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Fast Piecewise Constant Level Set methods
(PCLSM) with Newton Updating

Xue-Cheng Tai Changhui Yao

Abstract

In this work, we try to develop a fast method for piecewise constant level set methods (PCLSM) when they are used
for Mumford-Shah image segmentation. Just one level set function is needed to identify arbitrary number of phases for
the segmentation problem. For the Mumford-Shah image segmentation model with PCLSM, one needs to minimize a
smooth energy functional under some constrains. In order to solve the minimization problem, fast Newton updating
algorithm is used to solve the Euler-Lagrangian equations. Due to the special structure of the segmentation functional,
the cost for the Newton updating is nearly the same as for gradient decent method. However, the convergence is much
faster with a good initial guess. Numerical experiments are given to show the efficiency and other advantages of the
methods.
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I. introduction

The level set method proposed by Osher and Sethian [18] is a versatile tool for tracing interfaces
separating a domain Ω into subregions. Interfaces are treated as the zero level set of some functions.
Moving the interfaces can implicitly be done by evolving the level set functions instead of moving the
interfaces directly. For a recent survey on the level set methods see [20], [13], [19].

In [7], [8], [12] some variants of the level set method of [18], the so called ”piecewise constant level
set method (PCLSM)”, was proposed to identify arbitrary number of subregions using just one level
set function. The method can be used for different applications. In [7], [8], [12], the ideas have
been used for image segmentation. In [15], [22], applications to inverse shape identification problems
involving elliptic and reservoir equations are shown. Different efforts have been tried to accelerate the
convergence of the algorithms. In this work, we shall try to propose a quasi-Newton method which
needs nearly the same cost as the gradient decent method, but has a much faster convergence. Let
us note that Newton-type of methods have been used for the traditonal level set method in [2] using
shape derivatives. In our approach, no derivatives with respect to shapes are needed.

Before we go any further, we want to mention some recent related approaches that have been used
in the literature for image segmentation, [8], [6], [17], [16], [5], [4]. The so called ”Binary Level Set”
method as in [8], [6], [17], [16], [5] is more related to the phase field models. The model of [4] use
multilayers, instead the constant values, and multiple level set functions to represent the phases.

This paper is organized in the following way. In §II, we review the piecewise constant level set
method. In §III a faster quasi-Newton updating scheme is proposed. Details are supplied to show that
the cost for this algorithm is nearly the same as for the simple gradient updating scheme. In §IV,
numerical experiments are given to show the efficiency of the proposed algorithm.

II. Piecewise constant level set methods for image segmentation

We shall first recall the PCLSM of [7]. The essential idea of the PCLSM of [7] is to use a piecewise
constant level set function to identify the subdomains. Assume that we need to partition the domain
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Ω into subdomains Ωi, i = 1, 2, . . . , n and the number of subdomains is a priori known. In order to
identify the subdomains, we try to identify a piecewise constant level set function φ such that

φ = i in Ωi, i = 1, 2, . . . , n. (1)

Thus, for any given partion {Ωi}ni=1 of the domain Ω, it corresponds to a unique PCLS function φ which
takes the values 1, 2, · · · , n. Associated with such a level set function φ, the characteristic functions
of the subdomains are given as

ψi =
1

αi

n∏

j=1,j 6=i
(φ− j), αi =

n∏

k=1,k 6=i
(i− k). (2)

If φ is given as in (1), then we have ψi(x) = 1 for x ∈ Ωi, and ψi(x) = 0 elsewhere. We can use
the characteristic functions to extract geometrical information for the subdomains and the interfaces
between the subdomains. For example,

Length(∂Ωi) =

∫

Ω

|∇ψi|dx, Area(Ωi) =

∫

Ω

ψidx. (3)

In fact, the level set function also satisfies the relation φ =
∑
iψi. Define

K(φ) = (φ− 1)(φ− 2) · · · (φ− n) =

n∏

i=1

(φ− i). (4)

At every point in Ω, the level set function φ satisfies

K(φ) = 0. (5)

This level set idea has been used for Mumford-Shah image segmentation in [7]. For a given digital
image u0 : Ω 7→ R which may be corrupted by noise and blurred, the piecewise constant Mumford-Shah
segmentation model is to find curves Γ and constant values ci to minimize:

∑

i

∫

Ωi

|ci − u0|2dx+ β|Γ|. (6)

The curves Γ separate the domain Ω into subdomains Ωi and Ω = ∪iΩi ∪ Γ. In Chan-Vese [23], the
traditional level set idea of [18] was used to repsent the curves Γ and to solve the problem (6). In [7],
PCLSM was used for the Mumford-Shah model (6). Note that a function u given by:

u =
n∑

i=1

ciψi (7)

is a piecewise constant function and u = ci in Ωi if φ is as given in (1). The sum in u involves
characteristic functions of polynomial functions of order n−1 in φ and the unknown coefficient ci.
Each ψi is expressed as a product of linear factors of the form (φ− j), with the ith factor omitted.

Based on the above observations, we propose to solve the following constrained minimization problem
for segmenting an image u0:

min
c, φ

K(φ)=0

{
F (c, φ) =

1

2

∫

Ω

|u− u0|2dx + β
n∑

i=1

∫

Ω

|∇ψi|dx+ ν

∫

Ω

|∇φ|dx
}
. (8)
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We see that large approximation errors will be regularized by the fidelity term 1
2

∫
Ω
|u−u0|2. From (3),

it is clear that the latter two terms as the regularization terms suppress oscillation. The regularization
parameter β > 0, ν > 0 control the effect of the two terms. If the image u0 is a piecewise constant
function and we take β = 0, ν = 0, then any minimizers of (8) will give a function u such that u = u0

where u is related to the minimizers c and φ in (7).
In [7], the augmented Lagrangian method was used to solve the constrained minimization problem

(8). The augmented Lagrangian functional for this minimization problem is defined as

L(c, φ, λ) = F (c, φ) +

∫

Ω

λK(φ) dx+
r

2

∫

Ω

|K(φ)|2dx, (9)

where λ ∈ L2(Ω) is the multiplier and r > 0 is a penalty parameter. For the augmented Lagrangian
method, it is necessary to choose the penalization parameter r very large. To find a minimizer for (8),
we need to find the saddle points for L. The following Uzawa gradient algorithm was used in [7] to
find a saddle point for L(c, φ, λ).

Algorithm 1: Choose initial values for φ0 and λ0. For k = 1, 2, · · · , do:
1. Find ck from

L(ck, φk, λk−1) = min
c
L(c, φk, λk−1). (10)

2. Use (7) to update u =
∑n

i=1 c
k
iψi(φ

k−1).
3. Find φk from

L(ck, φk, λk−1) = min
φ
L(ck, φ, λk−1). (11)

4. Use (7) to update u =
∑n

i=1 c
k
iψi(φ

k).
5. Update the Lagrange-multiplier by

λk = λk−1 + rK(φk). (12)

This algorithm has a linear convergence and its convergence has been analyzed by Kunisch and Tai in
[9] under a slightly different context. The algorithm has also been used by Chan and Tai in [24], [3]
for elliptic inverse problems.

The minimizer ck for (10) can be obtained by solving a small n × n linear algebraic system. The
minimizer for (11) is normally solved by the gradient decent method, i.e.

φnew = φold −∆t
∂L

∂φ
(ck, φold, λk−1). (13)

The step size ∆t is chosen by a trial and error approach and it is fixed during the whole iterative
procedure. It is not necessary to solve the minimization problem (11) exactly. The gradient iteration
(13) is terminated when

∥∥∥∥
∂L

∂φ
(ck, φnew, λk−1)

∥∥∥∥
L2

≤ 1

10

∥∥∥∥
∂L

∂φ
(ck, φk−1, λk−1)

∥∥∥∥
L2

(14)

is reached or else after a fixed number of iterations. To compute dL
dφ

, it is easy to see that

∂L

∂φ
= (u− u0)

∂u

∂φ
− β

n∑

i=1

∇·
( ∇ψi
|∇ψi|

)∂ψi
∂φ
−∇·

( ∇φ
|∇φ|

)
+ λK ′(φ) + rK(φ)K ′(φ). (15)

It is easy to get ∂u/∂φ, ∂ψi/∂φ and K ′(φ) from (7),(2) and (4).
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III. Quasi-Newton updating

Different approaches have been used to accelerate the convergence of the PCLSM. Motivated by [5],
the MBO projection of [14] has been applied in [21] to deal with the constraint K(φ) = 0. In [21],
[22], [11], some kind of ”soft” MBO projection was used. In this work, we try to use a quasi-Newton
method to deal with the constraint.

Given ck, φk−1, λk−1, the following Newton method can be used to update φ and λ to get φk and λk,
c.f [1]: (

∂2L
∂φ2

∂2L
∂φ∂λ

∂2L
∂φ∂λ

0

)(
φk − φk−1

λk − λk−1

)
= −

(
∂L
∂φ
∂L
∂λ

)
. (16)

In order to solve the above system, we need to invert a huge linear algebraic system due to the
regularization terms in (8). In many practical applications, it is often useful to replace the Newton
updating by quasi-Newton updating, i.e. replace the Hessian matrix by some approximate Hessian
matrix. Our numerical experiments indicate that the following approach is rather efficient. In order
to describe the approach, we define

Q(c, φ, λ) =
1

2

∫

Ω

|u(c, φ)− u0|2dx +

∫

Ω

λK(φ) dx. (17)

Our numerical experience also reveals that it is not necessary to use the penalization term with the
Newton updatings. Thus, we also define

L0(c, φ, λ) = F (c, φ) +

∫

Ω

λK(φ) dx. (18)

It is easy to see that L0 is equal to L if we take r = 0 in (9). In addition, the functional L0 given
in (18) reduces to Q if we take β = ν = 0. Thus the Hessian matrix for Q is a good approximation
for the Hessian matrix of L0 using the fatc that β and ν are normally very small. The new algorithm
using the quasi-Newton updating and the Lagrangian functional L0 is given in the following:

Algorithm 2: (Quasi-Newton algorithm) Choose initial values φ0, λ0. For k = 1, 2, · · · , do:
1. Find ck from

L0(ck, φk−1, λk) = min
c
L0(c, φk−1, λk). (19)

2. Update u =
∑n

j=1 c
k
jψj(φ

k−1).

3. Find φk, λk from (
∂2Q
∂φ2

∂2Q
∂φ∂λ

∂2Q
∂φ∂λ

0

)(
φk − φk−1

λk − λk−1

)
= −

(
∂L0

∂φ
∂L0

∂λ

)
. (20)

4. Update u =
∑n

j=1 c
k
jψj(φ

k).
5. If converged, end the loop. Otherwise go to step 1.

In order to solve (20), we need to invert the approximate Hessian matrix

H̃ =

(
∂2Q
∂φ2

∂2Q
∂φ∂λ

∂2Q
∂φ∂λ

0

) ∣∣∣∣
(ck ,φk−1,λk−1)

.

It is easy to see that ∂L0/∂λ = K(φk−1) and ∂L0/∂φ can be obtained from (15) by setting r = 0.
Using the chain rule, it is true that

∂2Q

∂φ2
=
(∂u
∂φ

)2

+ (u− u0)
∂2u

∂φ2
+ λK

′′
(φ),

∂2Q

∂φ∂λ
=

∂2Q

∂λ∂φ
= K

′
(φ). (21)
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To solve this algebraic system, it is equivalent to solve a 2 × 2 system at each grid point. Thus, the
cost for Algorithm 2 is nearly the same as for Algorithm 1. The solving of (19) is the same as in [7].
For clarity, we briefly outline it here. As u is linear with respect to the ci values, we see that L0 is
quadratic with respect to ci. Thus the minimization problem (19) can be solved exactly. Note that

∂L0

∂ci
=

∫

Ω

∂L0

∂u

∂u

∂ci
=

∫

Ω

(u− u0)ψidx for i = 1, 2, · · ·n. (22)

Therefore, the minimizer of (19) satisfies a linear system of equations Ack = b:

n∑

j=1

∫

Ω

(ψjψi)c
k
j dx =

∫

Ω

u0ψi dx, for i = 1, 2, · · ·n. (23)

In the above ψj = ψj(φ
k−1), ψi = ψi(φ

k−1) and thus, ck = {cki }ni=1 depends on φk−1. The matrix A
and vector b are assembled at each iteration and the equation (23) is solved by an exact solver.

Some remarks about the above algorithm are given in the following.
Remark 1: In order to have convergence for the quasi-Newton algorithm, we need relative good

initial values. There are different ways to get initial values. In our simulations, we have use Algorithm
1 for getting them. For many of the test examples, the simple scaling procedure outlines in §IV is
good enough to get Algorithm 2 to converge.

Remark 2: Similar to Algorithm 1, it is not necessary to update the c values too earlier and too
often during the iteration procedure, c.f. [7]. For image segmentation problems, it is rather easy to
get good initial guesses for the c values.

Remark 3: Generally, we set ν = 0 and take a small value for β. If the interfaces are oscillatory,
we increase the value of β. When the noise is large, we take a nonzero value for ν which gives faster
convergence for the algorithms.

IV. numerical examples

In this section, we will present some numerical examples with images that have been tested on other
realted algorithms. We have used the following scaling procedure to get initial values for φ and c.

First, we need to determine the phase number n before we start. Once the value of n has been fixed,
we scale u0 to a function between 1 and n and take this as the initial value for φ, i.e.

φ0(x) = 1 +
u0(x)−minx∈Ω u0

maxx∈Ω u0 −minx∈Ω u0

× (n− 1). (24)

For Algorithm 2, we also need an initial value for c and it is obtained by the following technique.
¿From φ0, we define φ̃0 = 1 if φ0 ≤ 1.5, φ̃0 = i if φ0 ∈ (i − 1/2, i + 1/2], i = 2, 3, · · · , n − 1, and

φ̃0 = n if φ0 > n− 1/2. Use this φ̃0 as φk in (23) to get a ck and use it as an initial value for c. The
initial values obtain by this procedure are often good enough to get convergence for Algorithm 2. If
it is not, we use them as initial values for Algorithm 1. We do a fixed number of iterations and then
use the obtained image of Algorithm 1 as the initial value for Algorithm 2. In the following, we shall
refer to Algorithm 1 as the gradient updating algorithm and refer to Algorithm 2 as the Newton
updating algorithm.

We consider only two-dimensional grey scale images. To complicate the segmentation process we
typically expose the original image with Gaussian distributed noise and use the polluted image as
observation data u0. To indicate the amount of noise that appears in the observation data, we report

the signal-to-noise-ratio: SNR= variance of data
variance of noise.

First, we use two examples to demonstrate that the Newton updating is an efficient alternative
to the multiphase algorithm of [10] where standard level set formulation is utilized and of [7] where
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standard PCLSM was used with the augmented Lagrangian method. We begin with an image of an
old newspaper where only two phases are needed. One phase represents the characters and the other
phase represents the background of the newspaper. In this test, we do not need to use the gradient
method to generate the initial values for Algorithm 2. The Newton updating algorithm only uses 12
iterations to obtain an image that is as good as the image produced by the gradient updating algorithm
at 300 iterations, where β = 0.5, ν = 0, r = 104,4t = 5e − 6. The segmentation has been done on
the whole newspaper. In order to show the results clearly, we have just plotted a small portion of the
images. The results achieved with Newton updating and Gradient updating are shown in Fig.1(c) and
Fig.1(d) respectively. The image obtained by the Newton method looks the same as the one obtained
by the gradient method.
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(a) An old newspaper
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(b) A small partition of φ
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(c) 12 Newton iterations
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(d) 300 Gradient itera-
tions

Fig. 1. Segmented images by Newton updating and Gradient updating. Only a small portion of the image is plotted
here. (a) An old real newspaper. (b) A small partition of the convergent φ, it is a piecewise constant function. (c)
Segmented image using Newton updating at 12 iterations, β = 0.1. (d) Segmented image using Gradient updating
at 300 iterations.

The next example is a 2-phase segmentation on a real car plate image. The purpose of this test is
to compare the performance of different algorithms that have been used in the literature. Like in [7],
we challenge the segmentation techniques by adding a large amount Gaussian distributed noise to the
real image and use the polluted image in Fig.2(b) as the observation data. We shall compare three
algorithms, i.e the Newton updating algorithm, the gradient updating algorithm and the Algorithm
of Chan-Vese [10]. As the noise is large, the simple scaling procedure is not good enough to get
convergence for the Newton updating. Thus, we use the scaling procedure to get the initial values
for Algorithm 1, where β = 25, ν = 0.3, r = 0.25 × 104,4t = 1e − 7, and use the obtained image
produced by Algorithm 1 at 137 iterations as the initial image for the Newton updating algorithm.
It was observed that 5 Newton iterations is able to produce an image that is as good as the image
produced by Algorithm 1 using 1059 iterations. The segmented images are displayed in Fig.2. Fig.2(f)
is the image produced by Chan/Vese method (CVM), c.f. [10]. This example and the other examples
clearly demonstrate the efficiency of the Newton updating algorithm.
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(a) Original observation car plate.
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(b) Noisy image
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(c) Initial value for Newton updat-
ing
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(d) 5 Newton iterations
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(e) 1059 Gradient iterations
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(f) Segmented with CVM .

Fig. 2. A comparison between Newton, gradient updatings and the CV method. (a) An original observation car plate.
(b) A noisy car plate with SNR ≈1.7. (c) The initial value of φ for Newton updating. (d) Segmented image using
Newton updating at 5 iterations with β = 0.5. (e) Segmented image by gradient updating at 1059 iterations. (f)
Segmented image with CVM.

In order to show that the Newton updating algorithm can also just use one level set function to
identify arbitrary number of phases, we have test it on a 4-phase segmentation problem. We begin
with a noisy synthetic image containing 3 objects (and a background) as show in Fig.3(a). This is the
same image as in [7], [10]. We take β = 1.7, ν = 0.075, r = 102,4t = 5e − 6 and use 147 iterations
of Algorithm 1 to produce the initial image for Algorithm 2, see Fig.3(c). A careful evaluation of our
algorithm is reported below. The observation data u0 is given in Fig.3(a) and the only assumption
we make is that a 4-phase model should be utilized to find the segmentation. The results of Fig.3(d)
is produced by 6 Newton iterations starting from the initial image given in Fig.3(c). The gradient
updating scheme needs 800 iterations to come to a similar segmentation. In the end, φ approaches the
predetermined constants φ = 1∨2∨3∨4. Each of these constants represents one unique phase as seen
in Fig.3(f). Our result is in accordance with what were reported in [7], [10]. For some applications,
we may not know the exact number of phases. As was demonstrated in [7], some of the phases will be
empty if we take n to be bigger than 4. Some of the phases will be merged into one phase if we take
n to be less than 4.
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(a) Observed image u0 .
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(b) Initial φ0 for Algorithm 1
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(c) Initial φ0 for Algorithm 2
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(d) 6 Newton iterations
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(e) 800 Gradient iterations
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(f) At converges φ approaches 4
constant values with (d).

Fig. 3. A four-phase segmentation are used to test the Newton updating algorithm. (a) An observed image u0

(SNR≈ 5.2). (b) The initial image used for Algorithm 1. (c) Initial φ0 for the Newton updating produced by 147
iterations of Algorithm 1 using the initial image of (b). (d) Segmented with Newton updating at 6 iterations with
β = 0.1. (e) The segmented image by Algorithm 1 at 800 iterations. (f) Each segmented phase φ = 1 ∨ 2 ∨ 3 ∨ 4.

In the last example segmentation of a MR image is demonstrated. The image in Fig.5(a) is available
to the public at http : //www.bic.mni.mcgill.ca/brainweb/. These realistic MRI data are used by
the neuro imaging community to evaluate the performance of various image analysis methods in a
setting where the truth is known. For the image used in this test the noise level is 7% and the non-
uniformity intensity level of the RF-puls is 20%, see http : //www.bic.mni.mcgll.ca /brainweb/ for
details concerning the noise level percent and the intensity level of the RF-puls. We take β = 0.04, ν =
0, r = 0.25 × 104,4t = 5e − 6, and use 29 iterations of Algorithm 1 to produce the initial image for
Algorithm 2, see Fig.4(b). ¿From the initial image given in Fig.4(b), only 15 Newton iterations are
needed to produce the segmented image shown in Fig.5(d)(e)(f). Compared with Fig.5(g) (h)(i) which
are produced by Algorithm 1 with 250 gradient iterations, it takes less time for Algorithm 2 to get
the results of Fig.5(d)(e)(f). In Fig.5 there are three tissue classes that should be identified; phase 1:
cerebrospinal fluid, phase 2: gray matter, phase 3: white matter.
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(a) MRI brain image
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(b) Initial image for Newton updat-
ing

Fig. 4. (a) MRI brain image with a change in the intensity values going from left to right caused by the non-uniformity
RF-puls. (b) Initial image for Algorithm 2 using 29 iterations of Algorithm 1.
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(a) Phase 1:exact
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(b) Phase 2:exact
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(c) Phase 3:exact
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(d) Phase 1: 15 Newton it-
erations
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(e) Phase 2: 15 Newton iter-
ations
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(f) Phase 3: 15 Newton iter-
ations
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(g) Phase 1: 250 gradient it-
erations
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(h) Phase 2: 250 gradient it-
erations
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(i) Phase 3: 250 gradient it-
erations

Fig. 5. Three phases from the exact, Newton updating and gradient updating. (a) (b) (c) are the exact phases. (d)(e)(f)
are the segmented phases with Newton updating at 15 iterations with β = 0.1. (g)(h)(i) are the segmented phases
with gradient updating at 250 iterations.

V. Conclusion

We have also done many other tests for Algorithm 2 with the Newton updating. It is confirmed that
the Newton updating algorithm is very fast. We can use the gradient updating scheme to produce the
initial image for the Newton updating. There are also many other methods that can be used to get
the initial images.

Another PCLSM was proposed in [8] and it was called the Binary Level Set Method. The binary
level set method extends the ideas of [6], [17] and phase field models [16]. It is clear that there is no
problem to extend the Newton updating algorithm to the binary level set method to accelerate the
convergence.

The algorithms proposed here are able to identify arbitrary number of phase by just one level set
function. Moreover, the method is easy to be extended to higher dimensional problems to segment
color and video images.
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