However, simulating droplets that undergo topological changes remains a complicated,

if not ad hoc, process for methods based on sharp interfaces. Diffuse interface models

provide alternative descriptions by defining a phase field variable that assumes a distinct

constant value in each bulk phase. The material interface is considered as a region of

finite width in which the phase field variable varies rapidly but smoothly from one phase

value to another. Such diffuse interface methods naturally handle topology changes. As

we demonstrate in this paper, an energy construction provides a convenient framework

in which to incorporate a spatially varying surface energy due to electrowetting. Matched

asymptotic expansions may be used to demonstrate the equivalence between the diffuse

interface dynamics and the sharp interface dynamics in the Hele-Shaw cell.

In this paper we develop a diffuse interface framework for the study of Hele-Shaw cell
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droplets that undergo topological changes by electrowetting. Using level set methods,

Walker & Shapiro (2004) considered a similar problem with the addition of inertia. We

consider a flow dominated by viscosity inside the droplet. The related work of Lee, Lowen-

grub & Goodman (2002a) considered a diffuse interface in the absence of electrowetting

in a Hele-Shaw cell under the influence of gravity. They used a diffuse interface model

for the chemical composition, coupled to a classical fluid dynamic equation. Our model

describes both the fluid dynamics and the interfacial dynamics through a nonlinear Cahn-

Hilliard equation of one phase field variable. Our approach expands on the work done by

Glasner (2003) and is closely related to that of Kohn & Otto (1997) and Otto (1998).

Section 2 describes the experimental setup of droplet manipulation using electrowet-

ting on dielectric. Section 3 briefly reviews the sharp interface description of the fluid

dynamics of electrowetting in Hele-Shaw cell. We also discuss briefly the role of the con-

tact line in the context of this model. In §4, we describe the diffuse interface model of the

problem. Equivalence with the sharp interface model will be made in §5 through matched

asymptotic expansions. Comparisons will be made in §6 between the experimental data

and the numerical results. Finally, we comment on the influence of various experimental

conditions on the dynamic timescale in §7, followed by conclusions.

2. Experimental setup

2.1. Procedure

The fabrication of electrowetting devices is well documented in previous studies (see

Cho, Moon & Kim 2003). Unlike the previous work, we enlarge the device geometry by a

factor of 10 and use a more viscous fluid such as glycerine to maintain the same Reynolds

number as in the smaller devices. Such modification allows us to more carefully maintain

the substrate separation and to directly measure the contact angle. Our devices have
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material thickness
(
Å

)
dielectric constant

separation height (529± 2)× 104 n/a

silicon dioxide 4984 ± 78 3.8

fluoropolymer(bottom) 2458 ± 155 2.0

Table 1. Device dimensions and dielectric constants of electrowetting device.

electrodes of size 1 cm and are fabricated in the UCLA Nanolab. The 60% glycerine-water

mixture by volume is prepared with deionized water. The surface tension and viscosity of

the mixture are measured to be 0.02030 J m −2 and 66.97 dyne cm −1 respectively. The

relevant devices dimensions are summarized in table 1. The half height of the cell is an

order of magnitude smaller than the capillary length,
√

γ/ρg, preserving the dominance

of surface tension over the gravity. A droplet with aspect ratio of approximately 0.1 is

dispensed on top of an electrode in the bottom substrate. The top substrate then covers

the droplet, with two wafer pieces maintaining the substrate separation at ∼ 500µm (see

figure 1). The entire top substrate and the electrode below the droplet are grounded.

Application of an electrical potential on an electrode next to the droplet will draw the

droplet over to that electrode. The voltage level is cycled between 30 V DC and 70 V

DC. Images of the droplet motions are collected in experiments conducted at 50 V DC.

A camera is used to record the motion from above at 30 frames per second. Side profiles

of the droplet are recorded by a high speed camera (Vision Research Inc., Wayne, NJ) at

2000 frames per second. The images are processed by Adobe Photoshop r© and Matlab

r© for edge detection.

2.2. Observations

Three different droplet behaviors were observed. At low voltage, a slight contact angle

change is observed but the contact line remains pinned as shown in figure (2a) until a
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(a) (b) (c)

Figure 2. Behaviors of droplets under different voltage. (a) The droplet remains motionless

at low voltage level (30.23 V DC). (b) The droplet advances smoothly at 50.42 V DC. (c)

Irregularities of the advancing interface is observed at 80.0 V DC.

threshold voltage is reached. The threshold voltage to move a 60% glycerine-water droplet

is approximately 38 V DC. The free surface remains smooth for voltage up to 65 V DC

as shown in figure (2b). At higher voltage, we observed irregularities of the liquid-vapor

interface such as the one shown in figure (2c) with stick-slip interface motion. When

the voltage is ramped down, the motion of the droplet becomes much slower, suggesting

some charge trapping in the dielectric materials. Experiments repeated at 50 V DC

shows relatively constant droplet speed. Time indexed images of the droplet translation

and splitting are compared against the simulation results in figure 8 and figure 9 in

§6. For 60% glycerine liquid, the droplet moves across one electrode in approximately 3

seconds. We estimated a capillary number of Ca ≈ 10−3 using mean velocity.

To fully understand the problem we must also measure the effect of electrowetting on

contact angles in the cell. The evolution of the advancing meniscus is shown in figure

3. The thick dielectric layer on the bottom substrate causes significant contact angle

change on the bottom substrate due to electrowetting. The top substrate, which does

not have a thick dielectric layer, is unaffected by the applied voltage. Pinning of the
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time = 32.4 mstime = 15.7 mstime = 7.62 ms

time = 3.81 ms time = 1.90 ms time = 0.0 ms 

Figure 3. Advancing meniscus of a drop of 60% glycerine. The solid lines depict the top and

bottom substrates. V = 50.28 volts.

contact line is clearly observed along the top substrate. The hysteretic effect causes

the initially concave meniscus to quickly become convex. The contact angles appear to

converge toward a steady state value as shown in figure 4. However, the magnification

requirement prevents us from monitoring the evolution of the contact angles over a longer

timescale. The direct observation by the camera can only reveal the contact angles at two

points of the curvilinear interface. Along the interface, the capillary number varies with

the normal velocity of the interface. Therefore, we expect the dynamic contact angle to

vary along the interface. Better experimental techniques are required to characterize the

evolution of the dynamic contact angle on the entire interface.
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Figure 4. Evolution of the advancing and receding contact angles.
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Figure 5. Top down view of a droplet inside of a electrowetting device.

3. Sharp interface description

Here we review the classical model of Hele-Shaw fluid dynamics (see Taylor & Saffman

1959, 1958) and extend the model to include electrowetting. Consider a droplet in a Hele-

Shaw cell shown in figure 5 occupying a space [Ω × b], where b is the distance between

the substrates. The reduced Reynolds number, Re∗ = Re ∗ α2 is of the order O
(
10−2

)
.

This allows us to employ a lubrication approximation to reduce the momentum equation

to Darcy’s law coupled with a continuity equation,

U = − b2

12µ
∇P, (3.1)
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∇ ·U = 0, (3.2)

where U is the depth-averaged velocity, P is the pressure in the droplet or the bubble,

and µ is the viscosity. Equations (3.1) and (3.2) imply the pressure is harmonic, 4P = 0.

The interfacial velocity is the fluid velocity normal to the interface, Un ∼ ∇P |∂Ω ·

n̂. The boundary condition for normal stress depends on the interactions between the

different dominant forces in the meniscus region. Assuming pressure in the surrounding

fluid is zero,

P |∂Ω = γlv (Aκ0 + Bκ1) . (3.3)

κ0, defined as 1/r, is the horizontal curvature and κ1 is defined as 2/b. Different dynamics

and wetting conditions at the meniscus determine the actual curvatures of the droplet

through A and B. For a static droplet with 180 degrees contact angle, A = 1 and B = 1.

For a bubble in motion, Chouke et al. (1959) and Taylor & Saffman (1959) made the

assumptions that

A = 1, (3.4)

B = − cos θ0, (3.5)

where θ0 is the apparent contact angle measured from inside of the droplet or bubble. The

appropriateness of this boundary condition has been investigated in several studies. In a

study of long bubbles in capillary tubes filled with wetting fluids (θ0 = π), Bretherton

(1961) showed that B = 1 + βCa2/3, in agreement with (3.5) to the leading order.

In addition, he derived the value of β to be 3.8 and −1.13 for advancing and receding

menisci respectively. For Hele-Shaw bubbles surrounded by wetting fluids, Park & Homsy

(1984) and Reinelt (1987) confirmed the result of Bretherton (1961) and showed that

A = π/4 + O
(
Ca2/3

)
, which disagrees with (3.4). In absence of electrowetting, the cross

substrate curvature, Bκ1, does not affect the dynamics significantly, since it remains
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constant to the leading order. Therefore, the value of A has a significant effect on the

dynamic timescale.

When a voltage is applied across an electrode, V (x) = V χ (x), where χ (x) is a charac-

teristic function of the electrode, Ωw, it locally decreases the solid-liquid surface energy

inside the region Ωw

⋂
Ω

γw (V ) = γlv

(
− cos θ0 − cV 2

2γlv

)
, (3.6)

where γw (V ) is the difference between the liquid-solid and the solid-vapor surface energy.

In deriving (3.6), we assume the electrowetting does not affect the solid-vapor surface

energy. Most of the voltage drop occurs across the thick dielectric layer on the bottom

substrate, resulting a significant change in the surface energy. On the top substrate, the

surface energy remains unchanged. The total solid-liquid interfacial energy in the device

is

γdev = γlv

(
−2 cos θ0 − cV 2

2γlv

)
. (3.7)

Using Young’s equation, we relate the change in contact angle to the electrowetting

voltage,

cos θv = cos θ0 +
cV 2

2γlv
. (3.8)

We assume the voltage under consideration is below saturation so that equation (3.8)

is valid. The dominance of surface tension allows us to assume a circular profile for the

liquid-vapor interface. Substituting (3.8) into (3.7) gives

γdev = γlv (− cos θ0 − cos θv) = γlvbκw, (3.9)

where κw = (− cos θ0 − cos θv) /b is the curvature of the cross substrate interface in the

presence of electrowetting. The constant cos θ0 does not effect the dynamics, so we will

consider it to be zero. Substituting (3.8) for cos θv in κw shows B = −cV 2/4γlv.

For a droplet of volume v placed inside of a Hele-Shaw cell with plate spacing of b,
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the radius is R = (v/πb)1/2. We non-dimensionalize the Hele-Shaw equations by the

following scales:

r ∼ Rr̃, t ∼ 12µR

γlvα2
t̃, P ∼ γlv

R
P̃ , (x, y, z) ∼ (R, R, b) . (3.10)

Removing the˜gives the following equations in dimensionless variables:

4P = 0, (3.11)

U = −∇P, (3.12)

P |∂Ω = Aκ0 + Bκ1, (3.13)

Un = ∇P |∂Ω · n̂. (3.14)

In dimensionless terms, κ1 = 2/α reflects the ratio between liquid-vapor and solid-liquid

interfacial areas, and B = −cV 2/4γlv reflects the ratio of the associated surface energies.

Bκ1, dominates the pressure boundary condition of an electrowetting droplet due to the

small aspect ratio, α. Without the applied voltage, V = B = 0, the constant A = π/4

may be incorporated into the scaling. Therefore, the classical Hele-Shaw model has no

dimensionless parameters, meaning the relaxation of all Hele-Shaw droplets starting from

similar initial conditions can be collapsed to the same problem in dimensionless form.

The locally applied voltage induces convective motion toward Ωw and extends the

liquid-vapor interface. The surface tension acts concurrently to minimize the interface

area. This interaction introduces one dimensionless parameter to the classical Hele-Shaw

flow. We define the electrowetting number

ω = −Bκ1 =
cV 2

2αγlv
. (3.15)

as the relative measure between the electrowetting potential and the total energy of the

liquid-vapor interface.

Let us consider the effect of a force that causes a discontinuous change of the cross
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Figure 6. Illustration of electrowetting acting on a circular droplet and the details near the

boundary of electrode. Dashed lines depict the pressure contours.

substrate curvature and the pressure as shown in figure 6. The pressure on the droplet

boundary is equal to the change in the curvature, (P2 − P1) = −[Bκ1], and the pressure

field must satisfy the Laplace’s equation. Therefore, the pressure field depends only on

the polar angle from the contact line. In the neighborhood of such discontinuity, the

pressure and the velocity in the locally orthogonal coordinates, x, and y, are

P = − [Bκ1]
π

arctan
(y

x

)
+ P1, (3.16)

U = −∇P =
[Bκ1]

π

(
−yî + xĵ

)

x2 + y2
. (3.17)

Equation (3.17) shows that U ∼ [Bκ1]. Therefore, [Bκ1] dictates the convective timescale

of the electrowetting. Away from ∂Ωw where Bκ1 is relatively constant, the droplet

relaxes to minimize the liquid-vapor interface and Aκ0 dictates the relaxation timescale.

The dynamics of the droplet motion is determined by the relative magnitude between

the two timescales. Therefore, we will maintain the variables A and B throughout the

discussion.

In applying the electrowetting model (3.15) for [Bκ1], we assume the contact angles

are determined from a quasi-static balance between the surface energies and the electrical

potential. The presence of moving contact lines introduces deviations from the equilib-
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rium values. In §7, we will introduce the complication of contact line dynamics through

the local dependence of A and B on the dynamic contact angles.

4. Diffuse interface model

Diffuse interface (phase field) models have the advantage of automatically capturing

topological changes such as droplet splitting and merger. Here we extend Glasner’s (2003)

diffuse interface model to include electrowetting. The model begins with a description of

the surface energies in terms of a “phase” function ρ that describes the depth-average of

fluid density in a cell. Therefore ρ = 1 corresponds to fluid and ρ = 0 to vapor. Across

the material interface, ρ varies smoothly over a length scale ε.

The total energy is given by the functional

E (ρ) =
∫

Ω

A

γ

(
ε

2
|∇ρ|2 +

g (ρ)
ε

)
− ρωdx. (4.1)

The first two terms of the energy functional approximate the total liquid-vapor surface

energy
∫

∂Ω
γdS where ∂Ω is the curve describing the limiting sharp interface. An interface

between liquid and vapor is established through a competition between the interfacial

energy associated with |∇ρ|2 and the bulk free energy g (ρ) that has two equal minima

at ρl and ρv. To avoid the degeneracy in the resulting dynamic model (see equations 4.7-

4.8) and to maintain consistency with the desired sharp-interface limit, we choose ρl = 1

and ρv = ε. The final term ρω accounts for the wall energy (the difference between the

solid-liquid and solid-vapor surface energies) on the solid plates. The first two terms act

as line energies around the boundary of the droplet while the third term contributes the

area energy of the solid-liquid interfaces.

In equation (4.1), γ is a normalization parameter which we discuss below. A 1-D

equilibrium density profile can be obtained by solving the Euler-Lagrange equation of
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the leading order energy functional in terms of a scaled spatial coorcinate, z = x/ε,

(ρ0)zz − g′ (ρ0) = 0, (4.2)

which has some solution φ (z) independent of ε that approaches the two phases ρl, ρv as

z → ±∞. Integrating equation (4.2) once gives

ε

2
φ2

x =
g (φ)

ε
. (4.3)

Equation (4.3) implies equality between the first and second terms of the energy func-

tional so the total liquid-vapor interfacial energy can be written as

γ =
∫ ∞

−∞
(φ)2zdz = 2

∫ ∞

−∞
g (φ) dz. (4.4)

Equation (4.4) indicates the choice of g (φ) used to model the bulk free energy influ-

ences the amount of interfacial energy in the model. Hence this constant appears as a

normalization parameter in the first two terms of the energy functional (4.1).

Since there is no inertia in the physical system, the dynamics take the form of a

generalized gradient flow of the total energy, which can be equivalently characterized as

a balance between energy dissipation and the rate of free energy change,

D ≈
∫

R2
ρ|U|2 dxdy. (4.5)

Since ρ is conserved, ρt = −∇ · (ρU). Using this fact and equating the rate of energy

dissipation to the rate of energy change gives

∫

R2
ρ|U|2 dxdy = −

∫

R2
ρtδE dxdy = −

∫

R2
ρ∇ (δE) ·U dxdy. (4.6)

To make this true for an arbitrary velocity field U, it follows that U = −∇ (δE). Sub-

stituting the velocity back to the continuity gives the evolution of the fluid density,

ερt = ∇ · (ρ∇ (δE)) , (4.7)

δE =
A

γ

(−ε24ρ + g′ (ρ)
)− εω, (4.8)
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subject to boundary conditions that requires no surface energy and no flux at the domain

boundary,

∇ρ · n̂ = 0, (4.9)

ρ∇ (δE) · n̂ = 0. (4.10)

Equations (4.7-4.8) with ω = 0 constitute a fourth order Cahn-Hilliard equation with

a degenerate mobility term. By letting ω having spatial dependence, we introduce elec-

trowetting into the diffuse interface model.

5. Asymptotic analysis

Matched asymptotic expansions show the sharp interface limit of the constant- mobility

Cahn-Hilliard equation approximates the two-side Mullins-Sekerka problem (see Caginalp

& Fife 1988; Pego 1989). The recent work of Glasner (2003) showed the degenerate Cahn-

Hilliard equation approaches the one sided Hele-Shaw problem in the sharp interface

limit. Using a similar method, We show that the sharp interface limit of the modified

Cahn-Hilliard equation (4.7-4.8) recovers the Hele-Shaw problem with electrowetting

(3.11-3.14). The diffuse interface approximation allows us to enact topology changes

without artificial surgery of the contour. This is especially useful as electrowetting devices

are designed for the purpose of splitting, merging and mixing of droplets.

Using a local orthogonal coordinate system (z, s), where s denotes the distance along

∂Ω and z denotes signed distance to ∂Ω, r, scaled by 1/ε. The dynamic equation expressed

in the new coordinate is

ε2ρzrt + ε3 (ρsst + ρt) = (ρ (δE)z)z
+ ερ (δE)z 4r + ε2

[
ρ (δE)s4s + (ρ (δE)s)s

|∇s|2] ,

δE =
A

γ

(−ρzz − ερz4r − ε2
(
ρss|∇s|2 + ρs4s

)
+ g′ (ρ)

)− εω.
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The matching conditions are

ρ(0) (z) ∼ ρ(0) (±0) , z → ±∞,

ρ(1) (z) ∼ ρ(1) (±0) + ρ(0)
r (±0) z, z → ±∞,

ρ(2) (z) ∼ ρ(2) (±0) + ρ(1)
r (±0) z + ρ(0)

rr (±0) z2, z → ±∞.

Similar conditions can be derived for δE.

The O (1) inner expansion gives

(
ρ(0)

(
δE(0)

)
z

)
z

= 0, (5.1)

A

γ

(
g′

(
ρ(0)

)
− ρ(0)

zz

)
= δE(0). (5.2)

Equation (5.1) implies (δE)(0) = C (s, t). Equation (5.2) is the equation for the 1-D

steady state. The common tangent construction implies

δE(0) =
γ (g (ρl)− g (ρv))

A (ρl − ρv)
. (5.3)

The double well structure of g (ρ) implies (δE)(0) = 0. At leading order the energy is

expanded toward establishing a stable liquid-vapor interface.

The O (1) outer expansion of (4.7), (4.8) gives

∇ ·
(
ρ(0)∇g′

(
ρ(0)

))
= 0. (5.4)

The unique solution in the dense phase that satisfies no flux and matching conditions is

constant, ρ(0) = ρl. Thus on an O (1) scale no motion occurs.

The O (ε) inner expansion results

(
ρ(0)

(
δE(1)

)
z

)
z

= 0, (5.5)

A

γ

(
g′′

(
ρ(0)

)
− ∂2

∂z2

)
ρ(1) = δE(1) − A

γ
κ(0)ρ(0)

z + ω, (5.6)

where the leading order curvature in the horizontal plane, κ(0), is identified with −4r.

Apply matching boundary condition for ∆E(1) to equation (5.5) shows that ∆E(1) is
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independent of z. ρ(1) = ρ
(0)
z is the homogenous solution of (5.6). In the region of constant

ω, the solvability condition gives

ρl

(
δE(1)

)
=

Aκ(0)

γ

∫ ∞

−∞

(
ρ(0)

z

)2

dz − ωρl. (5.7)

The integral is equal to γ using (4.4). Assuming ρl = 1 and using (3.15) give

δE(1) =
(
Aκ(0) + Bκ1

)
. (5.8)

The surface energy term includes both curvatures of the interface. This is analogous to

the Laplace-Young condition of a liquid-vapor interface.

In regions where sharp variation of ω intersects the diffuse interface, the solvability

condition becomes

ρl

(
δE(1)

)
= Aκ(0) −

∫ ∞

−∞
ωρ(0)

z dz. (5.9)

The sharp surface energy variation is smoothly weighted by ρ
(0)
z , which is O (1) for a

phase function ρ that varies smoothly between 0 and 1 in the scaled coordinate.

To order ε, the outer equation in the dense phase must solve

4
(
δE(1)

)
= 0, (5.10)

with a no flux boundary condition in the far field, and a matching condition at the

interface described by (5.1).

The O
(
ε2

)
inner expansion reveals the front movement

U (0)ρ(0)
z =

(
ρ(0)

(
δE(2)

)
z

)
z
, (5.11)

where rt is identified as the leading order velocity U (0). Matching condition for δE(2)

gives us the relation for the normal interface velocity of droplets in Hele-Shaw cell,

U (0) = −
(
δE(1)

)
r
. (5.12)

Defining p̃ = δE(1), equations (5.8) (5.10) and (5.12) constitute the sharp interface
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Hele-Shaw flow with electrowetting,

4p̃ = 0,

p̃|∂Ω = Aκ(0) + Bκ1,

U (0) = − (p̃)r .

6. Numerical simulations and discussion

Numerical methods for solving the nonlinear Cahn-Hilliard equation is an active area of

research. Barrett, Blowey & Garcke (1999) proposed a finite element scheme to solve the

fourth order equation with degenerate mobility. In addition, the development of numerical

methods for solving thin film equations (see Zhornitskaya & Bertozzi 2000; Grun &

Rumpf 2000; Witelski & Bowen 2003) are also applicable to (4.7-4.8). We discretize the

equations by finite differencing in space with a semi-implicit timestep,

ε
ρn+1 − ρn

∆t
+

Aε2M

γ
∆2ρn+1 =

A

γ

[
ε2∇ · ((M − ρn)∇∆ρn) +∇ · (ρn∇g′ (ρn))

]−∇·(ρnεω) .

(6.1)

We use a simple polynomial g(ρ) = (ρ − ρv)2(ρ − ρl)2. The choice of g (ρ) imposes an

artificial value of the liquid-vapor surface energy, γ. Integrating (4.4) gives the normal-

izing parameter, γ = 0.2322, for the terms associated with the liquid-vapor interface.

All numerical results here are computed on a 256 by 128 mesh with ∆x = 1/30 and

ε = 0.0427.

A convexity splitting scheme is used where the scalar M is chosen large enough to

improve the numerical stability. We found M = max (ρ) serves this purpose. The equa-

tion can be solved efficiently through fast Fourier transform methods. Similar ideas were

also used to simulate coarsening in the Cahn-Hilliard equation (Vollmayr-Lee & Ruten-

berg 2003) and surface diffusion (Smereka 2003). The diffuse interface model imposes a
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Figure 7. Aspect ratio of the relaxing elliptic droplet calculated by diffuse interface model

(4) with ε = 0.0427 and boundary integral method, (◦).

constraint on the spatial resolution in order to resolve the transition layer, ∆x ≤ Cε. Pre-

conditioning techniques maybe implemented to relax this constraint (see Glasner 2001).

We did not employ preconditioning in this study.

To test our scheme, we compare the diffuse interface scheme against the boundary

integral method by simulating the relaxation of an elliptical droplet in a Hele-Shaw cell

without electrowetting. Figure 7 shows a close agreement between the aspect ratios of

the relaxing elliptic droplets calculated by both methods.

To investigate the dynamics of electrowetting droplet without contact line dissipation,

equation (6.1) corresponds to the sharp interface model with Aκ0 = 1 and Bκ1 = −ω.

We directly compare the diffuse interface model to the electrowetting experiments with a

60% glycerine-water mixture. The experimental time and dimensions are scaled accord-

ing to equation (3.10). The dimension of the square electrode is 1 cm. The radii of the

droplets in figure 8 and 9 are approximately 0.6 mm and 0.55 mm respectively. Using
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t = 0.0 t = 0.31 t = 0.64 t = 0.95 t = 1.26 t = 1.58 t = 1.90(a) 

t = 0.0 t = 0.04 t = 0.08 t = 0.12 t = 0.17 t = 0.21 t = 0.25(b) 

t = 0.0 t = 0.14 t = 0.27 t = 0.41 t = 0.55 t = 0.69 t = 0.82(c) 

t = 0.0 t = 0.3 t = 0.6 t = 0.9 t = 1.2 t = 1.5 t = 1.8(d) 

Figure 8. Droplet splitting by electrowetting (a) images of a droplet pulled apart by two elec-

trodes under 50.42 volts of potential, (b) diffuse interface model with ω = 7.936, (c) ω = 3.968,

and (d) ω = 1.818.
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t = 0.0 t = 0.23 t = 0.46 t = 0.69 t = 0.92 t = 1.15 t = 1.38(a) 

t = 0.0 t = 0.10 t = 0.20 t = 0.30 t = 0.40 t = 0.50 t = 0.60(b) 

t = 0.0 t = 0.17 t = 0.34 t = 0.51 t = 0.68 t = 0.85 t = 1.02(c) 

t = 0.0 t = 0.28 t = 0.57 t = 0.85 t = 1.13 t = 1.42 t = 1.70(d) 

Figure 9. Droplet movement by electrowetting: (a) images of a droplet translate to an electrode

under 50.42 volts of potential, (b) diffuse interface model with ω = 7.273, (c) ω = 3.636, and (d)

ω = 1.818.

(3.15), the electrowetting numbers are ω = 7.936 and 7.273 respectively, corresponding

to the application of 50.42 V DC voltage. The droplet in figure 8a is initially positioned

closer to one of the side electrodes that results in asymmetry of the splitting. Figure 8b

illustrates the capability of the method to naturally simulate the macroscopic dynamics

of a droplet splitting. The resolution of the model is limited by the diffuse interface thick-

ness. Therefore we do not expect the simulation to reproduce the formation of satellite
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droplets as seen in the last few frame of figure 8b. The comparison between the simula-

tion result and the actual images of a droplet in translation shows an overestimation of

the electrowetting effect (figure 9b). The experiment is slower than the numerical result

by a factor of 2. The disagreement of timescales is more severe for droplet splitting. We

will discuss the role of contact line in the next section; we argue that the contact line

dynamics is more than adequate to account for this discrepancy.

Comparing the droplet motion between figure 9b-d shows the gradually dominating

trend of the relaxation timescale due to bulk surface tension as the electrowetting number

is decreased. The droplet morphologies transition from the ones with drastic variation

in the horizontal curvature to rounded shapes with small variation in the horizontal

curvature. Figure 8d serves as a illustration of the competition between the two dynamic

timescales. Electrowetting initially creates the variation of Bκ1 to stretch the droplet. As

the droplet stretches, the convection slows due to the decreasing pressure in the necking

region and increasing pressure in the two ends. Ultimately, the relaxation process takes

over to pump the fluid in the end with larger curvature toward the end with smaller

curvature.

7. Contact line effect

The previous sections investigate the droplet dynamics in the absence of additional

contact line effects due to the microscopic physics of the surface (see deGennes 1985).

The dynamics near the contact line results in a stress singularity at the contact line (see

Huh & Scriven 1971; Dussan 1979) and is still an active area of research. These factors

have contributed to the lack of an unified theory for the contact line dynamics. Inclusion

of van der Waal potential in the diffuse interface model has recently been proposed as

a regularization of a slowly moving contact line of a partially wetting fluid (see Pomeau
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Figure 10. Approximation of droplet travels as solid circle under influence of electrowetting

by a semi-infinite electrode.

2002; Pismen & Pomeau 2004). Here, we estimate the range of slowdown that is caused

by the contact line dissipation.

In order to estimate the contact line influence on the diffuse interface model, we con-

struct a reduced order approximation of the diffuse interface model by considering the

droplet as a solid circle moving toward a semi-infinite electrowetting region as shown in

figure 10. The approximation examines the dynamics in the limit of small horizontal cur-

vature variation to isolate the contact line effect on the dynamic timescale. The position

of the center of the circle can be derived by considering the rate of free energy decrease

as outlined in appendix A.

z = sin
(

b4γ

6µπR2
t + C

)
, C = arcsin

d

R
, (7.1)

where d is the distance between the boundary of the electrowetting region to the origin,

and z = (d− y0)/R is the signed distance from the center of the circle to the boundary

of the electrowetting region normalized by the radius.

If there is no contact line dissipation, the energy difference between the two regions is

well described by (1.1), ∆γ = −cV 2/2. After changing time to a dimensionless variable,
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Figure 11. Comparison of reduced order model and diffuse interface model of a droplet

translation into a semi-infinite electrowetting. ε = 0.0427. ω = 5.0512

we get

z = sin
(−2ω

π
t + C

)
. (7.2)

As a droplet translates from one electrode from another, z varies from d/R to −1. The

dynamic timescale is thus inversely proportional to the electrowetting voltage applied.

Figure 11 compares the diffuse interface model with the prediction by the reduced order

model. Electrowetting quickly pumps the droplet into the wetting region. During the

motion, the droplet readily deforms its free surface. Once the entire droplet has moved

into the wetting region, slow relaxation toward a circular shape takes place. The close

agreement with the diffuse interface model shows our model does accurately simulate the
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gradient flow of the energy functional. The experimental timescale discrepancies shown

in figures 8 and 9 must be attributed to additional dissipation in the physical problem.

Surface heterogeneities introduces an additional dissipation that must be overcome by

the moving contact line. This dissipation causes the dynamic contact angles to increase

along the advancing contact lines and decrease along the receding contact lines. In the

context of our reduced order model, the effective surface energy decrease that drives the

droplet becomes

∆γ = γlv (cos θr − cos θt + cos θr − cos θb) . (7.3)

where θr is the dynamic contact angle on the receding contact lines. θt and θb are the

dynamic contact angles on the advancing contact line on the top substrate and the

bottom substrate respectively. Similar concepts of contact line dissipation have been

proposed by Ford & Nadim (1994) and Chen, Troian, Darhuber & Wagner (2005) in the

context of a thermally driven droplet. Comparing the new energy description against the

electrowetting potential gives

ξ =
∆γ

−cV 2/2
=

(cos θr − cos θt) + (cos θr − cos θb)
cos θ0 − cos θv

. (7.4)

where cos θb < cos θv, cos θt < cos θ0, and cos θr > cos θ0. It can be shown that the scalar

ξ is less than 1. The addition of contact line dissipation may be incorporated into the

reduced order model by a scaling the electrowetting number accordingly,

z = sin
(−2ξω

π
t + C

)
. (7.5)

Substituting in the measured values of dynamic contact angles from figure 4 gives an

estimate of ξ = 0.2313. This indicates the contact line may dissipate up to 3/4 of the

electrowetting potential and account for a four fold increase in the dynamic timescale.

To understand the contact line influence on a sharp interface droplet with small aspect

ratio, α, we relate the pressure boundary condition (3.3) to the local contact angle by
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perturbation expansions of the governing equations with respect to the aspect ratio and

enforcing the solutions of the liquid meniscus to form a prescribed contact angle with

the solid substrates in the lowest order. The leading order expansion then relates the

cross substrate curvature, Bκ1, to the local dynamic contact angle, and the next order

expansion corresponds to the contribution from the horizontal curvature, Aκ0.

Outside of the electrowetting region, the interface is symmetric and the pressure bound-

ary condition is

P |∂Ω =
−2 cos θs

α
− 1 + sin θs

cos θs

(
θs

2
− π

4

)
+ O(α2), (7.6)

where θs denotes the contact angle of the symmetric interface. If the interface inside

the electrowetting region satisfy the requirements that θt ≥ π/2 and θb ≤ π/2, we can

perform similar expansions for an interface inside of the electrowetting region,

P |∂Ω =
− (cos θb + cos θt)

α
− cos θt

2 (1− cos (θb − θt))

(
cos θb

cos θt
sin (θb − θt) + θt − θb

)
+O(α2).

(7.7)

For the interface outside of the electrowetting region, inspection of the O(α) term of

(7.6) shows A varies between a maximum of 1 when θr = π/2 and a minimum of π/4

when θr = 0 and π, as derived by Park & Homsy (1984). For the interface inside of the

electrowetting region, A varies between a maximum value of 1.0 when when θb = θt = π/2

and a minimum of 0.5 at θb = 0 and θt = π/2. Since relaxation dominates away from the

boundary of the electrowetting region, we can obtain good estimate of A by substituting

the data in figure 4. The computed values of A are 0.9994 and 0.9831 for the interfaces

outside and inside of the electrowetting region respectively.

Analysis of sharp interface model in §3 shows the velocity of the electrowetting droplet

is directly related to the difference of Bκ1 across the boundary of the electrowetting

region. Taking the difference of the leading order terms in (7.6) and (7.7) gives the
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Figure 12. Horizontal curvature A for (a) electrowetting and (b) non-electrowetting menisci.

curvature difference in the presence of contact line dissipation,

[Bκ1] =
1
α

(cos θs − cos θt + cos θs − cos θb) , (7.8)

where the interface curvatures, and the associated dynamic contact angles must be close

to the boundary of the electrowetting region.

Using (3.15) and (3.8) we can obtain [Bκ1] without the contact line dissipation, which

is just the difference of electrowetting number,

[Bκ1] = − cV 2

2αγlv
=

1
α

(cos θ0 − cos θv) . (7.9)

The ratio of the curvature difference leads to the same formula as (7.4). However, the

dynamic contact angles in (7.8) is associated with the interface near the boundary of

the electrowetting region. In contrast, the estimate by the reduced order model utilizes

the geometries at the nose and the tail of the droplet where the contact line dynamics

has more significant effect on the interface. Therefore we expect the estimate by the

reduced order model to provide only an upper bound to the contact line effect. With 1/4

reduction of the electrowetting number as estimated by the reduced order model, figures

8d and 9d show slower droplet motions than the experiments. Figure 8d shows the failure

to split the droplet, confirming that the estimate indeed overestimates the contact line
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dissipation. Lacking the contact angle measurements near the electrowetting boundary,

we compute the droplet motion with less severe reduction (1/2) of the electrowetting

number shown in figures 8c and 9c. The close agreement of the droplet motion indicates

that refinements to our worse case estimate with the correct geometries may substantially

improve the model.

In addition to its influence on the convective timescale, the contact line dissipation also

effects the morphology of the droplet motion. Therefore, a complete model of the contact

line dynamics needs to address both the effect on Aκ0 and Bκ1. This differs from the

scaling factor in Walker & Shapiro (2004) that phenomenologically modifies the dynamic

timescale to fit with the experiments.

8. Conclusions

We present a diffuse interface description of the droplets in a Hele-Shaw cell in the form

of a degenerate Cahn-Hilliard equation with a spatially varying surface energy. Through

matching asymptotic expansions, we show that the phase field approach approximates

the sharp interface Hele-Shaw flow in the limit of small diffuse interface thickness. The

dynamics in sharp interface limit is validated numerically by a direct comparison to the

boundary integral methods. This approach enables us to naturally simulate the macro-

scopic dynamics of droplet splitting, merging, and translation under the influence of local

electrowetting.

For a viscous droplet of larger aspect ratio, the velocity component normal to the sub-

strates becomes significant to the dynamics. In this case, the 2-D Hele-Shaw model can

no longer provide adequate approximation. On the other hand, a fully three-dimensional

simulation of such a droplet is an extremely complicated task. It would be desirable to

develop a reduced dimension model that is computationally tractable model while pre-
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serving the essential information about the velocity component normal to the substrates.

Such a model will be valuable to the study of fluid mixing inside of an electrowetting

droplet.

As illustrated by the perturbation analysis and the reduced order model, the contact

line dynamics complicates the problem by modifying both the cross substrate and hori-

zontal curvatures of the interface. The viscosity terms effects the perturbation analysis

at O(Ca). However, viscous stress singularity at the contact line indicates more physics

is required to regularize the fluid dynamic formulation near the contact line. Base on

the measured advancing and receding contact angles, we showed the strong influence of

contact line dynamics accounts up to a four fold increase in the dynamic timescale of the

Hele-Shaw approximation. Knowledge of the geometries near the electrowetting region

boundary may provide improvement to our estimate. Numerical simulations of droplet

motions showed a range of dynamic timescale that is consistent with the experimentally

measured timescale.
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Appendix A. Reduced order model

Consider a semi-infinite electrowetting region, we approximate the droplet motion as a

moving solid circle. Using the lubrication approximation, we balance the rate of viscous
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dissipation with the rate of free energy decrease,

D ≈ − b3

12µ

∫

R2
ρ|∇p|2 dxdy = −12µ

b

∫

R2
ρ|U|2 dxdy =

dE

dt
(A 1)

The center of the circle travels along the axis as shown in figure 10. The distance between

the boundary of electrowetting region and the origin is d. The position of the center is

y0 (t) where y0 (0) = 0. The droplet moves as a solid circle so the integral reduces to

−12µ|ẏ0|2πR2

b
=

dE

dt
, (A 2)

where ẏ0 denotes the velocity of the center of the circle. The free energy is composed of

the surface energy of dielectric surface with no voltage applied γ1, the surface energy of

the electrowetting region γ2, and the liquid-vapor surface energy. Since the liquid-vapor

interface area remains constant, the rate of change in free energy is

dE

dt
= 4γṠ2, (A 3)

where 4γ = γ2 − γ1 and Ṡ2 is the derivative of the droplet area inside the electrified

region with respect to time

Ṡ2 = −2R2
√

1− z2ż, (A 4)

where z = (d− y0) /R is the signed distance from the center of the circle to the boundary

of electrowetting region normalized by the droplet radius. (A 2), (A 3), and(A 4)give the

following ODE:

ż =
b4γ

6µπR2

√
1− z2. (A 5)

Integrate this ODE we get

z = sin
(

b4γ

6µπR2
t + C

)
, C = arcsin

d

R
, (A 6)
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