Self-propelled particles with soft-core interactions: patterns, stability and collapse

M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, L. Chayes
Department of Mathematics, UCLA, Los Angeles, CA 90095 and
Department of Physics, Duke University, Durham, NC 27708
(Dated: January 31, 2006)

Understanding collective properties of driven particle systems is significant for naturally occurring aggregates and because the knowledge gained can be used as building blocks for the design of artificial ones. We model self-propelling biological or artificial individuals interacting through pairwise attractive and repulsive forces. For the first time, we are able to predict stability and morphology of organization starting from the shape of the two-body interaction. We present a coherent theory, based on fundamental statistical mechanics, for all possible phases of collective motion.

PACS numbers: 05.65.+b, 45.50.-j, 45.40.Ln, 87.18.Ed

The swarming of multi-agent systems [1] is a fascinating natural phenomenon. The patterns formed by many self-assembling species pose a wealth of evolutionary [2] and biological [3, 4] questions, as well as structural and physical [5–7] ones. In more recent years, understanding the operating principles of natural swarms has also turned into a useful tool for the intelligent design and control of man-made vehicles [8, 9].

One of the main unresolved issues arising both in artificially controlled and biological swarms is the ability to predict stability with respect to size. If well defined spacings amongst individuals exist, swarm size typically increases with particle number, in a ‘crystal’ like fashion. This is generally true in animal flocks and might be a desirable feature in robotic systems. On the other hand, natural examples exist of swarms that shrink in size as particle number increases. For instance, in the early development of the Myxococcus xanthus or Stigmatella auriantaca fruiting bodies [10] two-dimensional bacterial vortices arise and grow until the vortices collapse inward, individual cells occupy the central core and a localized three dimensional structure appears. Although many swarming systems have been studied, and specific phase transitions have been observed [4, 7, 9], a systematic prediction of whether a swarm will collapse or not as the number of constituents increases, has been lacking.

In this Letter, we apply fundamental principles from statistical mechanics to accurately predict the geometry and stability of swarming systems. Specifically, we consider N self-propelled particles powered by biological or mechanical motors, that experience a frictional force, leading to a preferred characteristic speed [11]. The particles also interact by means of a two-body generalized Morse potential. Previous related work [5], showed that in some cases localized vortices may form. Here, we explore the entire phase space defined by the interaction potential and predict pattern geometry and stability. The identical N particles obey the equations of motion:

$$m \frac{\partial \vec{v}_i}{\partial t} = (\alpha - \beta |\vec{v}_i|^2) \vec{v}_i - \nabla_i U(\vec{x}_i),$$

(2)

with the generalized Morse potential given as:

$$U(\vec{x}_i) = \sum_{j \neq i} \left[C_a e^{-|\vec{x}_i - \vec{x}_j|/\ell_a} - C_r e^{-|\vec{x}_i - \vec{x}_j|/\ell_r} \right].$$

(3)

Here, 1 \leq i \leq N; \ell_a, \ell_r represent the attractive and repulsive potential ranges; C_a, C_r their respective amplitudes. The Morse potential is an example of pairwise potential: the analysis we present for determining pattern stability can be extended to any type of pairwise interaction, for example to those in Refs. [7, 9], or to power-laws. Similarly, the self-propelling term is a driving force choice \(f(\vec{v}_i)\) with non-trivial solutions to \(f(\vec{v}_i) = 0\).

For velocity independent forces, i.e. \(\alpha, \beta = 0\), Eqs. 1-3 form a typical Hamiltonian system with conserved energy. The general model belongs to a class of systems – with a root in the dissipation term – that may be approximately mapped onto canonical-dissipative ones, as shown in Ref. [12]. Here, individuals approach configurations for which the total dissipation is zero, so that the dynamics is dictated by the conserved forces. For Eqs. 1-3 then, after a transient time \(\tau \sim m/\alpha\), we expect known properties of the conserved case to apply to the general one with \(\alpha, \beta \neq 0\). In particular, we expect the conditions for stability of Hamiltonian systems to be applicable. The role of temperature will be played by statistical velocity fluctuations about the asymptotic value \(|v_i|^2 = \alpha/\beta\), arising from particle-particle interactions.

For large Hamiltonian systems that obey the laws of statistical mechanics, thermodynamics is expected to emerge as volume and agent number tend to infinity. In order to ensure a smooth passage to the thermodynamic limit, the microscopic interactions must respect certain constraints. The most important of these is H-stability: for a set of N interacting particles, the total potential energy \(U\) is said to be H-stable if a constant \(B \geq 0\) exists such that \(U \geq -NB\) [13]. In particular, this property ensures that particles will not collapse as \(N \to \infty\). Non H-stable systems are also called catastrophic. Conditions for H-stability are explained in detail in Ref. [13]. For
example, if the d-dimensional integral of the potential is negative, the system is catastrophic. In this case, as N increases, particles collapse into a dense body with energy per particle proportional to N. On the other hand, for thermodynamic systems, the energy per particle will asymptotically constant. The stability phase diagram of the Morse potential is shown in Fig. 1, as a function of the ratios $\ell = \ell_r/\ell_a$ and $C = C_r/C_a$.

We numerically integrate Eqs. 1-3 using a fourth order Adams-Bashforth method [14], allowing particles an infinite range of motion. Initial conditions are chosen with localized particles of unitary mass and random velocity. The resulting behavior is consistent with the predictions of Fig. 1. Similar techniques can be applied to hard-core power law potentials where each term in Eq. 3 is divided by $|\vec{x}_i - \vec{x}_j|^p$. For $p \geq 2$ the phase diagram is stable everywhere, but for $p < 2$ a scenario similar to that of Fig. 1 emerges: the separatrix between stable and catastrophic regions is $\ell C^2 - p = 1$. We focus on the Morse potential and discuss trends for each region of Fig. 1.

In the case $\min\{C, \ell\} < 1$ the potential is catastrophic. For $\beta \neq 0$, particles tend to sustain a constant speed $|\vec{v}|^2 \sim \alpha/\beta$, while subject to attractive forces. This competition leads to dynamic configurational patterns. We distinguish three subregions: $\{\ell < C\}, \{\ell = C\}$ and $\{\ell > C\}$, respectively regions I, II and III of Fig. 1. In region I a potential minimum d_{min} exists and the N particles self-organize by creating multi-particle clumps. Within each clump the particles travel parallel to each other defining a collective direction. Because of the rotational velocity, this direction changes in time and the clumps rotate about their center of mass (Fig. 2a). Catastrophic behavior is evident in the fact that as N increases, the clumped structures shrink instead of swelling. Inter-particle distance also becomes smaller and eventually, as $N \to \infty$ clumps lose their coherence and merge. The bisectant $\{\ell = C\}$, region II, is the borderline for the existence of extrema. Here, the potential minimum occurs for $d_{\text{min}} = 0$, no associated finite length scale exists, and rings are developed (Fig. 2c). Assuming equidistant particle spacing, the ring radius R may be estimated by balancing the centrifugal and centripetal forces. An approximate implicit expression for R is given by:

$$R_{\text{max}} = \frac{N/2}{2R^2} \sum_{n=1}^{N/2} \sin \left(\frac{\pi n}{N} \right) \left[\frac{C_r}{\ell_r} e^{-\frac{4\pi}{\ell r} \sin[\frac{\pi}{N}]} - \frac{C_a}{\ell_a} e^{-\frac{4\pi}{\ell a} \sin[\frac{\pi}{N}]} \right]$$

Estimates of R as given by Eq. 4 match extremely well those obtained numerically as seen in Fig. 2d. Similar aggregates are also seen Ref. [12]. For $\{\ell > C\}$ in region III of Fig. 1, clumps appear although there is no minimum

FIG. 1: H-Stability phase diagram of the Morse potential. The catastrophic regions correspond to parameter ratios $\ell = \ell_r/\ell_a$ and $C = C_r/C_a$ for which the thermodynamic limit does not exist. Extrema of the potential d_{ext} exist only for $\ell > \max\{1, C\}$ and for $\ell < \min\{1, C\}$. In these cases $d_{\text{ext}} = \ell_r \log((\ell/C)/(\ell - 1))$. The separatrix is $C\ell^2 = 1$.

FIG. 2: Catastrophic geometry. (a) Clumps. From left to right $N = 40, 100, 150$. Clumps coalesce as N increases. The set parameters are $\alpha = 1, \beta = 0.5, C_a = \ell_a = 1, C_r = 0.6, \ell_r = 0.5$. (b) Ring clumping. From left to right $N = 40, 100, 200$. Parameters are the same as in Fig. 2a, but $\ell_r = 1.2$. (c) Rings. From left to right $N = 60, 100, 200$. Parameters are the same as in Fig. 2a, but $C_r = 0.5$. (d) Ring radius as a function of N from numerical data and Eq. 4. Parameters are the same as in Fig. 2c. Fitting data from Eq. 4 yields $R \sim N^{-0.52}$.
in the potential. In particular, no intrinsic interparticle spacing exists and the clumps consist of superimposed particles traveling along a ring: this type of collective motion is energetically more favorable than uniform spacing among particles. An example is shown in Fig. 2b.

A clumped ring structure also appears in the \(\{ C < 1 < \ell \} \) regime of region IV. The observed behavior is very similar to what described in the \(\{ \ell > C \} \) case above, with the difference that here the potential defines a maximum, and for low particle numbers the extra constraint of avoiding energetically costly interparticle spacings has to be considered. Region V of Fig. 1 where \(\max \{ \ell, C \} > 1 \) corresponds to the H-stable regime. Here, the interparticle potential is characterized by overall repulsive behavior and is minimized by infinite separation. Thus, as \(N \to \infty \) the particles will tend to occupy the entire volume at their disposal. The entire region is a ‘gaseous’ phase with particle speed peaked at \(|\vec{v}|^2 = \alpha/\beta \).

The most interesting region of the phase diagram is defined by \(\{ \ell < 1 < C \} \), regions VI and VII of the phase diagram. Here, the potential is characterized by short range repulsion and long range attraction. A potential minimum exists and defines a length scale \(d_{\text{min}} \). The \(C\ell^2 = 1 \) curve of Fig. 1 parts the thermodynamically stable region VI from the thermodynamically catastrophic region VII. Although the main features of the two-body potentials are similar, different H-stability properties lead to very different self-organizational behaviors in the moderate and large particle limits.

Region VI with \(\{ 1/\sqrt{C} < \ell < 1 \} \) corresponds to thermodynamic stability. At finite \(N \), and for intermediate \(\alpha/\beta \), particles approach the characteristic velocity \(|v^2| = \alpha/\beta \) and reach a kinetic energy much greater than the confining interactions. Agents tend to disperse as individuals. For much smaller values of \(\alpha/\beta \), the \(N \) particles assemble into organized structures with well defined spacings, which in the large particle limit tend to a finite value. Particles will then either swarm coherently in a rigid disk aggregate or flock with a finite center of mass velocity, depending on the initial conditions. In both cases, the motion is rigid body-like and interparticle distances are preserved. For \(\alpha/\beta \to 0 \), the particles assemble into static, locally crystalline structures.

Region VII where \(\{ \ell < 1/\sqrt{C} < 1 \} \), corresponds to thermodynamic instability; all cases examined in Ref. [5] concern this region. As in the previous case, for finite \(N \), large values of \(\alpha/\beta \) will lead to a gaseous phase and very small values to crystalline structures whose motion is rigid body-like. However, quite unlike the H-stable scenario discussed above, these are unstable with respect to particle number, and in the \(N \to \infty \) limit will collapse. At intermediate values of \(\alpha/\beta \), vortices appear with particles traveling close to the characteristic speed \(|\vec{v}|^2 \approx \alpha/\beta \). Here, vortex size decreases dramatically as a function of particle number as seen in Figs. 3, 4. Also, for finite \(N \), vortices rotating counter-clockwise and clockwise may coexist, depending on the initial conditions. In this regime, the occurrence of double spiraling is visually most dramatic since it occurs within vortices, however double spiraling is a feature of the entire catastrophic part of the phase diagram and coexisting left and right directions of motion for clumped or equispaced rings occur as well. Double spirals are thus a strong indication of a catastrophic potential. Another typical feature is that energy per particle does not asymptotically reach a constant value, as seen in Fig. 5. Here, in the catastrophic case, the total energy scales quadratically, and energy per particle is linear in \(N \). Interparticle separation (not shown) decreases dramatically as \(N \to \infty \). For comparison, in the H-stable regime, the total energy

FIG. 3: Snapshots of swarms for different values of \(N \) in the catastrophic regime defined by region VII of Fig. 1. From left to right \(N = 100, 200, 300, 500 \). The chosen parameters are: \(C_n = 0.5, C_r = 1, \ell_n = 2, \ell_r = 0.5 \) and \(\alpha = 1.6, \beta = 0.5 \).

![FIG. 3: Snapshots of swarms for different values of \(N \) in the catastrophic regime defined by region VII of Fig. 1. From left to right \(N = 100, 200, 300, 500 \). The chosen parameters are: \(C_n = 0.5, C_r = 1, \ell_n = 2, \ell_r = 0.5 \) and \(\alpha = 1.6, \beta = 0.5 \).](image)

FIG. 4: Vortex scalings for the catastrophic Morse potential. The parameters are set as in Fig. 3. The friction term \(\beta = 0.5 \). (a) Vortex area as a function of \(N \) for \(\alpha = 1.0, 1.6 \). Note the dramatic decrease with \(N \). (b) Vortex area as a function of \(a \) for various \(N \). From top to bottom \(N = 90, 140, 200, 300, 400, 600 \). For any fixed \(\alpha \) the vortex area decreases with \(N \). (c) Inner and (d) Outer radii of the catastrophic vortices as a function of \(\alpha \). The particle numbers are the same as in Fig. 4b. Both radii increase with \(\alpha \) but decrease with \(N \). For large \(N \) the inner core disappears.
reaches a cutoff N^*. Finally, this system is deterministic: a more realistic description would include the presence of noise. Preliminary results show that moderate noise levels do not dramatically affect the patterns seen here, larger fluctuations could lead to pattern ruptures or morphological changes.

We thank H. Levine, D. Marthaler and T. Chou for useful discussions. We acknowledge support from NSF, ARO and ONR through grants DMS-0306167, W911NF-05-1-0112 and N000140610059.