
A variational approach to reconstructing
images corrupted by Poisson noise

UCLA CAM Report 05-49

Triet Le∗ Rick Chartrand† Thomas J. Asaki‡

September 21, 2005

Abstract

We propose a new variational model to denoise an image corrupted
by Poisson noise. Like the ROF model described in [8] and [9], the new
model uses total-variation regularization. Unlike the ROF model, our
model uses a data-fidelity term that is suitable for Poisson noise. The
result is that the strength of the regularization is signal dependent,
precisely like Poisson noise.

1 Introduction

An important task of mathematical image processing is image denoising. The
general idea is to regard a noisy image f as being obtained by corrupting a
noiseless image u; given a model for the noise corruption, the desired image
u is a solution of the corresponding inverse problem.
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Many algorithms are in use for reconstructing u from f . Since the inverse
problem is generally ill-posed, most denoising procedures employ some sort
of regularization. A very successful algorithm is that of Rudin, Osher, and
Fatemi [8], which uses total-variation regularization. The ROF model regards
u as the solution to a variational problem, to minimize the functional

F (u) :=

∫

Ω

|∇u|+ λ

2

∫

Ω

|f − u|2, (1)

where Ω is the image domain and λ is a parameter to be chosen. The first
term of (1) is a regularization term, the second a data-fidelity term. Min-
imizing F (u) has the effect of diminishing variation in u, while keeping u
close to the data f . The size of the parameter λ determines the relative
importance of the two terms.

Like many denoising models, the ROF model is most appropriate for sig-
nal independent, additive Gaussian noise. See [5] for an explanation of this
in the context of Bayesian statistics. However, many important data contain
noise that is signal dependent, and obeys a Poisson distribution. A familiar
example is that of radiography. The signal in a radiograph is determined by
photon counting statistics and is often described as particle-limited, empha-
sizing the quantized and non-Gaussian nature of the signal. Removing noise
of this type is a more difficult problem. Besbeas et al. [1] review and demon-
strate wavelet shrinkage methods from the now classical method of Donoho
[3] to Bayesian methods of Kolaczyk [7] and Timmermann and Novak [10].
These methods rely on the assumption that the underlying intensity func-
tion is accurately described by relatively few wavelet expansion coefficients.
Kervrann and Trubuil [6] employ an adaptive windowing approach that as-
sumes locally piecewise constant intensity of constant noise variance. The
method also performs well at discontinuity preservation.

In this paper, we propose a variational, total-variation regularized de-
noising model along the lines of ROF, but modified for use with Poisson
noise.

2 Description of the Proposed Model

In what follows, we assume that f is a given grayscale image defined on Ω,
an bounded, open subset of R2, with Lipschitz boundary ∂Ω. Usually, Ω
is a rectangle in the plane. We assume f is bounded and positive. Where

2



convenient below, we regard f as integer valued, but this will ultimately be
unnecessary.

Recall the Poisson distribution with mean and standard deviation µ:

Pµ(n) =
e−µµn

n!
, n ≥ 0. (2)

Our discussion follows well-known lines for formulating variational prob-
lems using Bayes’ Law. See [5] for an example with the ROF model.

We wish to determine the image u that is most likely given the observed
image f . Bayes’ Law says that

P (u|f) =
P (f |u)P (u)

P (f)
. (3)

Thus, we wish to maximize P (f |u)P (u). Assuming Poisson noise, for each
x ∈ Ω we have

P (f(x)|u) = Pu(x)(f(x)) =
e−u(x)u(x)f(x)

f(x)!
(4)

Now we assume that the region Ω has been pixellated, and that the values
of f at the pixels {xi} are independent. Then

P (f |u) =
∏

i

e−u(xi)u(xi)
f(xi)

f(xi)!
. (5)

The total-variation regularization comes from our choice of prior distri-
bution:

P (u) = exp

(
−β
∫

Ω

|∇u|
)
, (6)

where β is a regularization paramter.
Instead of maximizing P (f |u)P (u), we minimize − log(P (f |u)P (u)). The

result is that we seek a minimizer of

∑

i

(
u(xi)− f(xi) log u(xi)

)
+ β

∫

Ω

|∇u|. (7)

We regard this as a discrete approximation of the functional

E(u) :=

∫

Ω

(
u− f log u

)
+ β

∫

Ω

|∇u|. (8)
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The functional E is defined on the set of u ∈ BV (Ω) such that log u ∈ L1(Ω);
in particular, u must be positive almost everywhere.

The Euler-Lagrange equation for minimizing E(u) is

0 = div

( ∇u
|∇u|

)
+

1

βu
(f − u), with

∂u

∂~n
= 0 on ∂Ω. (9)

Compare this with the Euler-Lagrange equation for minimizing the ROF
functional (1),

0 = div

( ∇u
|∇u|

)
+ λ(f − u), with

∂u

∂~n
= 0 on ∂Ω. (10)

Notice that equation (9) is similar to equation (10), but with a variable
λ = 1

βu
, which depends on the reconstructed image u. This local variation

of the regularization parameter is better suited for Poisson noise because the
expected noise increases with image intensity. Decreasing the value of the
regularization parameter increases the denoising effect of the regularization
term in the functional. We thus have a model that is similar to ROF but
with a self-adjusting parameter.

3 Existence and Uniqueness

Next, we show existence and uniqueness of the minimizer for the model (8).

Theorem 1. Let Ω be a bounded, open subset of R2 with Lipschitz boundary.
Let f be a positive, bounded function. For u ∈ BV (Ω) such that log u ∈
L1(Ω), let J(u) =

∫
Ω

(
u − f log(u)

)
, TV (u) =

∫
Ω
|∇u|, E = TV + J . Then

E(u) has a unique minimizer.

Proof. First, J is bounded below by J(f), so E is bounded below. Thus we
can choose a minimizing sequence {un} for E. Then TV (un) is bounded, as
is J(un). By Jensen’s inequality,

J(un) ≥ ‖un‖1 − ‖f‖∞ log ‖un‖1, (11)

so ‖un‖ is bounded as well. This and the boundedness of TV (un) mean
that {un} is a bounded sequence in the space BV (Ω). By the compactness
of L1 in BV [4, p.176], there is u ∈ BV such that a subsequence {unk}
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converges to u in L1; without loss of generality, we may assume that unk → u
pointwise almost everywhere. By the lower semicontinuity of the BV norm
[4, p.172], TV (u) ≤ lim inf TV (unk). Since unk−f log(unk) is bounded below
(by −‖f − f log f‖∞), we may use Fatou’s Lemma to conclude that J(u) ≤
lim inf J(unk). Thus E(u) ≤ lim inf E(unk), and u minimizes E.

Clearly TV is a convex function. Since the logarithm is a strictly concave
function and f is positive, J is strictly convex. Hence E is strictly convex.
Therefore, the minimizer u is unique.

Remark 1. In (6) we use total variation as our choice of prior. However,
we can replace

∫
|∇u| dx by

∫
|∇u|2 dx or other convex functionals [2], and

the existence and uniqueness still apply.

4 Numerical Results

We use gradient descent to solve (9). We implement a straightforward, dis-
cretized version of the following PDE:

ut = div

( ∇u
|∇u|

)
+

1

βu
(f − u), with

∂u

∂~n
= 0 on ∂Ω. (12)

Derivatives are computed with standard centered-difference approximations.
The quantity |∇u| is replaced with

√
|∇u|2 + ε for a small, positive ε. The

time evolution is done with fixed timesteps, until the change in u is sufficiently
small. A similar procedure is used to implement the ROF model (1), which
we use for comparison with our proposed model.

The example in Figure 1 consists of circles with intensities 70, 135, and
200, enclosed by a square frame of intensity 10, all on a background of in-
tensity 5. Poisson noise is then added; see Figure 2(a). Note that there is no
parameter associated with Poisson noise, but the noise magnitude depends
on the absolute image intensities. The amount of noise in a region of the
image increases with the intensity of the image there.

In Figures 2(b) and 2(c), the image has been denoised with the ROF (total
variation) model (1). The result depends on the paramater λ. We choose
λ according to the discrepancy principle, which says that the reconstruction
should have a mean-squared difference from the noisy data that is equal to
the variance of the noise. This is equivalent to the idea that of all the possible
reconstructed images that are consistent with the noisy data, the image that
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should be chosen is the one that is most regular. In our example, we used
a noise variance of the mean-squared difference between the noised image
and the original image. (In cases where there is no original image available,
the noise variance would have to be estimated.) The resulting λ of 0.04
gives the image in Figure 2(b). The frame is almost completely washed out,
as it differs from the background by less than the average noise standard
deviation of 7.33. The frame can be preserved by increasing λ to 0.4, which
has the effect of decreasing the strength of the regularization. The result, in
Figure 2(c), is that the noise in the higher-intensity regions of the image is
not removed.

For our Poisson-modified total variation model, we chose the parameter
β according to a suitably modified discrepancy principle: the value of the
data fidelity term

∫
u − f log u for the reconstructed image should match

that of the original image. In the example, this resulted in a β of 0.25. As
noted above, the model behaves locally like ROF with a signal-dependent λ
equal to 1/βu. We thus have an effective λ of 0.8 for the background, 0.4
for the frame, and a smallest value of 0.02 in the center. Note that 0.4 was
a value for λ for which the ROF model preserved the frame, while 0.02 gives
a stronger regularization than that of ROF from the discrepancy principle.
Therefore, it is not surprising that in Figure 2(d), the frame is preserved
as well as in Figure 2(c), while the large-magnitude noise in the center is
removed as well as in Figure 2(b). Also see Figure 3 for lineouts from the
middle of the images, in which the qualitative properties of the results can
be more clearly seen.

We can also compare our model with the ROF model by measuring the
mean-squared difference between the reconstructed images and the original,
noise-free image. This was 4.40 for our model, and 5.10 for the ROF model.

Acknowledgement: The first author would like to thank Professor Lu-
minita Vese for many wonderful discussions and for introducing him to the
great paper [5] by Professor Mark Green.
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Figure 1: Circles image with frame. Image brightness has been adjusted for
display, to allow the frame to be visible.
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(a) (b)

(c) (d)

Figure 2: (a) Circles image with Poisson noise. (b) ROF denoised image.
The frame is not well preserved. (c) ROF denoised image with decreased
regularization strength. The frame is preserved, but the noise in the higher-
intensity regions remains. (d) Image denoised with Poisson-modified total
variation. Noise is removed at all scales, while preserving the frame.
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Figure 3: Upper left: Lineout of circles image with frame (heavy line) and
Poisson-noised image (lighter line). Upper right: Lineout of ROF denoised
image. The frame is not well preserved. Lower left: Lineout of ROF denoised
image with decreased regularization strength. The frame is preserved, but
the noise in the higher-intensity regions remains. Lower right: Lineout of
image denoised with Poisson-modified total variation. Noise is removed at
all scales, while preserving the frame.
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