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Abstract

In this paper we propose a variant of a binary level set approach for solving elliptic
problems with piecewise constant coefficients. The inverse problem is solved by a variational
augmented Lagrangian approach with a total variation regularisation.

In the binary formulation, the seeked interfaces between the domains with different values
of the coefficient are represented by discontinuities of the level set functions. The level set
functions shall only take two discrete values, i.e. 1 and -1, but the minimisation functional is
smooth.

Our formulation can, under moderate amount of noise in the observations, recover rather
complicated geometries without requiring any initial curves of the geometries, only a reason-
able guess of the constant levels is needed. Numerical results show that our implementation
of this formulation has a faster convergence than the traditional level set formulation used on
the same problems.

Keywords: Inverse problems, parameter identification, elliptic equation, augmented Lagrangian
optimisation, level set methods, total variation regularisation.

1 Introduction

Consider the elliptic partial differential equation with Dirichlet boundary conditions:

−O · (q(x)Ou) = f in Ω ⊂ R2 (1)

u = 0 on ∂Ω,

In this paper we will use observations of the function u to recover the coefficient q(x) by approx-
imating it with a piecewise constant function. The function f is assumed known, and ∂Ω is the
boundary of our domain Ω. This problem is a model problem for many real applications, for
example, reservoir simulations [1], medical imaging [2, 3] and underground water investigations
[4]. Even as a purely academic problem, this model problem has turned out to be rather difficult
to solve numerically.

The problem of recovering the geometry of the coefficient discontinuities has motivated a
number of approaches in the literature [5, 6, 7, 8]. A proper regularisation is often applied to control
the jumps and the geometry of the discontinuities, see for example [5, 6]. Several approaches have
also been used to represent the coefficient implicitly, especially a number of level set methods have
been proposed for this purpose; see [9, 10, 11, 12, 13, 14, 15, 16].

For representing q(x) we apply a piecewise constant formulation of the level set method. The
original level set method was proposed by Osher and Sethian [17] for tracing interfaces between
different phases of fluid flow. It has later been a versatile tool for representing and tracking
interfaces separating a domain into subdomains. The method has been applied in a wide range
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of applications, i.e. reservoir simulations, inverse problems, image analysis, and optimal shape
design problems. For recently surveys of level set methods see [18, 19, 20].

The representation of the interfaces in the standard level set formulation is done implicitly
by the zero level set of one or several functions. The corresponding Euler-Lagrange equations
give the evolution equations for the level set functions and the different constant values of the
coefficient. In these methods the level set functions are forced to be signed distance functions, and
are therefore the solution of Hamilton-Jacobi equations.

The binary level set method, which we apply in this paper, is classified as a piecewise constant
level set approach. For this method, the level set functions are discontinuous functions at con-
vergence, and should only take a fixed number of predefined constant values. Hence, they should
not be distance functions as in the continuous formulation. In the binary method, we require the
convergence values of the level set functions to be -1 or 1. When solving the optimisation problem
with this imposed requirement, we need to minimise a smooth convex functional under a quadratic
constraint. The level set method applied in this paper is similar to the method proposed in [21]
used for image segmentation. This idea has also appeared in some earlier work [22, 23] for image
segmentation. The binary level set idea is in fact very similar to the phase field model applied
for many phase transition problems [24, 25, 26]. In this work, we use a novel way to treat the
requirement that the level set functions should take the values ±1. Another related work, utilising
piecewise constant level set functions, is presented in [27]. In [27], just one level set function is
required to identify an arbitrary number of phases.

In [10], Chan and Tai have performed a study on the elliptic inverse problem which is closely
related to the work presented in this paper. They use continuous level set functions in a more
standard level set formulation. As in their approach, we will in this work formulate the method in
a variational setting, and apply an augmented Lagrangian approach for solving the minimisation
problem. The Euler-Lagrange equations give the evolution equations for the level set functions.

Since the minimisation problem is highly ill-posed, we need to regularise the problem. The
regularisation applied here is the total variation norm of the recovered coefficient. This will
indirectly control both the length of the level set curves and the jumps in the coefficients, see
[10, 28].

The contribution in this paper is the use of binary represented level set functions for solving
the inverse problem. In our implementation, the relation between the coefficients and the level set
functions is constructed such that it to a large extent can reduce the ill-posedness of the inverse
problem, and at the same time be able to reconstruct rather complicated geometries.

Both the shape of the regions and the constant values in each region are recovered as part of
the formulation. In comparison to most of the related methods using the level set approach, we
do not need any initial guess of the contours. A reasonable initial guess of the constant values is
though required.

The number of regions with different constant values of the coefficient is not required a priori,
only an upper bound is needed. If the identified coefficient have n constant values, log2 n level set
functions are sufficient. If a higher number of functions is applied, the unnecessary functions will
disappear (take a constant value) or the superfluous regions will merge with other regions.

This paper is structured as follows: The inverse problem is defined in Section 2, and in Section
3 the general framework of the binary level set method is given. In Section 4 we explain how this
framework is utilised to solve the inverse problem. Further the augmented Lagrangian approach
and the applied algorithm are given in Section 5. In Section 6 some remarks about the implemen-
tation issues are given, and in Section 7 we present the numerical results. Conclusions are given
in Section 8.

2 The Inverse Problem

To recover the coefficients q(x) we use observations ud ∈ L2(Ω) for the solution u of Eq. (1). Let
Q be the set of admissible coefficients;

Q = {q|q ∈ L∞(Ω) ∩ TV (Ω), 0 < qL(x) ≤ q(x) ≤ qU (x) <∞},

where qL(x) and qU (x) is the lower and upper bounds of q, respectively, known a priori.
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We define u(q) as the solution of Eq. (1) for a given function q. For the optimisation problem
we construct the following functional to be minimised;

F (q) =
1

2

∫

Ω

|u(q)− ud|2 dx+ βR(q). (2)

The first term is a measurement of the closeness of ud and u(q), and the second term is referred to
as a regularisation term. The regularisation parameter β > 0 is a predefined constant weighting
the regularisation, and R(q) is a functional used to control the regularity of q. As in [10, 29] we
take the total variation norm of q as the regularisation;

R(q) =

∫

Ω

|Oq| dx. (3)

When q is not differentiable, |Oq| is understood as a measure, see [30] p. 221. This regularisation
will both control the lengths of the interfaces and the jumps of coefficient values. This differs from
standard level set methods where it is common only to control the lengths of the interfaces.

The inverse problem to solve is to find the optimal coefficient q∗ which is the solution of the
following minimisation problem;

q∗ = arg min
q∈Q

F (q). (4)

Note that in Chan and Tai [10], Equation (1) was handled differently. In this work, we are trying to
show the performance of the binary level set idea for this ill-posed inverse problem. The advantage
of the binary level set method is that it removes the connection between the level set functions and
the distance functions. In calculating the distance functions, lower order accuracy schemes may
change the sign of the initial function. In addition, sharp corners may be smeared if the distance
function is re-initialised too frequently. The second purpose to use the binary level set idea is to
remove the Heaviside function and gain (local) convexity and smoothness for the minimisation
problems.

3 Binary Level Set Approach

In this section we will present the binary level set formulation. We shall follow the mechanism
proposed in [21] where it was applied for segmentation of digital images. The essential ideas for
the binary level set method have appeared earlier in [22, 23]. It was in [21], a general framework
was shown for the binary level set method and a systematic way was given to treat the constraints.
In this work, we use the method to construct a piecewise constant function to approximate the
coefficient q(x) in Equation (1).

In standard level set methods, the partition of a domain Ω into a number of subregions {Ωj}
is defined by the sign of the continuous level set functions. For numerical reasons the level set
functions are in these cases forced to be signed distance functions, where the distance is related to
the boundary of the subdomains. In the binary method, we will instead use discontinuous level set
functions which at convergence should take the values -1 or 1, inside and outside the subregions.
The discontinuities of the functions will represent the boundary of the subdomains.

Let us first assume that Ω need to be divided into two subregions, Ω1 and Ω2, such that
Ω = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅. A representation of this domain can be given by

φ(x) =

{
1 ∀x ∈ Ω1

−1 ∀x ∈ Ω2,
(5)

and the curve separating Ω1 and Ω2 is implicitly given as the discontinuity of φ, see Figure 1. The
properties of φ can be used to construct a scalar function q(x) with distinct constant values inside
these two different subdomains. If we assume that the value of q(x) is equal to c1 in Ω1 and equal
to c2 in Ω2, then q can be written as

q =
1

2
[ c1(φ + 1)− c2(φ− 1) ]. (6)
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Figure 1: Level set representations of a piecewise constant function q(x). In this example q has two regions
with different constant values, c1 and c2. By continuous level set functions the discontinuity of
q can be represented as in Figure b), and by binary level set functions φ is forced to take the
values -1 and 1, as in Figure c).

As in the continuous level set formulation, multiple level set functions can be used to represent
more than two regions. Following the terminology applied in [21], a function having four constant
regions can be represented by two level set functions, and expressed as

q =
1

4
[ c1(φ1 + 1)(φ2 + 1)− c2(φ1 + 1)(φ2−1)− c3(φ1−1)(φ2 + 1) + c4(φ1−1)(φ2−1) ]. (7)

To construct the basis functions for a general number of level set functions, N , we introduce the
following notation: For j ∈ {1, 2, . . . , 2N} let (bj−1

1 , bj−1
2 , . . . , bj−1

N ) be the binary representation of

j − 1, that is bj−1
i =−1 or 1. Further we define s(j) =

∑N
i=1 b

j−1
i , and ψj as the product

ψj =
1

N
(−1)s(j)

N∏

i=1

(φi + 1− 2bj−1
i ). (8)

For a given c = (c1, c2, . . . , c2N ) and level set functions φ = {φi}Ni=1, the following formula gives a
general representation for piecewise constant functions;

q(φ, c) =

2N∑

j=1

cjψj(φ). (9)

Eq. (6) and Eq. (7) are special cases of this formula, but with each ψj expressed in terms of φ. In
the first case, we have ψ1 = 1

2 (φ+ 1) and ψ2 = − 1
2 (φ−1) in Eq. (6). With two level set functions,

we get ψ1 = 1
4 (φ1 + 1)(φ2 + 1), ψ2 = − 1

4 (φ1 + 1)(φ2 − 1), . . . in Eq. (7).
In the following, we let K(x) = x2 − 1. The level set functions are required to satisfy

K(φi) = φ2
i − 1 = 0 ∀ i. (10)

This requirement will force the level set functions to take the values -1 or 1 at convergence. With
this constraint fulfilled, the basis functions will be characteristic functions for the corresponding
subdomains, i.e. ψj = 1 in Ωj and zero elsewhere. That is, the support of the different basis
functions are non-overlapping, supp ψi ∩ supp ψj = ∅ ∀ i 6= j, and the total support of all the

basisfunctions covers the complete domain, i.e. Ω = ∪2N

j=1supp ψj .
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4 The Binary Level Set Method for the Inverse Problem

From the last section, we see that every piecewise constant function can be represented as in
(9) under the requirement that the level set functions satisfy (10). In order to find a piecewise
constant function, we just need to find the corresponding c values and the level set functions φi.
If we define the vector K(φ) = {K(φi)}Ni=1, we can thus reformulate problem (4) as

(φ∗, c∗) = arg {min
φ,c

F (q(φ, c)) subject to K(φ) = 0 }, (11)

where the optimal coefficient can be calculated by q∗ = q(φ∗, c∗). The constraint K = 0 is applied
to control the structure of the level set functions, and will therefore depend on the choice of basis
functions.

Define F̃ (φ, c) = F (q(φ, c)). To evolve the level set functions and update the constant values
such that q(x) will converge to the optimal solution, we need to calculate the derivatives of F̃ with
respect to φ and c. By the chain rule we have, c.f. [10],

∂F̃

∂φi
=
∂F

∂q

∂q

∂φi
∀ i = 1, 2, . . . , N (12)

and

∂F̃

∂cj
=

∫

Ω

∂F

∂q

∂q

∂cj
dx ∀ j = 1, 2, . . . , 2N . (13)

For a wide number of problems ∂F
∂q is known, and we only need to compute ∂q

∂φi
and ∂q

∂cj
. In

this work, ∂F∂q is calculated by the adjoint method;

∂F

∂q
= −Ou · Oz − βO ·

(
Oq
|Oq|

)
, (14)

where z ∈ H1
0 (Ω) is the solution of

−O · (q(x)Oz) = u− ud in Ω ⊂ R2

z = 0 on ∂Ω.
(15)

To compute ∂F̃
∂q once, we need to solve both (1) and (15) once.

5 Augmented Lagrangian Formulation

We apply an augmented Lagrangian method to solve problem (11). The Lagrangian functional
involves both F̃ and the constraint K;

L(φ, c,λ) = F̃ (φ, c) +
∑N

i=1

∫
Ω
λiK(φi) dx+ µ

∑N
i=1

∫
Ω
|K(φi)|2 dx. (16)

Here µ > 0 is a penalisation parameter which usually is a fixed parameter chosen a priori, or
it can in some cases be increased carefully through the iterations to improve the convergence.
λ = {λi}Ni=1 is the Lagrangian multipliers where λi is a function defined in the same domain as
φi.

We search a saddle point of L and therefore require

∂L

∂φi
= 0,

∂L

∂λi
= 0 ∀ i ∈ {1, . . . , N} and

∂L

∂cj
= 0 ∀ j ∈ {1, . . . , 2N}. (17)

From the definition of L we have that

∂L

∂φi
=
∂F̃

∂φi
+ λiK(φi) + 2µK ′(φi),

∂L

∂λi
= K(φi) and

∂L

∂cj
=
∂F̃

∂cj
. (18)



6

To find a saddle point of L, we apply an iterative algorithm. Starting with initial guesses
φ0, c0 and λ0, we iterate towards the better approximations denoted by φk, ck and λk where
k = {1, 2, . . .}. When the change of these variables approach zero, the iterations can be stopped.

The minimisation with respect to φ is done by introducing an artificial time variable t, and
then solve the PDE

∂φ

∂t
= −∂L

∂φ
. (19)

When this reaches a steady solution we have ∂φ
∂t = 0 which implies ∂L

∂φi
= 0 ∀ i. Numerically we

discretise Eq. (19) by a forward Euler scheme and get the following updating scheme for φ;

φk+1 = φk −∆tφ
∂L

∂φ
(φk, ck,λk), (20)

where ∆tφ > 0 is a timestep. The timestep can be chosen as a small fixed number, or a line search
can be applied to find an optimal steplength for each iteration.

A similar approach is applied to update c, but in difference from the updating of φ, we introduce
separate artificial time variables for each of the constants cj . This results in the following updating
scheme for each constant;

ck+1
j = ckj −∆tcj

∂L

∂cj
(φk+1, ck,λk), (21)

where the most recent values of φ are used in the calculation of the gradients. The minimisation
approach described here, for updating φ and c, is known as the steepest decent method. In the
calculations, we also assume that the constants cj have lower and upper bounds aj and bj which
are known a priori, i.e. cj ∈ [aj , bj ].

To update the Lagrangian multipliers we follow the approach in [31, 21], i.e.

λk+1 = λk + µK(φk+1). (22)

We incorporate the updating in Eq. (20), (21) and (22) into the following algorithm where line
searches are included:

Algorithm A (Uzawas Algorithm for Variational Level Set Methods)

Determine how many level set functions, N , to use.

Initialise: φ0, co and λ0 and set k = 0.

1. Update φ;

(a) Compute q, u and z by Eq. (9), (1) and (15), respectively.

(b) Define: αkφ = ∂L
∂φ (φk, ck ,λk).

(c) Find the optimal time step: ∆tφ = arg min
∆t

L
(
φk −∆tαkφ, c

k,λk
)

.

(d) Evolve the level set functions: φk+1 = φk −∆tφα
k
φ.

2. Update c (after a fixed number of iterations);

For each cj , j = 1, 2, . . . , 2N :

(a) Compute q, u and z by Eq. (9), (1) and (15), respectively.

(b) Define: αkcj = ∂L
∂cj

(φk+1, ck ,λk).

(c) Define the search interval: Let M ∈ R be all values of ∆t such that ckj−∆t αkcj ∈ [aj , bj ].

(d) Find the optimal timestep: ∆tcj = arg min
∆t∈M

L
(
φk+1, ck −∆t αkcjej ,λ

k
)

, where ej is

the j’th unit vector.

(e) Update this constant: ck+1
j = ckj −∆tcjα

k
cj .
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3. Update λ (after a fixed number of iterations);

λk = λk + µK(φk+1).

4. Iterate again if necessary;

k = k + 1.

Notice that q is updated implicitly using the most recently calculated values of φ and c. In this
algorithm we do not use step 2 and 3 in every iteration. This is because the algorithm becomes
unstable if c and λ are updated too often. In principle we could have run step 1 to convergence
before doing the other steps. Numerically this is not strictly necessary and it would have been
computationally heavy. We have therefore updated c and λ after a fixed numbers of iterations.

6 Implementation Issues

As is typical for Augmented Lagrangian algorithms, the convergence is fast in the beginning and
it slows down when the solution is getting closer to the true minimiser. A natural solution to
this is to apply larger timesteps when evolving φ, but this will make the algorithm unstable.
Another problem, when solving inverse problems, is that the sensitivities related to changes in u
with respect to q may be very small in some regions. This will further slow down the speed of
convergence.

To speed up the algorithm we have introduced a modification of the level set function when
computing q = q(φ, c). Instead of applying the level set functions φ directly as in (6) and (7), we
replace each φi by the function

φ̃i = sgn(φi) =

{ φi
|φi| for φi 6= 0,

0 else.
(23)

For notational convenience we define the vector φ̃ = {φ̃i}Ni=1. Inserting this into Eq. (6) will give
the following construction of q:

q =





1
2

[
c1

(
φ
|φ| + 1

)
− c2

(
φ
|φ| − 1

)]
for φi 6= 0,

1
2 (c1 + c2) else.

(24)

Eq. (7) can be modified in exactly the same way, and for general cases we replace φi by φ̃i when
calculating ψj in (8). By the chain rule we have

∂q

∂φi
=

∂q

∂φ̃i

∂φ̃i
∂φi

=
∂q

∂φ̃i
δ(φi), (25)

where δ denotes the delta Dirac function, i.e. δ(0) = 1 and δ(φi) = 0 ∀φi 6= 0.
In numerical implementations, it is desirable to replace φ̃i by a smoothed approximation. The

chosen approximation is

φ̃i ≈
φi√
φ2
i + ε

, (26)

where ε is a small positive number which has to be chosen. As φi is replaced by φ̃i, the gradient
calculation in (12) and (13) also needs to be changed using (25). However, we have observed from
our numerical experiments that good results are obtained if we just replace δ(φi) in (25) by 1.
Thus, the codes used for calculating the gradients do not need to have any change. The only
change we need to have for the codes, is to replace φi by φ̃i when calculating ψj .

As described earlier, there will in inverse problems typically be some low sensitive areas where
∂u
∂q is very small. When updating φ, the contribution from ∂F

∂q will be small in these regions.

This produces difficulties in finding the minimum of F̃ , and in our approach the constraint will
often be too dominating in the low sensitive regions compared to the other regions. In order to
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overcome this difficulty, we have to weight the constraint very low, which in turn will give a slow
convergence.

If we apply a small value of ε in (26), a small change in φi will give large changes in q when φi
is close to zero. This will reduce the problem of a too dominating constraint in the low sensitive
regions, but only as long as |φi| has a relative low value. Another and may be more important
fact, is that q will converge faster in the regions which have larger sensitivity. It seems like this
will make the calculated derivatives more reliable in the rest of the domain. The optimal shape of
the level set functions will then easier be found, even with a higher weight of the constraint. This
will in turn make the method faster.

By numerical experiments we have found it desirable to start with a rather large value of ε,
and then decrease ε during the iterations. In this setting it is also natural to increase µ during
the iterations. This differs from other related works [21, 27, 10], where a fixed µ has been used to
reduce the ill-conditioness of the problem.

The minimisation with respect to c is a highly ill-conditioned process. It should therefore not
be done too early or too frequently during the iterations. To further stabilise this process, we
have applied a predefined search interval [aj , bj ] for each constant such that there will be no risk
of producing values completely out of range.

When updating both φ and c, we have to be aware that these quantities are dependent of each
other. In this work φ and c are updated in an alternating way (see Alg. A). Usually we start
to update c before |φ| has the unit value for all points in the domain. A situation which then
may occur, is that a combination of |φi| 6= 1 (for some i) and cj-values not corresponding to the
constant values of the exact q, can in some cases still produce the correct value of q. Equilibrium
at this point should theoretically be avoided by the constraint K(φ) = 0, but numerically it may
cause trouble. In the suggested implementation, where φ is replaced by φ̃, this problem can be
considerably reduced by applying a slightly lower ε-value in (26) when updating c (Step 2 of Alg.
1) than the ε-value used when updating φ (Step 1 of Alg. 1). An equilibrium where q takes the
correct value and |φ̃i| is not close to 1 will then be impossible.

7 Numerical Results

We will test the proposed algorithm on several two dimensional problems. Our domain Ω =
(0, 1)×(0, 1) is divided into a rectangular mesh with uniform mesh size h = 1/64 in both directions.
The functions f , q, φ and the required derivatives are approximated by piecewise constants over
this mesh. The force function f(x1, x2) = 20π2 sin(πx1) cos(πx2).

For a given function q(x), approximations of u and z can be found by solving correspondingly
Eq. (1) and Eq. (15) by a finite element or a finite difference method. In our case we have chosen
to apply some already developed software solving this by a finite element method.

To construct the synthetic data we add random noise to the measurements corresponding to
the true coefficient. Let uex be the numerical solution (with no noise added) for the true q(x), and
let σ be the noise level. We get ũd by calculating ũd = uex + σRd||uex||L2(Ω)/||Rd||L2(Ω), where
Rd is a finite element function with nodal values being uniform random numbers between -1 and
1, and with zero mean. Thereafter we apply the total variation denoising technique of Chan and
Tai [6] to smooth ũd. The smoothed version of ũd is used as observations ud.

We start with the initial φ equal to zero, that is equally far from the two searched values, -1
and 1. This initialisation means that we do not assume anything about the shape of φ a priori.
In all the examples the constant values of q(x) are assumed unknown, but we need to specify an
interval which defines the lower and upper bounds for the constants. The initial cj-values are
chosen equal to the lower bounds of the corresponding intervals.

The penalty parameter µ is increased slowly by a fixed factor through the iterations. For the
cases with one level set function this factor can be higher than for cases involving more level set
functions. Letting µk be the value of µ for iteration k, we have used µk=µ0 · 1.01k for one level
set function, and µk=µ0 · 1.002k for two level set functions. We keep µk fixed when it reaches an
upper bound. For the different examples we choose a suitable initial value µ0.

The Lagrangian multiplier λ is initially equal to zero and kept at this value in the beginning
of the optimisation. After a fixed number of iterations we start to update λ each 10th iteration.
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The frequency for updating the constant values, c, will influence the speed of convergence.
A seldom updating of c will give a slow convergence, while a too frequent updating may cause
unstable behaviour. We have chosen to update c each 5th iteration in the examples involving a
circle shaped discontinuity, and each 20th iteration in the examples involving more complicated
geometries. In the last example with three different regions and with noise equal to or larger than
1% we observed unstable behaviour when applying an updating frequency of 20. In these cases
we therefore increased the interval between each updating to 50, which stabilised the method.

In the cases where we substitute φi by φ̃i from Equation (26), we have chosen 0.1 as the initial
ε-value, and decreased it by a factor of 0.98 in each iteration until the value reaches a lower bound
equal to 10−7.

When plotting the level set functions we have in some of the examples plotted both the curve
indicating the sign change of φ and the discontinuity curve of the true q(x). We have used a
dotted line for the discontinuity of the true q(x) and a solid curve to indicate the sign of each φi.
As before the index k will in the figures denote the estimate at iteration k, and k will be given on
the x-axis on the convergence plots. No superscript on q and ci will indicate the corresponding
true values.

Example 1: Convergence, regularisation and noise
In this example, we will look into a simple case in order to study some of the basic properties related
to the solution strategy. The true function to recover, q(x), has two subregions with different
constant values. In Figure 2a) the true q(x) is plotted, and in Figure 2b) the corresponding curve
of discontinuity is shown.

We will first test the original binary formulation explained in Section 3, and compare this
to the suggested implementation proposed in Section 6. In the further text we will refer to the
ordinary and the novel implementation as the Ordinary Binary Level Set Method (OBLSM) and
the Signed Binary Level Set Method (SBLSM), respectively. The example will be tested with 5%
noise added to the observation data, and the lower and upper bounds for the constants are 0.5
below and above the true values.

1

1.5

2

2.5

3

3.5

4

a) True q(x). b) True discontinuity curve.

Figure 2: True q(x) and the corresponding discontinuity for example 1.

Independent of the method of choice, the coefficient in this example is relatively easy to recover
with a rather good accuracy. The choice of the control parameters β and µ0 will though slightly
influent the results and the error in the solution. An optimal choice of the parameters for one of
the methods is not necessarily the optimal choice for the other method. Because of this, we will
compare the convergence of the two methods with three different sets of parameters.

The applied parameters for the three tests are given in Table 1. In Test 1, the set of parameters
is equal for the two methods, while in Test 2 and 3, β and µ0 are tuned such that the error of
q is approximately equal for the two different approaches. In Figure 3, the discontinuity of the
converged level set functions are plotted for both OBLSM and SBLSM. The discontinuity curve is
nearly the same for both methods. This is also the case for the two latter tests, and we therefore
omit the corresponding plots for these tests. The convergence can though be different for the two
methods. Comparisons of the convergence are shown in Figure 4, 5 and 6.
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Ex. 1, Test 1. Ex. 1, Test 2. Ex. 1, Test 3.

OBLSM β = 1 · 10−4 β = 1 · 10−3 β = 1 · 10−4

µ0 = 0.05 µ0 = 0.025 µ0 = 0.025

SBLSM β = 1 · 10−4 β = 1 · 10−4 β = 1 · 10−4

φi → φ̃i µ0 = 0.05 µ0 = 0.025 µ0 = 0.05

Table 1: Parameters for Example 1 for the Ordinary Binary Level Set Method (OBLSM) and the Signed
Binary Level Set Method (SBLSM).

a) Final discontinuity OBLSM. b) Final discontinuity SBLSM.

Figure 3: Example 1, Test 1: The discontinuity curve of the level set function for the two methods
at convergence. The final results from the two different approaches are very similar. The
parameters are β = 10−4 and µ0 = 0.05 for both methods.
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a) ||q(x) − qk||L2(Ω). b) |cj − ckj |. c) ||u(x)− uk||L2(Ω). d) ||K(φk)||L2(Ω).

Figure 4: Example 1, Test 1: Convergence of the two methods. The solid lines are the results for OBLSM
and the dashed lines are the results for SBLSM. The parameters are β = 10−4 and µ0 = 0.05 for
both methods. We observe that the convergence of SBLSM is slightly quicker than for OBLSM.
The final errors (Fig. a), b) and c)) are also lower for SBLSM.
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a) ||q(x) − qk||L2(Ω). b) |cj − ckj |. c) ||u(x)− uk||L2(Ω). d) ||K(φk)||L2(Ω).

Figure 5: Example 1, Test 2: Convergence of the two methods. The solid lines are the results for OBLSM
and the dashed lines are the results for SBLSM. For this test, β is tuned such that the error
of the recovered q is approximately equal for the two methods. The parameters for OBLSM
are β = 10−3 and µ0 = 0.025, and the parameters for SBLSM are β = 10−4 and µ0 = 0.025.
According to the plotted measures, we observe a considerably faster convergence for SBLSM
than for OBLSM.
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a) ||q(x) − qk||L2(Ω). b) |cj − ckj | c) ||u(x)− uk||L2(Ω). d) ||K(φk)||L2(Ω).

Figure 6: Example 1, Test 3: Convergence of the two methods. The solid lines are the results for OBLSM
and the dashed lines are the results for SBLSM. In this case, µ0 is tuned such that the error of
the recovered coefficient is equal for the two methods. The parameters for OBLSM are β = 10−4

and µ0 = 0.025, and the parameters for SBLSM are β = 10−4 and µ0 = 0.05. The measures
plotted in Fig. a), b) and d) give a considerably faster decrease for SBLSM than for OBLSM.
The error of the computed observations, uk, (Fig. c)) is for OBLSM decreasing as quickly as
for SBLSM, though, a stable value for this measure is reached much quicker for SBLSM (after
about 100 iterations) than for OBLSM (after about 300 iterations).

All the three tests show a faster convergence of SBLSM than OBLSM. Especially the conver-
gence of the cj-values is much faster. Also notice that for SBLSM ||K(φk)||L2(Ω) is approaching
zero almost linearly on the semilogarithmic scale before it starts oscillating at a low value, while
OBLSM gives a slower decrease. Because of the faster convergence, we apply SBLSM in the rest
of the examples.

In [10] there are done studies of the same cases as tested in the rest of this paper. According
to the number of requiered iterations, we observe a considerably faster convergence of the SBLSM
implementation than what is the case for the continious level set formulation applied in [10].
For the remaining numerical studies not connected to the discussed three tests, we will skip the
notation SBLSM as this always is the applied method.

In Figure 7 the evolvement of the level set function for Test 1 and 3 with SBLSM is shown.
As in all studied cases, the value of φ is initially zero on the entire domain. That means, we do
not assume anything about the shape of the discontinuity of φ (and hence of q). The initial φ = 0
will produce a function q(x) which is constant with a value equal to the arithmetic mean of the
initial ci-values.

Because of the relative simple contour in this example, the curve indicating the sign of the level
set function (the solid curves in Figure 7) will approximate the discontinuity of q(x) very quickly.
It though takes longer time to get the final piecewise constant solution where φ is equal to 1 or
-1. The error plots of q(x) and c (see dotted lines in Fig. 4a) and 4b)) indicate convergence of
the solution before ||K(φk)||L2(Ω) is close to zero. For practical applications, it may therefore be

reasonable to stop before |φk| is exactly equal to 1.
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φ = 0 φ > 0

φ < 0

φ > 0

φ < 0

φ > 0

φ < 0

a) Initial φ = 0. b) 1 iteration. c) 2 iterations. d) 3 iterations.

φ > 0

φ < 0

φ > 0

φ < 0

φ > 0

φ < 0

φ = 1

φ = −1

e) 5 iterations. f) 30 iterations. g) 200 iterations. h) 600 iterations.

Figure 7: Example 1: The sign of the level set function is shown for different iterations (with SBLSM, Test
1 and 3). The dotted lines are the discontinuity of the true q(x) and the solid curves indicate
the sign of φ. Inside this curve φ < 0, and outside the curve φ > 0. The discontinuity of q(x)
is approximately matched after about 30 iterations, though it takes much more effort to get a
stable solution where |φ|=1 and both φ and c have stopped changing. The applied parameters
are β = 10−4 and µ0 = 0.05.

In Figure 8 we show results corresponding to different levels of noise. We have applied the
same bounds for c as before. The shape of the discontinuity is recovered very well for low noise,
and with slightly less accuracy when the noise increases. The errors in the recovered constants are
increasing more rapidly for larger amount of noise.

In the next study we investigate the effect of the regularisation parameter. We have used
µ0 = 0.025 and added 5% noise. Except from the β parameter, the rest of set up for this study
is as before. In Figure 9 we have shown the discontinuity curves for different values of β. As
expected, a too low β will give an oscillating curve, and the larger the value of β is, the smoother
will the curve of the discontinuity be. It seems like a value of β between 10−3 and 10−4 is a good
choice for this example.
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a) σ = 0, β = 10−7, b) σ = 0.05, β = 10−4,

|c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.01, |c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.09,

||q(x) − q∗||
L2(Ω)

= 0.23. ||q(x) − q∗||
L2(Ω)

= 0.40.

c) σ = 0.20, β = 10−4, d) σ = 0.40, β = 10−4,

|c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.22, |c1 − c∗1 | = 0.02, |c2 − c∗2 | = 0.33,

||q(x) − q∗||
L2(Ω)

= 0.54. ||q(x) − q∗||
L2(Ω)

= 0.57.

Figure 8: Example 1: The identified discontinuity of the level set function for different amount of noise.
The accuracy of the discontinuity is slightly decreasing when we add more noise, while the error
in the recovered constants is increasing more rapidly for larger amount of noise. µ0 = 0.025 for
all levels of noise.

a) β = 10−2, b) β = 10−3,

|c1 − c∗1 | = 0.50, |c2 − c∗2 | = 0.08, |c1 − c∗1 | = 0.07, |c2 − c∗2 | = 0.09,

||q(x) − q∗||
L2(Ω)

= 0.644. ||q(x) − q∗||
L2(Ω)

= 0.298.

c) β = 10−4, d) β = 10−5,

|c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.09, |c1 − c∗1 | = 0.03, |c2 − c∗2 | = 0.09,

||q(x) − q∗||
L2(Ω)

= 0.401. ||q(x) − q∗||
L2(Ω)

= 0.491.

Figure 9: Example 1: The discontinuity of the level set function for different values of β. A too low value
of β gives an oscillating curve of discontinuity, and as expected, an increase in β will increase
the smoothness of this curve. In all cases σ = 0.05 and µ0 = 0.025.



14

Example 2: Approximation of a piecewise smooth function
We have in this case considered the problem of approximating a function q(x) which is a piecewise
smooth function, but not a piecewise constant function. The exact coefficient is constructed by
q(x) = c(x) exp(8x1(1 − x1)(1 − x2), where c(x) = 1 inside the circle shown in Figure 10 b) and
c(x) = 4 in the rest of the domain. The noise level is 5%, and the bounds of the cj-values are
chosen to be 4 ≤ c1 ≤ 5 and 1 ≤ c2 ≤ 2.

We have restricted the approximation to have two constant levels. A higher number of allowed
levels will produce a more accurate approximation. From the plots in Figure 10 we can see that
the location of the discontinuity is recovered rather well, and the identified function q∗ is a good
approximation of the true coefficient. The error ||q(x) − qk||L2(Ω) is reduced from 2 to below 0.6.
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a) True q(x). b) True discontinuity curve.
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c) Identified q∗. d) Discontinuity of φ∗.
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e) ||q(x) − qk||L2(Ω). f) ||K(φk)||L2(Ω).

Figure 10: Example 2: Identification of a piecewise smooth function with σ = 0.05, β = 10−4 and µ0 =
0.025. The approximation is restricted to have two levels, and the error ||q(x) − qk||L2(Ω) is
reduced from 2 till below 0.6.

Example 3: Two regions with complicated geometry
In this example we try to recover a function with a more complicated geometry of the locations of
the discontinuities. The true function q(x) and the curve indicating the discontinuity are shown
in Figure 11. This function consists of three distinct regions, but since two of the regions have
identical constant values, only one level set function is needed to represent q(x). For the lower
and upper bounds in the line searches for the constant values we have applied values which are
0.2 below and above the corresponding true values. We will recover this coefficient with three
different levels of noise; σ = 0.001 (Fig. 12 and 13), σ = 0.01 (Fig. 14) and σ = 0.05 (Fig. 15).
The applied parameters are given in Table 2.
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σ = 0.001 σ = 0.01 σ = 0.05
β 5 · 10−5 1 · 10−4 1 · 10−4

µ0 0.005 0.01 0.01

Table 2: Parameters for Example 3. (µ is increased during the iterations such that µk = µ0 · 1.01k up to
a value of 4.)

The recovered coefficient is very accurate for the case with σ = 0.001. Even the sharp corners
are matched with high accuracy. Concerning the noise we can tolerate about 1% noise. With
larger noise than this, both the discontinuity and the constant values are inaccurate (see Fig. 15).

The applied level set method is not moving the curve in the same way as the continuous
level set formulation, but changing the value of φ at every grid point according to the gradient
information. As in other level set methods it is no problem to split one region into two separate
regions, or in the opposite case, let two separate regions merge into one region. This property is
necessary to let one level set function represent a function with several distinct regions with equal
constant levels.
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1.8
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a) True q(x). b) True discontinuity curve.

Figure 11: Example 3: True q(x) and the corresponding discontinuity.
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a) 3 iterations. b) 5 iterations. c) 10 iterations.

d) 50 iterations. e) 200 iterations. f) 500 iterations.

Figure 12: Example 3: The curve where the level set function changes sign (solid lines) at different it-
erations with σ = 0.001. The discontinuity of the true coefficient is shown with the dotted
lines.
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a) Computed q∗. b) ||q(x) − qk||L2(Ω). c) |ci − cki |. d) ||K(φk)||L2(Ω).

Figure 13: Example 3: The computed q∗ and the convergence of qk, ck and φk with σ = 0.001. At
convergence we had ||q(x)− q∗||L2(Ω) = 0.03, |c1 − c∗1 | = 0.0005 and |c2 − c∗2| = 0.005.
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a) Computed q∗. b) Discontinuity of φ∗.

Figure 14: Example 3: The computed q∗ and the discontinuity of φ∗ with σ = 0.01. At convergence we
had ||q(x)− q∗||L2(Ω) = 0.15, |c1 − c∗1 | = 0.01 and |c2 − c∗2| = 0.05.
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a) Computed q∗. b) Discontinuity of φ∗.

Figure 15: Example 3: The computed q∗ and the discontinuity of φ∗ with σ = 0.05. At convergence we
had ||q(x)− q∗||L2(Ω) = 0.25, |c1 − c∗1 | = 0.05 and |c2 − c∗2| = 0.1.

Example 4: Multiple level sets
In this example the same geometry as in the previous example is used, but the true q(x) has now
three regions with different constant values. q(x) is equal to 1 outside the two curves, and equal
to 3 and 2 inside the left and right curve, respectively (see Fig. 16). Because of more than two
different constant levels, we need (at least) two level set functions to represent this coefficient
function.

The lower and upper bounds of the constants are chosen to be 0.2 below and above the true
values. Also in this case we do not assume anything about the geometries, but start with a zero
value of both level set functions.

We have tested to recover this coefficient with three different levels of noise. With σ = 0.001
we show the evolvement of φ in Figure 17 and the convergence in Figure 18. In Figure 19 and 20
the final results for the cases with σ = 0.01 and σ = 0.05 are plotted. The applied parameters for
these cases are given in Table 3.

In the plots of the level set functions, φ1 gives the discontinuity between all three regions, while
φ2 only gives the discontinuity between the highest and lowest region. This is one way to represent
this function, other combinations of the different φi and cj can produce the same q(x). Two level
set functions can represent up to four regions, but in this case we only need three regions. In the
used representation, the fourth and last combination of the signs of φ1 and φ2 is empty. That is
the case for all the tests.

Compared to the previous examples where one level set function is applied, we have to increase
µ more slowly with two level set functions. Because of this we often need more iterations to achieve
convergence. The result from this study is quite similar to the results from Example 3. Also in this
case we can tolerate nose up to about σ = 0.01. The errors become higher in both the recovered
shape and the constant values when the noise is larger than this level, see Figure 20.

σ = 0.001 σ = 0.01 σ = 0.05
β 5 · 10−6 5 · 10−5 1 · 10−4

µ0 5 · 10−4 0.01 0.05

Table 3: Parameters for Example 4. (µ is increased during the iterations such that µk = µ0 · 1.002k up to
a value of 4.)
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a) True q(x). b) True discontinuity curves.

Figure 16: Example 4: True q(x) and the corresponding discontinuities.

a) φ1, 10 iterations. b) φ2, 10 iterations. c) φ1, 20 iterations. d) φ2, 20 iterations.

e) φ1, 50 iterations. f) φ2, 50 iterations. g) φ1, 200 iterations. g) φ2, 200 iterations.

i) φ1, 500 iterations. j) φ2, 500 iterations. k) φ1, 1500 iterations. l) φ2, 1500 iterations.

Figure 17: Example 4: The curves where the level set functions change sign (solid lines) for different
iterations with σ = 0.001. The discontinuities of the true q(x) are shown with the dotted lines.
The function q∗ corresponding to φ1 and φ2 plotted in Figure k) and l) is shown in Figure 18
a).
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a) Computed q∗. b) ||q(x) − qk||L2(Ω). c) |cj − ckj |. d) ||K(φk)||L2(Ω).

Figure 18: Example 4: The computed q∗ and the convergence with σ = 0.001. The errors of the computed
solution are ||q(x) − q∗||L2(Ω) = 0.25, |c1 − c∗1| = 0.001, |c2 − c∗2| = 0.01 and |c3 − c∗3| = 0.01.
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a) Computed q∗. b) φ ∗1 . c) Final φ ∗2 .

Figure 19: Example 4: The computed q∗ and the discontinuities of φ for σ = 0.01. The errors for
the computed solution are ||q(x) − q∗||L2(Ω) = 0.27, |c1 − c∗1| = 0.01, |c2 − c∗2| = 0.06 and
|c3 − c∗3| = 0.07.
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a) Computed q∗. b) φ ∗1 . c) φ ∗2 .

Figure 20: Example 4: The computed q(x) and the discontinuities of φ for σ = 0.05. The errors for
the computed solution are ||q(x) − q∗||L2(Ω) = 0.42, |c1 − c∗1| = 0.04, |c2 − c∗2| = 0.14 and
|c3 − c∗3| = 0.03.

8 Conclusions

In this work we have introduced a binary level set approach for solving elliptic inverse problems.
The multi-level set representation is regularised by a total variational norm.

This method is not moving the interfaces during the iterative process, but moving the level
set functions towards -1 or 1 at every grid point. This gives some advantages when matching
special geometries; sharp corners can be recovered very accurately, and problems with merging or
separating regions will not be an issue. The reinitialisation of the level set functions used in the
continuous formulation is not needed for the binary level set method.

Numerical results show that rather complicated geometries can be recovered under moderate
amount of noise. An initial guess of the geometries is not needed, only a reasonable guess of
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the constant levels is required. When applying the suggested implementation of this method, the
number of iterations to achieve convergence is considerably reduced compared with corresponding
results from the continuous level set method, c.f.[10].
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