UNIVERSITY OF CALIFORNIA

Los Angeles

Variational Models for Illusory Contours and
Shape Prior Segmentation

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Mathmatics

by

Wei Zhu

2004



© Copyright by
Wei Zhu
2004



The dissertation of Wei Zhu is approved.

Stanley Osher

Luminita Vese

Dario Ringach

Tony F. Chan, Committee Chair

University of California, Los Angeles

2004

i



To my wife and my parents

iii



TABLE OF CONTENTS

1 Introduction. . . . . ... ... .. ... ... ...
1.1 Tlusory contours . . . . . . . . . .. .o
1.2 Shape prior segmentation. . . . . . . . ... ... ... L.

1.3 Contributions and Organization of This Dissertation . . . . . ..

2 Capturing illusory contours using shape information . .. . ..
2.1 Imtroduction . . . . . . . . . ..o
2.2 Models . . . . . . .o

2.2.1 Shape representation using signed distance functions

2.2.2 The model for exact shapes . . . ... ... ... .....

2.2.3 'The model for affine shapes . . . .. ... ... ... ...
2.3 Experiments . . . . . . ..o

2.3.1 Experiments for exact shapes . . .. ... ... ... ...

2.3.2 Experiments for affine shapes . . . . ... ... ... ...
24 Conclusion . . . . . . . ..

25 Appendix . . ...

3 Capturing illusory contours using curvature information . . . .
3.1 Introduction . . . . . . . . .. . .. ...

3.2 Sarti et al’s method for completing missing boundaries . . . . . .

v

10

10

11

16

17

18

20

21

22

27



3.3 Our model and the numerical algorithm . . . ... ... ... .. 30
3.3.1 Euler’s Elastica . . . .. ... ... .. ... ... 31
332 Themodel . . . . . . ... .. oo 32
3.3.3 Numerical Algorithms . . . . ... .. ... ... 36

3.4 Numerical Experiments . . . . . . .. ... ... .00 40

3.5 Conclusion . . . . ... . L 44

A level set approach to segmentation with depth . . . . . . .. 47

4.1 Introduction . . . . . . . . ..o 47

4.2 Nitzberg-Mumford-Shiota functional . . . .. .. ... ... ... 50

4.3 Level set method for minimizing the Nitzberg-Mumford-Shiota
functional . . . . ..o 52
4.3.1 Level set formulation . . . . . . ... ... 000 52
4.3.2 Derivation of the Euler-Lagrange equations . . . . . . . .. 93

4.4 Numerical Implementation . . . . . . . .. ... ... ....... 56
4.4.1 Discretization of the Euler-Lagrange equations . . . . . . . 56
4.4.2 Smereka’s Semi-Implicit method . . . . . . .. .. ... .. 59
4.4.3 Procedure of minimizing NMS functional . . . . . . . . .. 60

4.5 Numerical Experiments . . . . . . . . ... ... 61
4.5.1 Two regions and a background . . . . . .. .. .. ... .. 61
4.5.2 Three regions and a background . . . . . . ... ... . 64

4.6 Conclusion . . . . . . . . ..o 64



5 Level set based shape prior segmentation . ... ... ... ... 69

5.1 Introduction . . . . . . . . . .. .o 69
5.2 Shape representation via a signed distance function . . . .. . .. 71
5.3 A review for shape prior segmentation models . . . . . ... ... 72

5.3.1 Using prior shapes in geometric active contours (Chen et al.) 72

5.3.2 Segmentation using shape priors and dynamic labelling (Cre-

mersetal.) . .. ... L 74

54 Our Model . . . . . .o 76
5.4.1 Shape prior segmentation for a simple case . . . . . . . .. 76
5.4.2 Shape prior segmentation for general cases . . . . . .. .. 7

5.5 Numerical algorithms . . . . . . ... ... . o0 80
5.5.1 Numerical algorithms for the simple case . . . . ... ... 80
5.5.2 Numerical algorithms for the general case . . . ... ... 85

5.6 Experiment results . . . . . . ... Lo Lo 86
5.6.1 Synthetic images . . . . . . . ... ... L. 87
5.6.2 Realimages . . . . ... ... ... L. 87
5.6.3 Discussion of our model . . . .. ... ... 88

5.7 Conclusion . . . . . . .. Lo 89
References . . . . . . . . . . 95

vi



1.1

1.2

1.3

2.1

2.2

2.3

24

LisT oF FIGURES

(a) Kanizsa triangle, (b) Kanizsa square. . . . . . . . .. .. ... ..

The first row contains the original image (Left) with two regions (mid-
dle and right) given by any multi-phase intensity based segmentation
method, and the second row illustrates the results from a segmentation
with depth model. Besides the occlusion relation between the two ob-
jects ("Front” and "Behind” in this example), the missing boundary of

the behind object is also restored. . . . . . . . . ... ... ... ..

In this example, we show that an occluded hand can be segmented from

an image by using the shape information of a similar hand. . . . . . .

Kanizsa triangle, square and a special illusory triangle. Human being
may easily identify a triangle and a square in the first two pictures
respectively. However, in the right most picture, without the shape

information of triangle, the illusory triangle may not be recognized.

The term [ R up?dxdy for the right figure is smaller than that of the left
because the candidate illusory contour (white curve) in the right figure

is more close to the objects than the left one. . . . . . . . ... ...

In this figure, the candidate illusory contour (white curve) is trapped
into a local minimizer of (2.6), since a smaller change of (a,b,r,6) will

not make (2.6) smaller. . . . . . .. ... 0oL

The left figure is a disk, while the right one is an ellipse which is a

transformation from the left by matrix A = [5,1;1,1]. . . . ... ..

vii



2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Searching for Kanizsa triangle in the equivalence class of an equilateral

triangle. In this experiment, time step size dt = 0.01, A=2.0. . . .. 19

Searching for Kanizsa square in the equivalence class of a square. In

this experiment, time step size dt =0.01, A=2.0. . . ... ... .. 19

Searching for an illusory triangle in the equivalence class of an equilat-

eral triangle. In this experiment, time step size dt = 0.02, A=1.5. . . 20

Searching for an illusory disk in the equivalence class of a disk. In this

experiment, time step size dt = 0.05, A=0.2. . . . ... .. ... .. 21

Searching for an illusory disk in the equivalence class of a disk. In this

experiment, time step size dt =0.05, A=0.5. . . . . ... ... ... 21
Searching for an illusory triangle in the equivalence class of an equilat-
eral triangle. In this experiment, time step size dt = 0.002, A =6.0. . 22
Searching for an illusory square in the equivalence class of a square. In
this experiment, time step size dt = 0.001, A=4.0. . . . . . .. . .. 22
Searching for an illusory Rubin Vase in the equivalence class of a Rubin
Vase. In this experiment, time step size dt = 0.001, A=4.0. . . . .. 23
Searching for an illusory triangle (not an equilateral triangle) in the

class of shapes which are transformations of an equilateral triangle. In

this experiment, time step size dt = 0.01, A = 2.0, 4 = 100.0 and € = 0.2. 23

Searching for an illusory parallelogram (not a square)in the class of
shapes which are transformations of a square. In this experiment, time

step size dt = 0.0075, A =2.0, y =100.0 and e =0.2. . . . . . . . .. 24

viii



2.15

2.16

2.17

3.1

Searching for an illusory ellipse (not a disk)in the class of shapes which
are transformations of a disk. In this experiment, time step size dt =

0.01, A=0.5, p=1000and e=04. . .. . ... ...

The top row is the searching process (initial, intermediate and final
step, from left to right) for Kanizsa triangle. With the same initial
candidate illusory contour, another searching process for a general tri-
angle is shown in the bottom row. They are both done by the model
for affine shapes. The comparison validates that this model can be ap-
plied for finding some general triangles with the shape of an equilateral

triangle. . . . . ..o L L

The top row is the searching process (initial, intermediate and final step,
from left to right) for Kanizsa square. With the same initial candidate
illusory contour, another searching process for a general parallelogram

is shown in the bottomrow. . . . . . . . . . . . .. ... ..

The white curve is the zero level set in the steady state by minimizing
the functional (3.9). The three corners are all smeared (c.f. Figure
1.1(a)) while the missing boundaries are not straightened enough. This
example shows that the energy (3.9) is insufficient to capture the illu-
sory contours, especially for the ones with high curvature points such

AS COTNETS. . . . . . v v v v v i e v e e e e e e e e e e e e e e e e

ix



3.2

3.3

3.4

3.5

3.6

3.7

3.8

In this figure, the point A is a concave point where the curvature x(d) is
positive, and the point B is a convex point at which the curvature x(d)
is negative. Note that the function d is the signed distance function
corresponding to objects’ boundaries, and it is positive inside objects

and negative on the background. . . . . . . .. ..o 000 L.

This image is the classical Kanizsa Triangle. The evolution process is
listed with four figures from left to right. The parameters chosen for

this example are: A =3.0, x =15.0,a=05,b=0. . . ... ... ..

This image is the classical Kanizsa Square. The evolution process is
listed with four figures from left to right. The parameters chosen for

this example are: A =3.0, x =15.0,a=05,b=0. . . ... .. ...

This image is a general four-edged shape. The evolution process is
listed with four figures from left to right. The parameters chosen for

this example are: A =3.0, x =15.0,a=05,b=0. . ... ... ...

This image contains an illusory ellipse inside a square. The evolution
process is listed with four figures from left to right. The parameters

chosen for this example are: A = 3.0, y = 15.0, a = 0.01, b = 0.5.

In this image, the illusory contour is a dumb-bell. The evolution process
is listed with four figures from left to right. The parameters chosen for

this example are: A = 3.0, x =15.0, a =0.005, b=0.05. . . ... ..

In this image, the illusory contour is a Rubin Vase(or two faces). The
evolution process is listed with four figures from left to right. The

parameters chosen for this example are: A = 3.0, y = 60.0, a = 0.1,

43



3.9

3.10

3.11

4.1

4.2

This image is an ellipse inside a square. The evolution process is listed
with four figures from left to right. The parameters chosen for this

example are: A =3.0, . =15.0,a=0.01,6=0. . ... ... ....

These images are the final results according to different choices of the
parameter b and the same a. Here ¢ = 0.01, and b = 0,0.1,0.3,0.5 from

left to right respectively. . . . . . . . . ... .o

The comparison for the illusory contours with or without real junctions.
We can see that our model yields a good result for the example in the
third row, since the real junctions are present for this case, but fails for
the other two cases without real junctions. It supports the fact that

the junctions are crucial to recognize illusory contours. . . . . . . ..

The first row contains the original image (Left) with two regions (middle
and right) given by any multi-phase gray intensity based segmentation
method, and the second row illustrates the results from a segmentation
with depth model. Besides the occlusion relation between the two ob-
jects ("Front” and ”Behind” in this example), the missing boundary of

the behind object is also restored. . . . . . . . . ... ... ... ..

Bar and Fork. From left to right, these figures are the original image

and the two regions obtained from standard segmentation model. . . .

xi

62



4.3

4.4

4.5

4.6

The evolution process under the assumption that the Bar is in front of
the Fork. In the second and third row, the evolutions of the two regions
by solving (4.14) are listed. The fourth row shows how the boundary
of the Fork is growing. During the process, the front region occupied
by the Bar is keeping stable while the region by the Fork is connecting
behind the Bar. In this experiment, the parameters are: a = 0.00005,

B =0.005, and A = 0.1 in Smereka’s semi-implicit method. . . . . . .

Ellipse and Crescent. From left to right, these figures are the original

image, and the two regions obtained from standard segmentation model. 64

The evolution process under the assumption that the Ellipse is in front
of the Crescent. In the second and third row, the evolutions of the
two regions by solving (4.14) are listed. The fourth row shows how
the boundary of the Crescent is growing. During the process, the front
region occupied by the Ellipse is keeping stable while the region by
the Crescent is connecting behind the Ellipse. In this experiment, the
parameters are: a = 0.00005, 8 = 0.01, and A = 0.1 in Smereka’s

semi-implicit method. . . . . . . . ..o 0000000 oL

An Annulus and two Bars. The top left is the original image, and the
other three figures show the regions obtained from the original image

by standard segmentation model. . . . . . . .. .00 000 oL

xii



4.7

5.1

The evolution process under the ordering assumption that the Annulus,
the vertical Bar, and the horizontal Bar are listed from the nearest to
the farthest. In each group of figures, the left top is the original image
while the others show the evolution of each regions. During this process,
the Annulus is almost keeping stable while the vertical Bar is connecting
then the horizontal Bar. In this experiment, we choose the parameters
are: a = 0.00005, 8 = 0.03, and A = 0.1 in Smereka’s semi-implicit

method. . . . . . .. e e

The first row lists the original image and the prior shape. From the
second row to the fourth row, each column respectively represents the
initial, middle and final step of the segmentation function ¢, labelling
function L, shape function %, and the goal segmentation which is rep-
resented by the boundary of the region {¢ > 0} ({L > 0}. In this
experiment, the parameters chosen are: A = 4.0, u1 = 0.2, pus = 0.2,
v = 2.0. This example demonstrates that the model can segment the
object, which is occluded by other ones and similar to the prior shape,

out from a background with several objects. . . . . . . . .. ... ..

xiii



5.2

9.3

The first row lists the original image and the prior shape. From the
second row to the fourth row, each column respectively represents the
initial, middle and final step of the segmentation function ¢, labelling
function L, shape function %, and the goal segmentation which is rep-
resented by the boundary of the region {¢ > 0}({L > 0}. In this
experiment, the parameters chosen are: A\ = 6.0, y1 = 0.2, pys = 0.2,
v = 0.5. This example shows that our model is capable of capturing
the object similar to the prior shape by filling in it missing parts from

an image with several other objects. . . . . . . .. ..o 0oL

The first row lists the original image and the prior shape. From the
second row to the fourth row, each column respectively represents the
initial, middle and final step of the segmentation function ¢, labelling
function L, shape function 1, and the goal segmentation which is rep-
resented by the boundary of the region {¢ > 0}({L > 0}. In this
experiment, the parameters chosen are: A = 3.0, u; = 0.2, pys = 0.2,
v = 2.0. This example verifies that our model can capture an object
occluded by other ones via the supervision of the prior shape from a

real image. . . . . .. L. L. Lo L

xXiv



5.4

The first row lists the original image and the prior shape. From the
second row to the fourth row, each column respectively represents the
initial, middle and final step of the segmentation function ¢, labelling
function L, shape function %, and the goal segmentation which is rep-
resented by the boundary of the region {¢ > 0}({L > 0}. In this
experiment, the parameters chosen are: A\ = 2.0, y1 = 0.2, pys = 0.2,
v = 2.0. This example shows that our model can also be applied to
segment an object similar to the prior shape by filling in the missing

parts from a real image. . . . . . .. . ...

XV



ACKNOWLEDGMENTS

I wish to express my sincere and deepest appreciation to my advisor, Prof. Tony
F. Chan, for his guidance, advice and support throughout my graduate studies at
UCLA. His enthusiasm, patience and intelligence have helped me achieve more in
my studies. I would like to thank other members of my committee: Prof. Stanley
Osher, Prof. Luminita Vese and Prof. Dario Ringach for their great help, encour-
agement and valuable suggestions during my study at UCLA. I would also like to
thank Prof. Selim Esedoglu for his valuable discussions on various mathematical
issues. Especially, I wish to express my sincere gratitude to Prof. Stanley Osher

and Prof. Hailiang Liu for their great encouragement.

I would also like to thank other people for their generous help on mathematical
topics as well as many aspects of my life. Thanks goes to Bing Song, Chiu-Yen
Kao, Cho Hong Min, Mark Moelich, Fred Park, Ming-Ham (Andy) Yip, Jin-
jun Xu, Igor Yanovskiy, Sung Ha Kang, Haomin Zhou, Jianhong (Jackie) Shen,
Richard Tsai, Berta Sandberg.

Collaborations

All the chapters are coauthored with Prof. Tony F. Chan. And Chapter 3 is also
joint work with Prof. Selim Esedoglu.

The work was supported in part by ONR contract N00014-96-1-0277, NSF con-
tract DMS-9973341 and NIH contract P20 MHG65166.

xvi



Vita

1973 Born, Anhui, P. R. China.

1994 B.S. (mathematics), Tsinghua University, P. R. China.
1999 M.S. (mathematics), Peking University, P. R. China.
1999-2004 Teaching Assistant and Research Assistant

UCLA, Los Angeles, California

PRESENTATIONS

Capturing illusory contours: a level set approach, Minisymposium at SIAM Con-
ference on Image Science, Salt Lake City, UT, May 3-5, 2004.
Segmentation with depth: a level set approach, Minisymposium at SIAM Con-

ference on Image Science, Salt Lake City, UT, May 3-5, 2004.

xvii



ABSTRACT OF THE DISSERTATION

Variational Models for Illusory Contours and
Shape Prior Segmentation

by

Wei Zhu
Doctor of Philosophy in Mathmatics
University of California, Los Angeles, 2004
Professor Tony F. Chan, Chair

This dissertation contains studies on variational models for illusory contours and

shape prior segmentation problems.

[llusory contours are intrinsic phenomena in human vision. These contours
are not completely made up of objects’ boundaries, but part of them are missing.
We propose two different level set based variational models to capture illusory
contours. The first model is based on the relative locations between illusory
contours and objects as well as the known shape information of the contours. The
second approach utilizes curvature information via Euler’s Elastica to complete
missing boundaries. The method is capable of a wide-range of illusory contours.
As an extension of illusory contours, we use level set methods to numerically
solve the minimization problem of the Nitzberg-Mumford-Shiota’s functional that
appears in segmentation with depth problem, since one of the key problems for
this topic is to reconstruct missing boundaries of farther objects that are occluded

by nearer objects.
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Shape prior segmentation is to incorporate shape information into the stan-
dard intensity based segmentation procedure. This is always necessary because
standard segmentation methods fail to segment meaningful objects when they
are in low gray contrasts or occluded by other ones. We propose a level set based
variational model that combines Chan-Vese’s segmentation model and the shape

comparison term using the Heaviside function.
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CHAPTER 1

Introduction

Image processing is becoming a more and more active branch of applied mathe-
matics with its broad applications. Typical image processing tasks include seg-
mentation, denoising, debluring, and compression. In this dissertation, we focus
our attention on image segmentation, which includes the problems on capturing

illusory contours and shape prior segmentation.

Many kinds of mathematical theories have been applied to the problems in im-
age processing. These methods mainly involve partial differential equations, vari-
ational methods, statistical methods, and even differential geometry, Lie groups.
In this dissertation, we are interested in using variational methods to characterize
image processing problems. Variational methods are very popular methods. It
is flexible for us to construct models for particular applications. And the intrin-
sic partial differential equations, i.e., Euler-Lagrange equations from variational
models, come out more naturally than artificial ones. Moreover, in the mathe-
matical point of view, it is relatively easier to provide analytical results for the
partial differential equations originated from variational models than for general

partial differential equations.



1.1 Illusory contours

[llusory contours are intrinsic phenomena in human vision. These contours are
not completely made up of existing objects’ boundaries, but part or even all of
them are totally missing. Classical examples include the Kanizsa triangle and

square [Kan79] shown in Figure 1.1. When human being looks at these figures,

(a) (b)

Figure 1.1: (a) Kanizsa triangle, (b) Kanizsa square.

it is easy for him to recognize a triangle and a square even though parts of their
boundaries are not present. However, it is a challenging problem in computer
vision. Because it can not be regarded as a standard segmentation problem from

which one can only ”find” existing boundaries of objects.

In fact, there are many kinds of illusory contours in human perception. In
this dissertation, besides the above kind of illusory contours (Figure 1.1), we also
consider missing boundaries (illusory contours) in the problem of segmentation
with depth. Segmentation with depth is different form standard segmentation.
Its goal is to automatically infer the shapes of objects and the occlusion rela-
tions among them. Figure 1.2 is an example to illustrate the difference between

standard segmentation and segmentation with depth.



Front Behind

Figure 1.2: The first row contains the original image (Left) with two regions (middle
and right) given by any multi-phase intensity based segmentation method, and the
second row illustrates the results from a segmentation with depth model. Besides the
occlusion relation between the two objects ("Front” and ”Behind” in this example),

the missing boundary of the behind object is also restored.

1.2 Shape prior segmentation

Segmentation is a fundamental problem among all topics in the field of image pro-
cessing. Segmentation is briefly to decompose a given image domain into several

pieces regions in each of which the gray intensity distribution is homogeneous.

However, standard segmentation methods (intensity based methods) always
fail to segment meaningful objects from given images when the objects are in low
contrast or are occluded by others. To this end, one has to resort to the shape
information of the meaningful objects. This incorporation of shape information

into segmentation process is always called shape prior segmentation. In Figure



1.3, we present an example that illustrates a hand is segmented from a given

image with its shape information.

Figure 1.3: In this example, we show that an occluded hand can be segmented from

an image by using the shape information of a similar hand.

1.3 Contributions and Organization of This Dissertation

In this dissertation, we are focusing our attention on the problems of illusory

contours and shape prior segmentation.

Many mathematical methods, for instance in [GKP96, GPR98, PGR99, SMS00],
have been proposed to capture illusory contours. In Chapter 2 and Chapter 3, we
present two different variational models to deal with this problem. In Chapter
2, we employ shape information to identify illusory contours. We assume that
the shape of the desirable illusory contour is known, but its location, rotation
and scale are unknown. Then we search inside the given image for a contour
(with the known shape) that matches the desirable illusory contour by using the
location relations between objects and the desirable illusory contours. Moreover,
we extend the case of orthogonal transformations of shape to more general cases

of affine transformations, which allows us to identify more illusory contours with



a given shape.

In Chapter 3, we construct a variational model that utilizes curvature infor-
mation to capture illusory contours. Basically, the key thing for illusory contours
is to complete missing contours. We employ Euler’s elastica [Mum94, CKS02] to
control an active contour so that it can complete missing contours in a smooth
way. Our model also preserves real junctions very well by emphasizing the infor-
mation near these junctions in our model, which also conforms to human vision.
The model is capable of a wide range of illusory contours regardless of curves or

straight lines as missing boundaries.

As an extension of illusory contours (see Figure 1.2), in Chapter 4, we use
level set methods [OS88] to numerically solve the minimization problem of the
Nitzberg-Mumford-Shiota’s functional [NMS93] that appears in segmentation
with depth problem. By using level set methods, curvature terms can be rep-
resented directly, which is much more easier and accurate than using the ap-
proximation via I'— convergence in [EM03]. The above minimization problem
then turns out to be solving a system of fourth order equations, which is similar
to the Euler Lagrange equations derived in Chapter 3. We use Smereka’s semi-
implicit method [Sme03] to solve the fourth order equations, which speeds up the

evolution process considerably.

In Chapter 5, we address the problem of shape prior segmentation. In the
literature, there are lots of works on this topic. For instance, in [LFG00, LGF00,
CTT02], the authors incorporated shape information (statistical or level set
method based) into Caselles et al.’s geometric active contours model [CKS97];

in [CTWO02], a region-based variational model that introduces statistical shape



knowledge into Mumford-Shah functional [MS89, MS95] was proposed. Later,
Cremers et. al. introduced a labelling function into shape prior segmentation
process in [CSS03]. This labelling function helps to determine the regions with
which the given shape should be compared. Inspired by this idea, we present
in this chapter a level set based variational model to the shape prior segmenta-
tion problem. Our model is different from [CSS03] mainly in two aspects. On
one hand, our approach permits scaling, translation and rotation of the given
shape. On the other hand, we take a different shape comparison term which
is independent of the image domain. Moreover, we provide a proof for a fast
principle, which is also mentioned [GF02] and similar to [SC02], for minimizing
Chan-Vese’s segmentation model without length term. We extend the principle

to the minimization of our prescribed functional.



CHAPTER 2

Capturing illusory contours using shape

information

2.1 Introduction

[llusory contours are common phenomena in human vision. These contours
are not completely made up of existing objects’ boundaries, but part of them
are not present. Classical examples include the Kanizsa triangle and square
[Kan79, PM87] shown in Figure 2.1. Human visual system has no trouble filling
in the missing boundaries for the illusory triangle and square. However, cap-
turing illusory contours can not be simply regarded as a standard segmentation
problem since segmentation methods only ”find” existing boundaries of objects.
Therefore, the major computational challenge of identifying illusory contours is

to complete the absent contours.

It is not fully understood how humans perceive illusory contours. Psychol-
ogists have known for some time that certain visual cues such as corners, T-
junctions or L-junctions and boundaries are important in this process. Many
computational models have been proposed to capture illusory contours. They
can be categorized into two kinds. One kind involves completing the boundary

of special interests by using the information of corners and boundaries, such as



in Geiger et. al. [GPR98, GKP96], Ulman [Ulm76], etc. The other kind employs
information about the whole region instead of corners and boundaries; see e.g.

Sarti, Mallidi and Sethian [SMS00].

Figure 2.1: Kanizsa triangle, square and a special illusory triangle. Human being may
easily identify a triangle and a square in the first two pictures respectively. However, in
the right most picture, without the shape information of triangle, the illusory triangle

may not be recognized.

In [GPRYS8|, Geiger et al. decompose images into several layers with the
illusory contours in a different layer from those of real objects or background.
They first pick out all the corners in the image, including T-junctions and L-
junctions, then set out a set of hypothesis for each corner according to whether
they belong to different layers. The best set of hypothesis is determined by
minimizing an appropriate form of energy functional, from which the illusory
contour can be obtained. Taking a different perspective, Sarti et al. [SMS00,
SCO1] begin with an initial surface, which is chosen on the basis of a reference
fixation point inside the region bounded by desirable illusory contours, then flow
the surface according to the image gradient. The flow is chosen to sharpen the

surface around the existing edges and complete the missing edges.

In this chapter, we posit that shape information has a role to play in cap-



turing illusory contours. For example, in the right most picture of Figure 2.1, it
would be difficult to perceive the triangle without a priori knowledge of its shape.
We therefore would like to propose a mathematical model to incorporate shape
information in identifying illusory contours. Our idea is this: we first assume
the shape of the illusory contour is known, then we search in the equivalence
class (discussed in section 2.2.1) of the known shape for a suitable contour that
matches the illusory contour perfectly. For instance, we characterize the Kanizsa
triangle as the best equilateral triangle that fits the given image (the precise def-
inition of fit will be discussed later). Here, we consider only one shape. But in

general, we expect the methodology can be extended to a library of shapes.

Our method differs from others in several ways. First, our method incorpo-
rates shape information to capture illusory contours. Second, because the known
shape can be arbitrary, with rather complicated geometry, our method can iden-
tify illusory contours with curved as well as straight boundaries. Third, in our
method, there is no extra computational cost associated with finding and analyz-
ing visual cues such as T-junctions and L-junctions. Finally, in our method, the
initial guess for the illusory contour can be put anywhere in the image without

requiring the specification of a reference fixation point.

The remain part of this chapter is organized as follows. Section 2.2 consists of
several parts. In subsection 2.2.1, a review for shape representation using signed
distance functions is given. Then two models are discussed in subsection 2.2.2 and
2.2.3 respectively. In section 2.3, we present two groups of experiments, including
the Kanizsa triangle, square and some synthetic examples. A conclusion is given

in section 2.4, which is followed by an appendix in section 2.5 for the formulation



of the gradient descent used in this chapter.

2.2 Models

2.2.1 Shape representation using signed distance functions

As discussed in Paragios et. al.’s work [PRR02, RP02], we can use signed distance
functions (special level set functions [OS88] ) to represent shapes. Given an object
Q0 C R?, which is assumed to be closed and bounded, then there is a unique

viscosity solution to the following equation:

| Vo =1

>0 z € Q\0Q
¢4 =0 2 €00 (2.1)
<0 z € R?\Q.

In this way, any object (or region) in the plane corresponds to a unique signed
distance function, and vice versa. As shape is invariant to translation, rotation
and scaling, we may define an equivalence relation in the collection of objects
in the plane. Any two objects are said to be equivalent if they have the same
shape. Their signed distance functions are related. For example, let €2; and s
be two objects with the same shape, ¢; and ¢, be the signed distance functions

respectively, then there exists a four-tuple (a, b, r, #) such that:

bo(z,y) = 7"(/51[(3: —a)cosf + (y — b) sinﬁ’ —(x —a)sinf + (y — b) cosﬁ],

r r

(2.2)

where (a, b) represents the center, r the scaling factor and 6 the angle of rotation.

10



Equivalently, we can write as ¢o = r¢; o (+71'), where
x cosf sinfd T —a
Y —sinf cosf y—>b

_ [cosf sinf | ) _
Note that the matri in (2.3) is an orthogonal matrix. In

—sinf cosf

general, we may also choose a general matrix in (2.3), not merely an orthogonal
one. This would allow our method to find illusory contours that are close but
not necessarily an exact match of a known shape. We consider both cases in this

chapter.

2.2.2 The model for exact shapes

In this chapter, we only consider binary images, which take the value of 1 on the
regions occupied by ”"objects” and 0 on the ”background” in the defined domain.
In fact, general images can be pre-processed to be this kind of images. Any region
based segmentation models, such as Chan and Vese’s model [CV01], could sepa-
rate objects from background and yield a level set function with positive values
in the regions occupied by objects and negative values in the background. We
can then get a desirable image from the level set function by using the Heaviside

function.

Therefore, we can assume the given image u to be a binary image defined
in domain R C R?, with v = 1 on the objects, u = 0 on the background. For
example, in the Kanizsa triangle in Figure 2.1, u = 1 on the black parts and 0
on the remaining part. In addition, we assume that the illusory contour takes

a known shape represented by a signed distance function ¢ in its equivalence

11



class. Let ¢ be the signed distance function of the candidate illusory contour

that belongs to the equivalence class.

We will now define an energy functional finding the ¢ in the equivalence class
of ¢9 which best matches the information for the illusory contour given in the
image u. The challenge is to measure this match without knowing the complete
boundary of the illusory figure. Our particular approach is as follows. We shall

first characterize the illusory contour in v as having the following two properties:

e 1. Since parts of the boundary of the desirable illusory figure is made up
by parts of the objects (in particular the boundaries) in u, we want the

candidate illusory contour to be close to the objects in u.

e 2. As we want the objects in u to border but not overlap with the candidate

illusory figure, the overlap between them should be minimized.

We will take advantage of shape representation using signed distance functions
to construct an energy satisfying the two requirements. Employing the distance

is the key ingredient of our model.

For the first requirement, we recall that since ¢ is the signed distance function
of the candidate illusory figure, |gb(p)‘ measures the distance from any point p € R
to the candidate illusory contour, i.e., ¢ = 0. As we want the candidate illusory
contour to be close to all the objects, the sum of the distances from each point
of the objects to the candidate illusory contour should be small. We choose the

following integral to represent this sum:

| wddady. (24)
R

12



Here, we include u because we only want to count the distances from the points
of the objects (defined by u = 1) not the background v = 0 to the candidate
illusory contour. An illustration in Figure 2.2 shows that different candidate

illusory contours yield different values of the integral.

Figure 2.2: The term [, u¢p?dzdy for the right figure is smaller than that of the left
because the candidate illusory contour (white curve) in the right figure is more close

to the objects than the left one.

Similarly, for the second requirement, we propose a term:

| wt(@)ddsay (2.5)
R
where H(-) is the Heaviside function:
1 >0
H(z) =
0 =z<0.

Note that the term uH(¢$) = 1 only in the overlapping region between the region
bounded by the candidate illusory contour and the objects in the image. There-
fore the term (2.5) is the sum of the distances from all overlapping points to the

candidate illusory contour, i.e., ¢ = 0.

We combine the two terms in the following energy functional:

/u¢2dmdy+)\/uH(¢)qﬁ2d:ﬂdy, (2.6)
R

R
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Figure 2.3: In this figure, the candidate illusory contour (white curve) is trapped into a

local minimizer of (2.6), since a smaller change of (a, b, 7, 8) will not make (2.6) smaller.

where ) is a parameter that balances the two terms.

However, this model is insufficient because the candidate illusory contour
can easily be trapped in a local minimizer. For example in the situation shown
in Figure 2.3, the candidate illusory contour is in a local minimizer because
perturbing its left vertical boundary (or changing the scale) will decrease neither
the first term (in this situation, for each point inside the objects, the closest point
on ¢ = 0 is on the other two boundaries of the candidate illusory figure) nor the

second term (since moving this boundary will not change the overlap).

This case only occurs when the candidate illusory contour is bigger than the
desirable one. Therefore, a simple way to overcome this problem is to introduce
a term in the energy functional to exert a preference for a candidate illusory
contour with a small scale. Hence, we can modify the second term in (2.6) as

follows:

)\/RUH(gb)(qb + rL)*dzdy, (2.7)

where L is a scale constant compensating for the dimension difference between ¢

and r. This means if there is overlapping, a smaller scale r is required.

14



Consequently, we have the combined energy functional:
E(a,b,r,0) = / up*dxdy + )\/ uH (¢)(¢ + rL)*dxdy, (2.8)
R R
where A controls how much the overlap is allowed, L is the same as mentioned

above, and

bz, y) = T¢O[(x —a)sinf + (y — b) cosO’ —(x —a)sinf + (y — b) Cosﬁ]’

T T

and H(-) is the Heaviside function.

Remark 1: The energy (2.8) involves the four-tuple (a, b, 7, §) which represents
different contour in the same shape equivalence class. To minimize the energy is
to update the four-tuple, instead of ¢ itself. Therefore, it is fast to minimize the
energy. In fact, we only need to calculate some integrals on the image domain

(see the appendix).

Remark 2: Our model is constructed to find ”interior” illusory contours. If
we replace H(¢) by 1 — H(¢) in (2.6) so that the energy functional takes the

form:

E(a,b,r,0) = /ungdxdy—i-)\/u(l—H(¢))¢>2dmdy, (2.9)
R R

we can also find ”exterior” illusory contours.

Remark 3: The distribution of objects inside a given image is important to
our model. Our model will fail to deal with those cases that objects distribute far
from symmetrically in area around the desirable illusory contour. This is because

of the first term in our model.
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2.2.3 The model for affine shapes

As discussed in section 2.2.1, if we choose a general matrix instead of an orthogo-
nal one, we may capture illusory contours whose shapes are affine transformation
of the given shape. This allows a larger class of illusory contours to be found for
only one known shape. However, some restriction should be added to the ma-
trix; otherwise, the shape of the candidate illusory figure could be too different
from the known shape. For instance, in Figure 2.4, a disk could become a sharp

a1 G12
ellipse. Hence, a new term of controlling the matrix A = should
Q21 Q22

be included in our model.

Figure 2.4: The left figure is a disk, while the right one is an ellipse which is a

transformation from the left by matrix A = [5,1;1,1].

Here, we consider the term || AAT — I ||2. || - ||z is the ordinary 2-norm of
matrix. We set up a threshold e. When || AAT — I ||3> ¢, the amount should

decrease.

Therefore, the new energy reads:

E(a,b,7,a11, 012,091, G22) = /u¢2dxdy+)\/uH(Qﬁ)(¢+7‘L)2dxdy
R R

+uH (|| AAT = I'[[3 —e), (2.10)
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where )\ and L are two parameters, with A controlling the overlapping between the
region bounded by the candidate illusory contour and the objects, L is a scaling
constant compensating for the scale difference between ¢ and r; € is the threshold
controlling how much the affine transformation compared with an orthogonal one

can be allowed, p is a parameter as well. And ¢ becomes:

¢(.’L‘,y) _ T¢0[CL11($—U:)+G12(y_b)’azl(aj—a,)+a22(y_b)].

; ; (2.11)

Remark 4: In (2.11), ¢ is not a signed distance function any more unless A is

T
an orthogonal one. But it is close. In fact, | V¢ |*= [ bs Dy } [ br By } =

T
[ b0z oy ] AAT [ boz Doy } ~| Vay |?, since || AAT — I ||% is very small. It
also shows that the requirement of A is necessary if we take advantage of signed

distance functions in our model.

2.3 Experiments

We employ the conventional gradient descent method to minimize the above
energy (2.8) and (2.10). To this end, the four-tuple (a, b, r, ) are assumed to be
the functions about time ¢, then the energy is a function of ¢ as well. The detail

will be discussed in the appendix.

In this section, we first present two groups of results, one for the exact shapes,
including the Kanizsa triangle and square, and the other for the affine shapes,
including general triangle, parallelogram and ellipse, which are affine transforma-
tions of equilateral triangle, square and disk respectively. Second, a comparison
of searching for different illusory contours by the second model with the same

specified shape will be given.
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In the following, each of the results consists of a process of searching for
illusory contours, starting from the initial guess, and ending at the candidate
illusory contour in the convergent state. The order is from top row to bottom row,
from left to right. Additionally, we use white curves to represent the candidate

contours.

All the images are 120 x 120, defined on the domain [—4,4] x [—4,4], and
L = 1. Different parameters and time step dt are chosen accordingly to each

experiment.

2.3.1 Experiments for exact shapes

The first two examples are the Kanizsa triangle and square (Figure 2.5 and 2.6).
We search for them with the shape of equilateral triangle and square respectively.
It can be seen that as time evolves, the candidate contours will match the desirable

illusory contours perfectly.

The third example (Figure 2.7) is still an illusory equilateral triangle. In this
example, the corner of the triangle are not shown as any visual cues such as
L-junction or T-junctions. Any method that uses this information will not be
applicable for this case. Without the shape of triangle, the illusory contour here is
difficult to be recognized. However, as our model incorporates shape information,

it still can identify the illusory triangle.

The illusory contours are disks or circles in the next two examples (Figure 2.8
and 2.9). One is a classical illusory contour, with a disk in a square, the other
is a disk in an triangle. These two examples show that illusory contours with

curved boundaries can also be handled with our model.
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The next example (Figure 2.10) is an illusory triangle immersed in a group
of black bars. It is different from not only the Kaniza triangle but also the third
example. First, none of the corners of the illusory triangle has to be a L-junction
or T-junction. Second, it touches the bars not by its continuous boundaries but
by several discrete parts. This example illustrates that our model is also capable
of singling out illusory contours from some "messy” environment. Figure 2.11 is

also this kind of image with an illusory square immersed in four groups of annuli.

The last example for this case is a Rubin Vase (Figure 2.12). In this image,
one may recognize two faces or only a Rubin Vase. This example shows that our

model is also capable of identifying complicated illusory contours.

Figure 2.5: Searching for Kanizsa triangle in the equivalence class of an equilateral

triangle. In this experiment, time step size dt = 0.01, A = 2.0.

Figure 2.6: Searching for Kanizsa square in the equivalence class of a square. In this

experiment, time step size dt = 0.01, A = 2.0.
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2.3.2 Experiments for affine shapes

In this section, we show some experiments for the affine case and a comparison of
searching for different illusory contours with the same specified shape and initial
candidate contour. In these examples, the known shapes are equilateral triangle,

square and circle.

The first example (Figure 2.13) is to search for a general illusory triangle (not
an equilateral triangle), starting from an initial equilateral triangle, in the class
of contours whose shapes are transformations of an equilateral triangle. From the
group of figures, we can see that as time evolves, the candidate illusory contour
will converge to the desirable ones. Moreover, during the process, the shape of
each candidate illusory contour is unnecessarily exact as the known shape, but

keeps close to the later one.

The second and third examples (Figure 2.14 and 2.15) are an illusory paral-
lelogram and ellipse respectively. Similarly as the first example, the candidate

illusory contours converge to the desirable illusory ones.

The next two examples (Figure 2.16 and 2.17) are comparisons of searching

Figure 2.7: Searching for an illusory triangle in the equivalence class of an equilateral

triangle. In this experiment, time step size dt = 0.02, A = 1.5.
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Figure 2.8: Searching for an illusory disk in the equivalence class of a disk. In this

experiment, time step size dt = 0.05, A = 0.2.

Figure 2.9: Searching for an illusory disk in the equivalence class of a disk. In this

experiment, time step size dt = 0.05, A = 0.5.

for different illusory contours with the same known shape and initial candidate
illusory contour. These two examples show that the model for affine shapes allows
a larger shape class of illusory contours than the model for exact shapes. In fact,

the first model is just a special case of the second one.

2.4 Conclusion

In this chapter, we employ shape information to capture illusory contours. We
propose a variational model by taking advantage of the location relations between

illusory contours and objects. We consider two cases: one is to search for illusory
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Figure 2.10: Searching for an illusory triangle in the equivalence class of an equilateral

triangle. In this experiment, time step size dt = 0.002, A = 6.0.

0l

Figure 2.11: Searching for an illusory square in the equivalence class of a square. In

this experiment, time step size dt = 0.001, A = 4.0.

contours whose shapes are as exact as known shapes while the second case is
for illusory contours whose shapes are affine transformations of given shapes,
which makes our method be applicable for a broad class of illusory contours. The

experiments listed validate our models.

2.5 Appendix

In this appendix, we derive the formulas for decreasing the energy FE(a,b,r,0)

with the conventional gradient decent method.
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Figure 2.12: Searching for an illusory Rubin Vase in the equivalence class of a Rubin

Vase. In this experiment, time step size dt = 0.001, A = 4.0.

Figure 2.13: Searching for an illusory triangle (not an equilateral triangle) in the class
of shapes which are transformations of an equilateral triangle. In this experiment, time

step size dt = 0.01, A = 2.0, x = 100.0 and ¢ = 0.2.

We assume that (a, b, 7, 0) are functions of time t. Consequently,

dE d d
Frl /R[2u¢d—(f + Aud(p) (o + 7~L)2d—i5
+2 \uH (p)(p + rL)(% + L%))]dmdy
= / u[2¢ + A5 (4) (¢ +rL)* + 2XH () (¢ + rL)]%dxdy
R
d
+/R[2)\uH(q5)(q5 + rL)L]d—:dmdy, (2.12)

where §(-) is derivative of Heaviside function H(-) in the distribution sense.

For simplicity, we denote

A =u20+X5(¢)(¢ +rL)* + 2XH(¢) (¢ + rL)],
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Figure 2.14: Searching for an illusory parallelogram (not a square)in the class of shapes
which are transformations of a square. In this experiment, time step size dt = 0.0075,

A =2.0, p =100.0 and € = 0.2.

Figure 2.15: Searching for an illusory ellipse (not a disk)in the class of shapes which
are transformations of a disk. In this experiment, time step size dt = 0.01, A = 0.5,

u = 100.0 and e = 0.4.

then
dE _ dé dr
it /RAgdl‘dy + /R 2\uH (¢)(¢ + L) L— dzdy.
Since
e R L
—(x = 0+ (y—b)sinf.  —d
oy (x — a) cos T (y — b) sin I dtr)
+(¢oz cos O — ¢y, sin 9)(—2—?) + (¢oz Sin @ + ¢g, cos 0)(—%)
Higue((x — a) 50— (5~ b)sin 0) + doy((z — @) cosf + (y — D) s )] ()
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Figure 2.16: The top row is the searching process (initial, intermediate and final
step, from left to right) for Kanizsa triangle. With the same initial candidate illusory
contour, another searching process for a general triangle is shown in the bottom row.
They are both done by the model for affine shapes. The comparison validates that this
model can be applied for finding some general triangles with the shape of an equilateral

triangle.

where ¢o, = 0¢o/0z and ¢o, = 0¢py/0y, if we choose

% = /RA(QSOE cos § — ¢gy sin 0)dxdy, (2.13)
% = /RA(QSOE sin @ + ¢y, cos 0)dzdy, (2.14)
dr (x —a)cosf + (y — b) sinf
i /RA[—% + G0z ,
oy —(z — a) sin Hr—i— (y — b) cos o]dxdy
- / INuH (8)(6 + L) Ldzdy, (2.15)
R
Z_i = /RA{g[)OI[(x —a)sinf — (y — b) cos 0

+ooyl(z — a) cos @ + (y — b) sin 0] }dzdy, (2.16)
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Figure 2.17: The top row is the searching process (initial, intermediate and final step,

from left to right) for Kanizsa square. With the same initial candidate illusory contour,

another searching process for a general parallelogram is shown in the bottom row.

then @ < 0, which means the energy will decrease.

Similarly, we can derive the formulas for the model for affine shapes.
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CHAPTER 3

Capturing illusory contours using curvature

information

3.1 Introduction

As discussed in the last chapter, illusory contours are intrinsic phenomena in
human perception. The salient character and major computational challenge
of illusory contours is that part of their boundaries are missing. Both of the
related work mentioned in the last chapter yield excellent illusory contours when
missing boundaries are straight lines, but they are incapable of curved missing
boundaries. Moreover, our model in the last chapter highly depend on known

shapes of illusory contours, which are not available for general cases.

In this chapter, we propose a level set based variational model to this problem.
Basically, the key thing for recognizing illusory contours is to complete the absent
boundaries. Our idea is to integrate the incomplete contours in a smooth way by
incorporating Euler’s elastica, which conforms to human vision. Specifically, we
embed the candidate illusory contour as the zero level set of a function, and then
update the level set function in a way such that its zero level set will steer to
the inside desired boundaries and stick to them (especially those real junctions)

while complete missing boundaries smoothly.
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The remain part of this chapter is organized as follows. In section 3.2, Sarti
et. al.’s PDE based method [SMS00] is reviewed, and we point out why the
method is not applicable to those cases with curved missing boundaries. In
section 3.3, we propose a level set based variational model as well as discuss the
numerical algorithms. Numerical results are presented in section 3.4, including

many classical illusory contours. Finally, a conclusion is made in section 3.5.

3.2 Sarti et al’s method for completing missing bound-

aries

There are many works in the literature on identifying illusory contours. In this
section, we only review Sarti et al’s model [SMS00] in detail, since their model
is a variational one instead of a combinatorial or statistical based model, and is

closely related to our work.

Let I : 2 — R be an image defined on a rectangle €2. Firstly, Sartiet. al. build
a representation called the ”"law primal sketch” to detect the intensity changes
and vision cues such as orientation of structures and T-junctions. Specifically,

they consider an edge indicator as follows:

1
9@0Y) = NG, (a9 * 1,9 A
oo = (/o)) o)

o\ ’
where 5 and o are scale parameters which determine the minimal size of the
details to be detected. Thus, the value g is close to 0 in the regions where the
image intensity changes significantly, i.e., the boundaries, and is close to 1 in

homogeneous regions.
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Secondly, they consider a surface S : (z,y) — (x,y,®(z,y)) which is also
defined on the domain €2, and then construct a weighted surface area of S by

incorporating the edge indicator function g. It reads:

/Qg(x, y)4/1+ @2 + d2dzdy, (3.2)

and then the evolution equation for & is:

o® 1+ 92)®,, — 20,0,9,, + (1 + <I>§)<I>m
o 7 1+ 32 + 2

+ (9:P5 + 95P,). (3.3)

As @ is updated according to (3.3), the surface will become flat in homoge-
neous regions in which g takes the value 1. However, on the existing edges, the
sharp of the surface can be allowed because g takes the value 0. In this way, if
the initial surface is chosen appropriately, the steady state surface will consist
of several levels of flat surfaces, one of which can be used to identify illusory

contours.

In fact, the choice of the initial surface is crucial to this method. To this end,
Sarti et. al. choose a fixation point (gaze point) inside the region bounded by
the goal illusory contour, then set up an initial surface on the basis of the point.
For example, they select the initial ® to be o/ D, where D is the distance function
to the fixation point and « is a scaling factor. With this initial surface, the flow
(3.3) will flatten the surface as well as sharpen it on the existing boundaries and
thus connect the missing boundaries. Then the illusory contour can be identified

as the boundary of the highest layer of the surface.

The method can be applied to identify illusory contours efficiently. However,
as for completing missing boundaries, the model privileges straight lines, which

may be inapplicable to many illusory contours. As discussed in [SMS00], it can be
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seen that around the sharp surface, or the illusory contours, the spatial derivatives

will be very large, i.e., |®,|, |®,| > 1. Thus, the flow (3.3) approximates to

o0 gcbg% —20,8,3,, + 02,
ot 02 + P2

+ (92%2 + gy Py)- (3.4)

Then the first term is nothing but gx(®)|V®|, where x(®) = V - (VO/|VP|)
represents curvatures of level curves. Moreover, due to ¢ = 1 on the missing
boundaries, the first term becomes x(®)|V®|, which is the variation of length
terms of level curves and thus will straighten the curves during the evolution
of ®. This fact verifies that the model prefers using straight lines to complete

missing boundaries.

3.3 Our model and the numerical algorithm

In this section, we present a level set based variational model to identify illusory

contours as well as the numerical algorithms.

Basically, we evolve a level set function such that its zero level set locates the
goal illusory contour. To this end, two problems need to be considered. One is
how to drive the zero level set to the desired boundaries, and the other is how to
complete missing boundaries. For the first problem, we will take advantage of the
distance function defined according to the boundaries of the objects inside the
image. We thus define a curve integral which measures the sum of distances from
the zero level set to objects’ boundaries. Minimizing this integral will steer the
zero level set to the boundaries. For the second problem, to remedy the inability
of Sarti et al’s method to complete missing boundaries using general curves for

complicated shape, we will employ Euler’s elastica [Mum94, CKS02]. Euler’s
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elastica permits general smooth curves instead of only straight lines to complete

missing boundaries.

3.3.1 Euler’s Elastica

Before we develop our model, let’s sketch Euler’s Elastica. More details can be

found in [Mum94, CKS02].

A curve I is said to be an Fuler's elastica if it is the equilibrium curve of
the elasticity energy:
Ex(v) = /(a—|—bf£2)d8, (3.5)
o
where ds denotes the arc length element, x(s) the scalar curvature and a,b are

two positive parameters.

In a level set function based setting, that is, the curve 7 is embedded as the
zero level set of a function ¢ defined in the domain 2, (3.5) can be rewritten as

follows:

Vo

Vol )"}V ¢l6(¢)dwdy, (3.6)

Ex(d) = /Q{a+b[v-<

where d(z) is the Dirac function or the derivative of the Heaviside function:

1, x>0
H(z) = (3.7)
0, x<0,

in the distribution sense, and |V¢|d(@)dzdy represents the arc length ds ( see
[OF01]).
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3.3.2 The model

Let u : Q — R! be an image defined on the domain €. Since we focus mainly
on the problem of how to capture illusory contours, we consider in this chapter
only binary images, i.e., u takes only two distinct values in €2. Without loss
of generality, let’s assume that u takes the value 1 on the regions occupied by
objects and the value —1 on the background. Then, by solving the steady state
of the following Hamilton-Jacobi equation (Eikonal equation)(for instance, see

[PMO99)):

od
o = sign(u)(1—|Vd]), (3-8)
ot

with d(x,0) = u(z), we get the signed distance function according to the bound-
aries of the objects in the image, and the signed distance function is positive in

the objects and negative on the background.

Let ¢ be the level set function whose zero level set locates the illusory contours.

We develop our model as follows:

E(¢) = Ei(¢)+ Ez(o)

- / (1d]6(6)| V6| + NH (d) H(9)|didy +

/Q{a-l—b[v-(%

where |d| means the absolute value of d, A\, a, b are nonnegative parameters, and

)2}V ¢l6(¢)dady, (3.9)

d(z) is the Dirac function.

In the model, minimizing the first energy F1(¢) will derive the zero level set of
¢ to the inside desired boundaries of objects. Note that the term [, |d|6(¢)|V@|dzdy
measures the sum of distances from points on the zero level set to objects’ bound-

aries. And the term [, \H (d)H (¢)dzdy describes the area of objects inside the
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region {(z,y) € Q : ¢(x,y) > 0}. On the other hand, the second energy Ey(¢),
Euler’s elasticity energy, controls the smoothness of the zero level set as well as

its length.

In contrast to E1(¢), Es(¢) is independent of image information, and only
depends on the zero level set itself. It prevents the emergence of points with high
curvatures, such as corners, along the curve. This property is reverse to what we
want. For instance, in the case of Kanizsa triangle, it is crucial to preserve the
corners to provide an excellent visual perception. Therefore, the above energy is

insufficient to fulfill what we may expect.

We demonstrate the phenomenon in Figure 3.1. In this example, the three
corners are all smeared while the missing boundaries are not straightened enough
as what they are supposed to be. For this example, to preserve the three corners,
we have to choose the two coefficients a, b in Euler’s elasticity energy (3.6) as
small as possible; on the other hand, we need to fortify them so that the missing

boundaries can be straightened enough. How to overcome this dilemma?

To handle this dilemma, we would like to revise the first energy E;(¢) such
that the zero level set will stick to the boundaries especially those corners with
high curvatures. A nature idea is to combine curvature information of objects’

boundaries into E;(¢).

Let’s still use the classic illusory contour—Kanizsa triangle to illustrate how
to incorporate curvature information of object’s boundaries into E (¢). In Figure
3.2, we present a Kanizsa triangle. The point A is a ”concave” point and B is a
”convex” one. As in Figure 3.1, we see that all the concave points are smeared.

This is because FE3(¢) is a dominating energy in the competition with F;(¢)
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Figure 3.1: The white curve is the zero level set in the steady state by minimizing
the functional (3.9). The three corners are all smeared (c.f. Figure 1.1(a)) while the
missing boundaries are not straightened enough. This example shows that the energy
(3.9) is insufficient to capture the illusory contours, especially for the ones with high

curvature points such as corners.

near them. Therefore, we have to strengthen E)(¢) to balance Ey(¢$) near these
concave points. On the other hand, for convex points, such as point B, we prefer
small amount of Fj(¢) so that the zero level set of ¢ is controlled by Es(¢).

Hence, it is preferable to keep F;(¢) near these convex points.

Due to the fact that the signed distance function d(z,y) is positive inside the
regions occupied by objects and negative on the background, we can discriminate
concave points and convex points by the sign of the curvature at those points.
Specifically, k(d) = V - (Vd/|Vd|) is positive at the concave point A, and nega-
tive at the convex point B. Consequently, we can use k' (d) = maz(x(d,0)) to

separate concave points and convex points.

Moreover, since we only need to revise E1(¢) near the above corners, we intro-
duce a cut-off function C'(x) which will be 1 in a tube around objects’ boundaries,

and be 0 else where.
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¢?

Figure 3.2: In this figure, the point A is a concave point where the curvature x(d) is
positive, and the point B is a convex point at which the curvature x(d) is negative. Note
that the function d is the signed distance function corresponding to objects’ boundaries,

and it is positive inside objects and negative on the background.

Consequently, we revise F1(¢) as follows:

Ei(¢) = /Q[(l+u0(d)fi+(d))\d\5(¢)lv¢\+AH(d)H(¢>)]dwdy, (3.10)

where we may choose a C' cut-off function C(z) as follows:

]-a |fL“ S g,
O) = { (o] - 2020l )6, c<lol<2e  (31D)
Oa ‘.’L“ > 26,

where € is a small constant, and p > 0 is a parameter.

Remark 1: We substitute the term [1 + uC(d)k™(d)]|d|d(¢)| for |d|6(¢)| V|
in Ey(¢). It means that we impose more weight for concave points so that the
strength for steering the zero level set to them is enforced. And the strength is
proportional to the curvature at the concave points. In some sense, the revision
of E;(¢) is reasonable because it is these concave points that provide more vision

cues for identifying the illusory contours.
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In summary, our proposed functional reads:

E(¢) = Ei(¢)+ Eax(9)
_ /Q {[(1 + pC(d)x* (d))|dI5(6)| VS| + AH (d)H ()]
Vo

+la+b(V- (W))2]|V¢\5(¢)}dxdy- (3.12)

3.3.3 Numerical Algorithms

In this section, we discuss the Euler-Lagrange equation about ¢ according to the

functional (3.12) as well as the numerical algorithms.
To be clear, we consider F1(¢) and E,(¢) separately.

For F;(¢), it is easily to get the Euler-Lagrange equation as:

o = SO+ @R @] T
L1+ uC(d)s (d)|d]]V - (%) —AH(d)). (3.13)

For E5(¢), similar derivations for the Euler-Lagrange equation can be found

in [CKS02]; we also discuss the details in the next Chapter. The equation reads:

X = sV, (3.14)
where
_ o 2b 0(k|V9|)—
V = {(a+b:)T Vo g7 h

and 7 = V6/|Vo|, T = (—6,/|V9l, 6:/|Ve]), 5 =V - (V6/|V]).
Then, by combining (3.13) and (3.14) and replace 6(¢) by |V¢| as in [ZCM96]

(the factor |V¢| also helps to accelerate the evolution as discussed in [MOO00]),

36



we have the gradient descent equation as follows:

% V(1 + pC(d)s™(d))|d]] - Vo — AH(d) |V
1+ 4Ok (@)|d][V |V - (%) HIVV- T, (3.15)

In the experiments, we first calculate the signed distance function d by solving
(3.8) with the standard method which can be found in Peng et al [PMO99] , then
obtain the curvature x(d) and the gradient of (1 + uC(d)x*(d))|d| at each grid

point.

In the following, we discuss how to choose the discrete form for each term in

the equation (3.15).

In fact, it is subtle to choose the discrete form of the first two terms. We
follow the idea discussed in Osher and Fedkiw’s book [OF02]. The key point is

how to determine the value of ¢, and ¢,.
For simplicity, let’s denote A = (1 + uC(d)k*(d))|d|.

Let
H(és¢,) = VA-Vé—\H(d)V4), (3.16)

then the partial derivatives to the two augments are:

B B Ps
Hi(bardy) = As— AH(@) (3.17)
Hy(, ,) = A, — NH(d) 22 (3.18)
= Vol

where A, = 0A/0z, A, = 0A/0y. Since we do re-initialization for ¢ frequently

in the experiments, we may assume |V¢| = 1, the above two derivatives can be
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rewritten as:

Hi(¢z,0y) = Az — AH(d)y, (3.19)

H2(¢wa ¢y) = Ay - AH(d)¢ya (320)

To determine the values of ¢, and ¢,, we set ¢f = (¢ir1,; — ¢ir1,)/h and

¢; = (¢ij — ¢i—1,5)/h. Then we check the following cases:

e Case 1. H(d) >0

— 1. if Hi (¢, ¢y) > 0, Hi(¢1, ¢y) > 0, then ¢, = ¢,
— 2. if Hi(¢F, ¢,) < 0, Hy(¢F,6,) > 0, then ¢, = A,/(AH(d)),
— 3.if Hi(¢+, ¢,) > 0, Hy(¢F,6,) <0, then
* 3a. ¢y < ¢,
ift Hy(¢,,¢y) < Hi(¢7, ¢y), then ¢, = ¢, else ¢y = @7,
* 3b. ¢, > oF,
if Hi(¢,,¢y) < Hi(¢F, ¢y), then ¢, = ¢, else ¢, = ¢,

— 4. if Hl( ;—,qﬁy) <0, Hl( ;,¢y) < 0, then ¢, = +

x

e Case 2. H(d)=0

— 1. if A, > 0, then ¢, = ¢

x

— 2. if A, <0, then ¢, = ¢;.

Similarly, we can chose the value ¢, according to the same principle.
For the third term, we use the central difference, that is,

bon A Pit1,; — 20i5 + di1
zx ™ h2 )
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_ Dijr1 — 285+ i
sty ~ h2 ’

Qi1 T Pic1i—1 = Pitr—1 + Gicj41
Doy & 12 ’

and

by A Pit1,; — Qi1
T 2h bl

b, ¢i,j+1 — <l5z',j—1
Y 2h

to approximate

¢§¢yy - 2¢m¢y¢my + ¢§¢$$
o3+ b '

K(@)IVel =

For the last term, details can be found in [CKS02].

Since the zero level set of ¢ is the only thing that we want, we employ a local
level set method [PMO99] to solve (3.15) to reduce the computations. The point

is: instead of solving the following equation:

9¢

5¢ T unlVOl =0, (3.21)
they solve
?+0(¢)un\v¢\ = 0, (3.22)
t
where
1, x| < B;
c(z) = § (2l =*Qlzl+v-38)/(v=8)*, B<lz|<vy;  (3.23)
O’ |.T| > Y,

where § and v are two positive constants. In the experiments, we choose 8 = 3h,

v = 6h, and h is the spatial mesh size.
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Remark 2. This local level set method speeds up the evolution process re-
markably, since it only updates the level set function ¢ inside a tube around
its zero level set. It changes a two-dimensional problem into a one-dimensional
one in some sense. In fact, it is necessary to utilize this method. Note that the
evolution equation (3.15) is actually a fourth-order one if the parameter b # 0,
therefore by the CFL condition, the time step size should be proportional to the

fourth power of the spatial step size, i.e., dt ~ dz*.

Remark 3. The employment of the local level set method is also crucial. In
[CS99], Chopp and Sethian discussed the case of curvature flow as well as the flow
under Laplacian of curvature. In the case of curvature flow, the level sets behave
nicely and any two different level sets will not cross. However, the situation will
become totally different for the flow under Laplacian of curvature: two different
level sets may intersect; one level set could collide with itself; and even zero level
sets could emerge automatically. Fortunately, the local level set method may
prevent the possibility that other zero level sets emerge and intersect with the
goal zero level. On the other hand, the situation that the goal zero level set

collides with itself can be excluded because of the term of Euler’s elastica.

3.4 Numerical Experiments

In this section, we present some examples including Kanizsa triangle and square

as well as many synthetic ones.

For all the experiments listed here, the images are all 100 x 100, and defined
on [—4,4] x [—4,4]. Basically, it takes less than 10* ~ 10* iterations when the

missing parts are straight lines, i.e., b = 0, and 108 ~ 107 iterations for the curved
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cases where b # 0. Moreover, we may choose the initialization of ¢ freely— we

only require its zero level set contains all the objects in the image.

Figures 3.3 and 3.4 show the classical illusory contours—Kanizsa triangle and
square. In these two examples, we only need to choose b = 0 in (3.15) because the
missing boundaries are actually straight lines by the continuity of curvature; on
the other hand, a nonzero choice of b will not affect the final results. The choice
of b = 0 makes the evolution equation (3.15) become a second order instead
of fourth order equation, which accelerates the evolution process remarkably. In
these two examples, the corners are preserved very well while the missing contours

are integrated by straight lines automatically.

Figure 3.5 is a general four-edged illusory contour. As in Figure 3.3 and
3.4, we also choose b = 0 in (3.15). As the previous examples, the corners are

preserved very well.

The above three examples verify that our model can be applied to the cases
that the missing boundaries are straight lines. As described in the model, on one
hand, the zero level set of the goal function is steering to the objects’ boundaries;
on the other hand, it also sticks to the corners, which helps to provide good vision

perception.

The next three examples (Figure 3.6, Figure 3.7, and Figure 3.8) demonstrate
that our model is also capable of completing missing boundaries by curves. We
choose nonzero b in (3.15) here. As in the previous examples, the zero level
set is driven to the desirable objects’ boundaries, and it completes the missing
boundaries by short smooth curves along which there are no salient jumps of

curvature.
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Figure 3.3: This image is the classical Kanizsa Triangle. The evolution process is
listed with four figures from left to right. The parameters chosen for this example are:

A=3.0, p=150,a=05b=0.

Figure 3.4: This image is the classical Kanizsa Square. The evolution process is
listed with four figures from left to right. The parameters chosen for this example are:

A=3.0, p=15.0,a=0.5b=0.

In Figure 3.9, we present the result by choosing b = 0. One may find the
missing boundaries are completed by straight lines, instead of smooth curves as
in Figure 3.6. This shows the Euler’s Elastica does preserve the continuity of

curvature.

In Figure 3.10, we present a group of results for the same image with different
choice of the parameter b. We find that with the same choice of the parameter
a, the larger the parameter b, the less the change rate of the curvature along the

missing parts.
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Figure 3.5: This image is a general four-edged shape. The evolution process is listed
with four figures from left to right. The parameters chosen for this example are: A = 3.0,

p=15.0,a=0.5,b=0.

Figure 3.6: This image contains an illusory ellipse inside a square. The evolution
process is listed with four figures from left to right. The parameters chosen for this

example are: A = 3.0, p =15.0, ¢ = 0.01, b =0.5.

In the last examples (Figure 3.11), we list a comparison for some illusory
contours with or without real junctions. We can see that the presence of real
junctions helps to capture the desirable illusory contours. It therefore supports
the fact that the junctions are crucial to recognize illusory contours. Moreover,
it also supports our postulation in the last Chapter that shape information has
a role to play in capturing illusory contours, especially for those without real

junctions.
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Figure 3.7: In this image, the illusory contour is a dumb-bell. The evolution process
is listed with four figures from left to right. The parameters chosen for this example

are: A = 3.0, 4 =15.0, a = 0.005, b = 0.05.

Figure 3.8: In this image, the illusory contour is a Rubin Vase(or two faces). The
evolution process is listed with four figures from left to right. The parameters chosen

for this example are: A = 3.0, u = 60.0, a = 0.1, b = 0.01.

3.5 Conclusion

In this chapter, we propose a level set based variational model to capture illusory
contours by incorporating objects’ curvature information. Our model employs
Euler’s elastica to complete the missing boundaries in a smooth way, and pre-
serves real junctions very well. It is thus capable of a wide range of illusory

contours regardless of straight lines or curves as the missing boundaries.
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Figure 3.9: This image is an ellipse inside a square. The evolution process is listed with
four figures from left to right. The parameters chosen for this example are: A = 3.0,

p=15.0, a=0.01, b= 0.

Figure 3.10: These images are the final results according to different choices of the
parameter b and the same a. Here a = 0.01, and b = 0,0.1,0.3,0.5 from left to right

respectively.
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Figure 3.11: The comparison for the illusory contours with or without real junctions.
We can see that our model yields a good result for the example in the third row, since
the real junctions are present for this case, but fails for the other two cases without
real junctions. It supports the fact that the junctions are crucial to recognize illusory

contours.
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CHAPTER 4

A level set approach to segmentation with depth

4.1 Introduction

In this chapter, we employ level set methods [OS88] to numerically minimize
the Nitzberg-Mumford-Shiota functional on segmentation with depth [NMS93].
Segmentation with depth is different from standard segmentation which only
depends on the gray intensity distributions in image domains (see Figure 4.1).
Segmentation with depth also takes into account the orderings among objects, i.e.,
it allows the occlusions between objects. Therefore, in the process of segmentation
with depth, boundaries are determined by the gray intensity distribution as well
as the ordering among objects. For instance, if a farther object is blocked by
other ones that are nearer, a reconstruction of its occluded boundaries is needed

in segmentation with depth.

In [NMS93], Nitzberg, Mumford, and Shiota proposed a variational model to
the segmentation with depth problem. Their model provides a principle to recon-
struct the occluded boundaries by employing curvature information along objects’
boundaries, and thus determines the ordering of objects by comparing each en-
ergy corresponding to each ordering assumption. To minimize the prescribed

functional, the authors introduce a combinatoric method, i.e., they first compute
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Front Behind

Figure 4.1: The first row contains the original image (Left) with two regions (middle
and right) given by any multi-phase gray intensity based segmentation method, and
the second row illustrates the results from a segmentation with depth model. Besides
the occlusion relation between the two objects (”Front” and ”Behind” in this example),

the missing boundary of the behind object is also restored.

edges and T-junctions, and then minimize the functional according to each as-
sumption of objects’ ordering by using the T-junctions. In [EMO03], Esedoglu and
March provide a new numerical technique for the minimization problem of the
Nitzberg-Mumford-Shiota functional. Their algorithm is based on regions or the
associated boundaries evolving. However, it is difficult to handle the curvature
terms in the above functional. Esedoglu and March took advantage of the notion
of I'— convergence, which was introduced by Degorgi [Gio91], to approximate
the curvature terms by more manageable ones. Even though, they still could
not approximate the primitive curvature terms, which involve absolute values of

curvatures, in the Nitzberg-Mumford-Shiota functional, and they instead choose
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the quadratic form of curvature.

In this chapter, we utilize level set method [OS88] to minimize the Nitzberg-
Mumford-Shiota functional, since it is easy to handle the curvature terms. For
instance, let ¢ be a level set function, then the curvature x along any level curves

¢ = ¢ (c is any real value) can be represented as:

- v. (%). (4.1)

With the representation, it is also trivial to handle the absolute value of curvature
that appears in the above functional. By using level set methods, the problem
of minimizing the Nitzberg-Mumford-Shiota functional turns out to be solving a
system of fourth order partial differential equations. This kind of equations was
also solved in the last chapter for capturing illusory contours. Moreover, we em-
ploy Smereka’s semi-implicit method [Sme03] to solve the associated fourth order
equations. This method can speed up the convergence process, since conventional

methods for these equations are notorious slow to arrive at the convergent states.

The remain of this chapter is organized as follows. In the next section, we
introduce the background of segmentation with depth as well as the Nitzberg-
Mumford-Shiota functional. In section 4.3, we rewrite the functional in a level
set based setting and derive the associated Euler-Lagrange equations. And we
continue to talk about the numerics including Smereka’s semi-implicit method in
the subsequent section 4.4. In section 4.5, we present some numerical experiments

on synthetic images that appears in [EM03]. In section 4.6, we make a conclusion.

49



4.2 Nitzberg-Mumford-Shiota functional

In this section, we sketch the problem of segmentation with depth and present
the Nitzberg-Mumford-Shiota functional. More details can be found in [NMS93,
EMO03].

Briefly, segmentation with depth is to determine the ordering of objects in
space as well as their boundaries in a given 2-D gray scale image. The ordering of
objects refers to the position that one object is farther or nearer an observer than
the others. Due to the permission of occlusions between objects, farther objects
always consist of two parts: visible and invisible parts. The visible parts are
determined by the gray intensity distribution, while the invisible parts should be
reconstructed by following some principle. In Nitzberg-Mumford-Shiota’s model,
they reconstruct invisible parts of regions by using curvature information along

the boundaries.

Let f : Q@ — R! be a 2-D image defined on © C R?, and Ry,..., R, be the
regions occupied by objects inside the image. Denote the visible parts of the

above objects by R’l, - R;l respectively.

To simplify the problem, we make some assumptions as follows:

e each object does not entangle with itself.
e any two objects do not entangle with each other.

e the intensity in the region occupied by any object is uniform.

With these assumptions, two questions related to the problem of segmentation

with depth are:

20



e How to determine the ordering among the objects? In fact, there will be n!

cases of ordering.

e How to reconstruct the invisible regions(boundaries) of farther objects that

are occluded by nearer ones?

n [NMS93], the authors propose a functional, and calculate its value for each
case of the ordering. Then they claim that the ordering associated to the smallest
value of the functional is the desirable ordering. Moreover, the reconstruction
of visible regions is automatically accomplished during the calculation of the

functional for each ordering.

Suppose the regions Ry, ..., R, are listed in the increasing farther order in the
given image, i.e., Ry, R, are the nearest and farthest regions respectively. Then
the visible part R; of R; is given by:

Ry=R,, R=R;—|JR;, fori=2..n
j<i
For simplicity, we denote by R;l a=-U i<n+1 It; as the background. Then the

Nitzberg-Mumford-Shiota functional reads:

n+1
Z/ [a+ Bo(k ds+z+:/ ) — ¢;)%d, (4.2)

OR; NQ
where «, B are two nonnegative parameters, and the unknown ¢; € R! is the
intensities in R;, 1 = 1,...,n + 1. The function ¢ determines how the curvature
information will be incorporated in the functional. The authors choose ¢ as

follows:
z?, |z| small,

¢(z) = (4.3)

|z|, otherwise.
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It is this choice of the function ¢ that allows corners along objects’ boundaries.

Due to the permission of occlusions between objects, in the functional (4.2),
the first sum takes into account OR;’s inside (2, instead of 8R;-’s which are the
boundaries of visible parts of R;’s, while the second sum is a fitting term as that
of standard segmentation models, for instance, Chan-Vese’s segmentation model

[Cvoi).

4.3 Level set method for minimizing the Nitzberg-Mumford-

Shiota functional

As discussed in the section of introduction, it is very convenient to represent
curvature of contours by using level set method. In this section, we first rewrite
the Nitzberg-Mumford-Shiota functional (4.2) into a level set based formulation,

then drive the associated Euler-Lagrange equations.

4.3.1 Level set formulation

Since each of the regions R;’s will evolve during the minimization process of (4.2),
we assign for each of them a level set function. Let 1; be the level set function

related to the region R;, and we always require R; = {¢; > 0}, i=1,...,n.

Then, the first sum of (4.2) can be rewritten as follows:

> [fa+ soe] Tuilo s (4.0

Vi

i w,|) is the curvature of any level curve.

where k; =V - (

On the other hand, since R, = R; — U,<i B, and R, = {; > 0} Nty <
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0}), we may rewrite the second sum of (4.2) as follows:

Jj=n

Z / e PH () H (1= H)da+ [ (F=ere? [0~ B, (49
j=1 Q2 j=1
where H is the Heaviside function:
1, x>0,
H(z)= (4.6)
0, x<0.

Combining (4.4) and (4.5), we obtain the Nitzberg-Mumford-Shiota functional

in a level set based formulation as follows:

F=3 / o+ B(s)]| Vi 605} de

—|—Z/ —¢;)?H (1) H (1—H(y;))d
—i—/ﬂ — Cnt1) H (4.7)

4.3.2 Derivation of the Euler-Lagrange equations

To derive the associated Euler-Lagrange equations of the functional (4.7), we here
only consider the terms that involve curvature, since the fidelity terms are easy to
handle. For simplicity, let’s consider a functional E = [ ®(ky)|V[6())dz
where ®(z) = a + S¢(z) in the functional (4.7).

Before deriving the Euler-Lagrange equation of ¢ according to the minimiza-
tion of E(1)), let’s notice two simple facts.
Lemma 1. Let 70 € R? be a unit vector, and I, P» : R2 — R2 be two operators
with I(V) = ¥, Pp(7) = (V- W)W, for any ¥ € R2. Then for the curvature

k=V". (%) we have 2 =V - ((I — P2Vt where T =

IVW
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Proof. Simple calculation shows the conclusion. O

Lemma 2. With the same notation as in lemma 1, we have (I — P3)V - W =
(I — P)W -0, for any ¥, W € R2.

We may thus obtain the following theorem.

Theorem 1. Let E(v) = [, ®(k)|VY|6(¢))dz, then the associated Euler-Lagrange

equation reads: (P = lel)
v

3¢ 1

= [Vy[V - [|vw| (k) = \V¢\(I P)(V (¥ (k)| V4)))]. (4.8)

Proof. To get the Euler-Lagrange equation, let’s take the derivative of E accord-

ing to time ¢, then determine the derivative of ¥ to ¢ by decreasing the functional

&)

g / U (1) | V15(8) + U () |V () 5(8) + U () [V ()15 ()l

o Vi vy
= /Q‘I’ WV = PGy ol

+ [ WV W
/v (= PY(2 () Vb6 ]+/v CRLETEIIN)

NIVYI6(@) + U (k) Vi - =—=0(1)

N\ v

Vi Vi
— [ = Y - P () V015(0) — ¥ - [ ()50
S ACIOIION (1.9

so, if we choose Neunman boundary conditions, we may drop the two divergence
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terms, and get

dE . N
Lo / (- P)(w w|) V(' (1) V0|6 (1))

— [0V R + SRV @ (410)

by lemma 2, (I — P)¥ - W = ¥ - (I — P)W, we have
dE Vi, ,
T = e U= PV () V)

4V [% (RS + [ BRIV W

- [ v th“ ~ P)(V(¥ () [V15(0))]

V- [ (T = P)(V (¥ (8) VY [5(4))]

|vw|
Vi
— [T (¥ )S) + ¥ ()-8 ()Y (W)
+ [ ¥RITIS W, (411)

Notice that V(' (x)|V[d(y)) = V(¥ (k)|V])d(4) + V' (k)| V9|6 () VP, then
(I = P)V(¥'(%)|VY[6(y)) = (I = P)V(¥'(%)|VY[)d(4), since (I — P)Vy = 0.
Therefore, by dropping the divergence part in (4.11), we arrive at

~

dE 1
i /ﬂtv'[wu—”( #)| V)8 / V- \vwl W)

1
- /w{v-[wu—m( (W () [ V)15(4)
o= PV V) ¢ (00} = [ 0 [Zow0ls)

Vi
oo ) (412

“
= [ 60)V - [ (T = PV ()| V) =

Therefore, if we choose 1; = —5(¢)V-[ﬁ(I—P)(V(‘I/(H)WdJD) ;15'\1/( k)],

we see % < 0. Moreover, by employing the standard technique which replaces
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d(1) by |V| (see [ZCM96]) , we then have the associated Euler-Lagrange equa-
tion:

o 1

S = VIV — (= PV () VU)). (419

O

Let’s turn to the original Nitzberg-Mumford-Shiota functional (4.7). From

Theorem 1, the system of Euler-Lagrange equations reads:

;i Vi 1 :
ot ‘V¢1|V [|V¢z| (’fz) - |V1/Jz| (I - Plgzzl)(V(\P (HZ)|V¢Z|))]
+ V| (f = ¢)? H
YB3 1~ e ) f[(l - H) [] (- H@))L
i=1,..n, (4.14)

where k; =V - (g%) and H(¢,41) = 0.

4.4 Numerical Implementation

In this section, we show how to discretize each term in the equations (4.14) and

explain how to apply Smereka’s Semi-Implicit method to solve the equations.

4.4.1 Discretization of the Euler-Lagrange equations

We first discuss the schemes for the fourth order terms in (4.14). For clarity, we

rewrite them as follow:

29

5 = VoIV v, (4.15)
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where V' = (V1,V5) = 0(x) — <z(I — P)(V(¥' ()| V).
Then, denote ¥' (k)| V1| simply by A, we get:

Y

and
Va = W) s — gl — A (@.17)

where A, = 0A/0x, A, = 0A/0y.

Let (7,7) denote the pixel locations, h be the spatial step size and the time
be discretized to be {ndt}, where n = 0,1,2, ..., and dt is the time step. Then

7; refers to the value of 1 at pixel (7, j) at time ndt.

Let’s discuss the disretization of each term in (4.15~ 4.17). In (4.15), we

approximate |V| by central difference as:

_ w(i-l—l,j) _w(i—l,] d}(z,]-l—l) d}(z,] 1) 9
Sy e T e

As for the terms in (4.16, 4.17), since

V-7(i,j) = Viaig) + Vay(ig)
_ ViGryzs) — Vig-1y2) n Vai+1/2) = Vaii-1/2)

h h ’

(4.19)

we need to calculate the values of V; at the x-half-pixel (i + 1/2, j), while the

values of V, at the y-half-pixel (7,7 + 1/2).
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We approximate the terms in (4.16) at (: + 1/2, j) as follows:

K = miand(K/(i,]’)a’%(i,j))’

Vit1,5) — Vi
by = (i+ J)h (J)’

¢(i+1,j+1)*¢(¢+1,j—1) ¢(i,j+1) - qﬁi,jfl)

¥y, = minmod( oh ) 57

VY[ = \Joi + 4,

AGiv1,5) — Aayg)

A, = ,
h
_ \\J (n(i+1,j))|V¢|(,-+1,j) - v (ff(z',j))|V’¢ (i,7)
h )
U (KGi+1,5400) VO 3 1,541) — ¥ (Kit1,5-1) | V1,5
Ay — minmod( (K(+1,J+1))| ¢|(+1,J+1)2h (H(_HJ 1))| ¢|(+1J 1)’
U (k(i+1) [V LG+ — ¥ (860,40 [V -1
’ ’ : ’ 4.20
2h ) (4.20)
where

sgn(z) + sgn(y)

minmod(z, y) = 5

min(|z], |y).

Similarly, we may approximate the terms in (4.17).

As for the remain terms in (4.14), it should be careful to approximate |V|
(see Chapter 6 in [OF02]). Basically, we use the same technique as what we used
in the last chapter, and we thus omit it here. And we approximate the Heaviside

function H(z) by a standard regularized function as follows:

1 2
Ho(z) = S(1+ = arctan(%)),

where € is a fixed small number. In the experiments, we choose € very small, for

instance dz?.
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4.4.2 Smereka’s Semi-Implicit method

Notice the equations (4.14) are fourth order equations, then CFL condition gen-
erally requires that the time step size dt is proportional to the fourth power of the
spatial step size dx, i.e., dt ~ dx?. This restriction will result in an intolerable long
time for the minimization process. To this end, we would like apply Smereka’s
semi-implicit method to accelerate the evolution of the associated Euler-Lagrange

equations.

For simplicity, as in [Sme03], let’s denote the Euler-Lagrange equations as

follows:

then, we can rewrite it as:
U = —AA%Y + AA%Y + S(¢), (4.23)

where A? is a bi-Laplacian ( since (4.14) are fourth order equations ) and ) is a

parameter. Then we may discretize the equation (4.23) in time as:
Y gt = (AN AT 4 ("),
and then
P =" + di(1 + dEAA?) TS (7). (4.25)

The operator (1+ dtAA?)"! is a positive definite, and it can be efficiently solved

by FFT (Fast Fourier Transformation).

Therefore, in our case, we only need to calculate the values on the right side
of (4.14) at time nh as S(y") for each function t;, then we may get the values

of ¢; at the new time (n + 1)h by using FFT.
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Smereka’s semi-implicit method will relax the CFL condition considerably,
since the operator A? helps to smooth possible high oscillating waves. Numerical
experiments in the following section also show that we may choose a much larger

time step size than what is required by CFL condition.

4.4.3 Procedure of minimizing NMS functional

During the evolution of w;s by solving (4.14), the intensity unknowns c;s will also
be updated accordingly. By setting % = 0, one may easily get the formulas for
updating these intensity variables as follows:

_ Jo FH@) H;;ll(l — H(3;))
Jo HW) T2 (1 — H(yy))

i=1,..,n. (4.26)

i

and

c _ foH?:l(l _H(¢y))
T I (L= H(gy)

Then, given the initial guesses for the level set functions w;s and the intensity

(4.27)

constants c¢;s, we iteratively solve the equations (4.14) and (4.26), (4.27).

Now, let’s discuss how to choose the initial guesses. We first employ any
multi-phase segmentation method, for instance Chan-Vese’s method [CV02], to
segment the image domain {2 into several regions in each of which the intensity
is homogenous, and thus obtain the associated level set function and intensity
constant for each region. Then, as in [EMO03], we use these results as the initial

guesses for solving (4.14) and (4.26), (4.27).

Moreover, the re-initializations of ;s are necessary during the above evolu-
tions. Otherwise, the terms derived from fidelity ones in (4.14) will make ;s

keep increasing or decreasing to infinity. On the other hand, the process of re-
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initializations can not be taken more frequently since it will prevent the zero level

sets from growing.

4.5 Numerical Experiments

In this section, we present some numerical experiments on synthetic images.

4.5.1 Two regions and a background

We here show two examples: Bar and Fork, Ellipse and Disk. For each exam-
ple, the intensities for the two regions and the background are 1.0, 0.5, and 0

respectively.

The first example is an image with a bar and a broken fork inside a background
(Figure 4.2). For this case, there are only two possible orderings: the bar is in
front of the fork, or vice versa. For each assumption of ordering, we calculate the

Nitzberg-Mumford-Shiota functional. The values are listed as follow:

e Bar front, Fork behind, the NMS functional = 0.1762.

e Fork front, Bar behind, the NMS functional = 0.2718.

This shows that the assumption that the bar is in front of the fork yields a smaller
value of the NMS functional, i.e., the scene is made up of a behind fork occluded

by a front bar.

In Figure 4.3, we list the evolution process of the two regions under the first
assumption of ordering. From these groups of figures, one can see how the broken

fork is connecting while the bar is keeping stable especially its corners. It is the
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Figure 4.2: Bar and Fork. From left to right, these figures are the original image and

the two regions obtained from standard segmentation model.
choice of ¢(z) = |z| when |z| big in (4.2) that preserves the corners. The choice
of ¢(z) = x? will be inevitable to smear these corners.

We omit the evolution process under the second assumption since the two

regions are keeping stable.

Moreover, in the experiments, due to the use of Smereka’s Semi-Implicit
method, we choose the time step size dt = 5 x 10™%, which is far larger than

dt = 1075 which is required by the strict CFL condition.

The second example is an image with an ellipse and a crescent inside a back-
ground (Figure 4.4). We calculate the values of the Nitzberg-Mumford-Shiota

functional for the two ordering as follow:

e Ellipse front, Crescent behind, the NMS functional = 0.1404.

e Crescent front, Ellipse behind, the NMS functional = 0.2812.

This shows that the ellipse is in front of the disk (instead of crescent!). In Figure
4.5, we list the evolution process of the two regions under the first assumption of

ordering and we still omit the process under the second assumption. From these
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Original image Two regions by segmentation procedure

Initial Intermediate Intermediate Final

Figure 4.3: The evolution process under the assumption that the Bar is in front of the
Fork. In the second and third row, the evolutions of the two regions by solving (4.14)
are listed. The fourth row shows how the boundary of the Fork is growing. During
the process, the front region occupied by the Bar is keeping stable while the region
by the Fork is connecting behind the Bar. In this experiment, the parameters are:

a = (0.00005, 8 = 0.005, and A = 0.1 in Smereka’s semi-implicit method.
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Figure 4.4: Ellipse and Crescent. From left to right, these figures are the original

image, and the two regions obtained from standard segmentation model.

groups of figures, one can see how the crescent is growing to be a moon while the

front ellipse is keeping stable.

4.5.2 Three regions and a background

We present here an example with an annulus and two bars inside a background

(Figure 4.6). The intensities for them are 1.0, 0.9, 0.8, and 0. respectively.

Since there are three objects inside the image, 3! = 6 cases of the ordering
should be considered. Here we list the evolution process under the ordering
assumption that the Annulus is in front of the vertical Bar while the horizontal
Bar is behind the vertical Bar, which yields the smallest value of the Nitzberg-

Mumford-Shiota’s functional (Figure 4.6).

4.6 Conclusion

In this chapter, we employ level set methods to minimize the Nitzberg-Mumofrd-
Shiota functional that appears in the variational formulation of the segmentation

with depth problem. Then the minimization of the functional turns out to be solv-

64



Original image Two regions by segmentation procedure

D o b ©

Initial Intermediate Intermediate Final

Figure 4.5: The evolution process under the assumption that the Ellipse is in front
of the Crescent. In the second and third row, the evolutions of the two regions by
solving (4.14) are listed. The fourth row shows how the boundary of the Crescent is
growing. During the process, the front region occupied by the Ellipse is keeping stable
while the region by the Crescent is connecting behind the Ellipse. In this experiment,
the parameters are: a = 0.00005, 8 = 0.01, and A = 0.1 in Smereka’s semi-implicit

method.
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Figure 4.6: An Annulus and two Bars. The top left is the original image, and the
other three figures show the regions obtained from the original image by standard

segmentation model.
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Step 1 (Initial Step) Step 2 (Intermediate Step)

Step 3 (Intermediate Step) Step 4 (Final Step)

Figure 4.7: The evolution process under the ordering assumption that the Annulus, the
vertical Bar, and the horizontal Bar are listed from the nearest to the farthest. In each
group of figures, the left top is the original image while the others show the evolution
of each regions. During this process, the Annulus is almost keeping stable while the
vertical Bar is connecting then the horizontal Bar. In this experiment, we choose the

parameters are: o = 0.00005, 8 = 0.03, and A = 0.1 in Smereka’s semi-implicit method.

67



ing a system of fourth order equations. We use Smereka’s semi-implicit method
to accelerate the evolution of the system. We present some experiments including

the cases with two and three objects inside images.
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CHAPTER 5

Level set based shape prior segmentation

5.1 Introduction

Segmentation is a fundamental topic in image processing. It is, in brief, a process
that segments a given image domain into several parts in each of which the gray

intensity is homogeneous.

Numerous approaches have been proposed for this problem. A fundamental
PDE-based one is the Mumford-Shah’s functional which was discussed compre-
hensively in [MS95, MS89]. In this approach, the segmentation problem is to find
a piecewise smooth function which approximates the image and also prohibits
the excessive length of the boundaries between any two contiguous regions. The
methodology has brought forth lots of models on segmentation. A direct one
is its modified model that approximates the Mumford-Shah’s functional via ['—
convergence since it is difficult to handle the length of the boundaries. Later,
in [CV01, CV02], Chan and Vese proposed a novel, easily handled model that
combines the Mumford-Shah’s functional and level set methods [OS88], which
can handle curves, surfaces with topological changes easily, to the segmentation
problem. Besides these models, in [KWT87], Kass et. al. proposed the classic

snake model for segmentation and Caselles, et al. developed in [CKS97] a similar
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geodesic active contour model.

However, the above models are all intensity based. They fail to segment
meaningful objects from images when the objects are occluded by other ones or
some parts of them are in low gray contrasts even missing. In fact, these situations
always happen in practical applications. Therefore, in these cases, prior shape
information is needed to successfully segment the desirable objects. The process
of segmentation with the incorporation of shape information can be called shape

prior segmentation.

There are also many works on shape prior segmentation in the literature.
Almost all these work are linear combinations of two terms with one term about
some specific segmentation functional and the other about shape difference. For
example, in [LGF00], Leventon et. al. presented a model which incorporates
statistical based shape information into Caselles’ geometric active contours model
[CKS97]. Later, Chen et. al. [CTT02] combined a different shape difference
term with the same segmentation model. Moreover, in [CTW02|, Cremers et al.
proposed a shape prior segmentation model which puts a statistical based shape

prior into the Mumford-Shah’s functional.

In a recent paper, Cremers et al. [CSS03] constructed a variational approach
that incorporates a level set based shape difference term [PRR02, RP02] into
Chan-Vese’s segmentation model. Besides the level set function for segmentation,
the authors introduce a new function called labelling function to indicate the

regions in which shape priors should be enforced.

In this chapter, based on Chan-Vese’s model, we would like to propose a

variational model for shape prior segmentation. In this model, we borrow the
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idea of Cremer’s work in [CSS03], i.e., we also introduce a labelling function.
However, Our model is different from Cremer’s model in several aspects. Firstly,
our approach permits scaling, translation and rotation of prior shapes. Secondly,
we take a different shape comparison term which is intrinsic to the objects and
the prior shapes, in other words, it is independent of the domain of the image.

Moreover, we introduce additional terms to control the labelling function.

The rest of this chapter is organized as follows. In section 5.2, a shape repre-
sentation via the related signed distance function is discussed. In fact, this review
can be found in Chapter 2. However, we still keep it here to make this chapter
be complete. In section 5.3, we review some variational models on shape prior
segmentation. Then, we detail our variational model in section 5.4. Section 5.5
contains the numerical algorithms, and the experimental results are presented in

Section 5.6, which is followed by a conclusion in section 5.7.

5.2 Shape representation via a signed distance function

In [PRRO2, RP02|, Paragios et. al. represented a shape by the related signed
distance function — a special level set function [OS88]. Given an object Q C R?,
which is assumed to be closed and bounded, then there is a unique viscosity

solution to the following equation:

| Vo =1

>0 z € Q\0N2
$ =0 1 €N (5.1)
<0 z € R\
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Hence, any object in the plane corresponds a unique signed distance function,

and vice versa.

As a shape is invariant to translation, rotation and scaling, we may define
an equivalent relation in the collection of objects in the plane. Any two objects
are said to be equivalent if they have the same shape. Their signed distance
functions are related. For example, let €2; and €2, be two objects with the same
shape, and ¢; and ¢o be the signed distance functions respectively, then there

exists a four-tuple (a, b, 7, #) such that:

bolay) = ren(EA)sO+(—Ysind —(z—a)sind+ (y—b)cosh)

T T

(5.2)

where (a, b) represents the center, r the scaling factor and 6 the angle of rotation.
In this way, given any object, consequently a signed distance function, we may
get the representation of other objects in the equivalence class by choosing the

four-tuple (a,b,r,0).

5.3 A review for shape prior segmentation models

In this section, we review some variational frameworks that are related to our

work.

5.3.1 Using prior shapes in geometric active contours (Chen et al.)

In [CKS97], by extending the traditional energy-based active contours (snakes)

[KWTS8T7], Caselles et. al. developed over a curve C' an energy function E(C),
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which reads:
min
C(q)

where [ : 2 — R be an image defined on {2, and ¢ is a function of the image

[ svrc@)DIc @i (5.3

gradient, which usually takes the form:

1

VI|)= ———.

(5.4)

By minimizing the energy F(C), the curve C will be stable on the boundaries

of objects in the image, where the gradients of intensity are very large.

In [CTTO02], Chen et al. presented a variational framework by incorporating
shape priors into Caselles et al.’s model. They proposed a modified procrustes
method to describe the shape difference. Let C* be a curve, called shape prior
, representing the boundary of an object, and C' be another curve, then the
difference between curve C' and C*, e.g., the two objects, is defined as:

min
C(g)

where u, R, T be the parameters for scaling, rotation and translation, and d(z,y) =

/ P(uRC(q) + T)|C'(q)dg, (5.5)

d(C*, (z,y)) is the distance from a point (z,y) to the curve C*.

Then, by combining these two terms, Chen et al.’s energy for shape prior

segmentation reads:

ECuRT) = [(o(VIC@))+5EWRCIa) + YC(0)lda, (5:6)

where A\ > 0 is a parameter. Moreover, they choose ¢g(|VI|) as:

1
oI = a1 1)
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where 3 > 0 is a parameter, and G, () = %e*‘w‘2/4"2.

This model can segment objects, whose shapes are similar to the prior ones,
from images even when their complete boundaries are either missing or are low

resolution and low contrast.

5.3.2 Segmentation using shape priors and dynamic labelling (Cre-

mers et al.)

In [CVO01], Chan and Vese proposed a variational model on a level set function,
say ¢, whose zero level set segments the image domain into several intensity

homogenous regions. The functional reads:

E(cr,e0,0) = /Q{(U — 1)’ H(¢) + (u— )" (1 — H(9)) + p|VH(¢)[}ddy,

(5.8)

where u : 2 — R is an image defined on €2, ¢; and ¢y are two scalar variables,

H(z) is the Heaviside function as follows:

1, x>0

H(z) = (5.9)
0, x<0,

and p > 0 is a parameter that describes how large the length of the boundaries

is permitted, since the term [, |[VH(¢)| just represents the length of zero level

set of ¢ ( see [OF01] ).

Recently, Cremers et al. [CSS03] developed a variational approach that in-
corporates shape priors into Chan-Vese’s model. Besides the level set function
¢, they introduced another function, called the labelling function, which will

indicate the region where the shape prior should be enforced.
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They also adopted Paragios et al.’s method [PRR02] to represent a shape,
that is, by means of a signed distance function (Reviewed in section 5.2). Let ¢
be the level set function for segmentation, and ¢, be the one embedding a given

shape. Both are signed distance functions. Then the shape difference reads:
Eshape(¢) = /(QS — ¢0)2dxdy. (5.10)
Q

Clearly, this integral means that the shape prior is enforced on all the domain
2, which will affect the segmentation of other objects and fail to segment the
desirable object. Consequently, Cremers et al. introduced another function L,
called labelling function, into the integral. The new shape term takes the form

as:

Ehape(¢, L) = /Q(¢ — ¢0)*(L + 1)*dzdy, (5.11)

where L defines the parts of the image domain {2 where the shape prior should be

active. For example, the region where L = —1 will be excluded from the integral.

As for controlling the area of the region on which the shape prior is enforced
and the regularity of the boundary separating the regions, an integral shape prior

was developed by Cremers et al. as:

Eopape(6, L) = /Q{(QS 0L+ 1)+ XL — 1) + 7 |VH(L) Vdady.

(5.12)

In summary, Cremers et al.’s model is:
E(U+,U_,¢, L) = ECV(U-HU’—a ) +O~/Eshape(¢7 L)a (513)

where o > 0 is a parameter.
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In this paper, Cremers et al. also derived a way to simultaneously optimize
the above energy with respect to the level set function ¢ and the labelling function

L. For the detail, we refer to [CSS03].

This idea that introducing a labelling function to indicate the region in which
the shape prior is enforced is novel. Besides segmenting multiple independent
objects in images, the model can also discriminate familiar objects, e.g., whose
shapes are similar to the prior shapes, from unfamiliar ones by means of the
labelling function. However, the above model does not permit the translation,

rotation and scaling of the prior shape or the active contour.

5.4 Our Model

In this section, we detail our model. In section 5.4.1, our model on shape prior
segmentation for an image with only one object is explained. Then in section
5.4.2, by introducing a labelling function, we extend the model to general cases

that there are probably many objects in the image.

5.4.1 Shape prior segmentation for a simple case

Here, we consider a simple case that there is only one object inside the given
image.

Let u : 2 — R be the given image defined on the domain €2, ¢ a level set
function for segmentation, and v a signed distance function for a given shape. As
discussed in section 5.2, let ¢, be a fixed signed distance function for the shape,

then v and v are related by a four-tuple (a,b,r,6) via the formula (5.2).
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Instead of taking the shape comparison term as Cremers et al.’s in [CSS03],

we define it as follows:

Bunape($,) = / (H(¢) — H(y)) dzdy, (5.14)

where H(z) is the Heaviside function as stated before. This term is symmetric

to ¢ and 1, and independent of the size of the domain 2.

Therefore, our model for shape prior segmentation can be written as:

E(015025¢aw) = EC’V(ClaCQ:QS)+)‘E8hape(¢aw)a (515)

where A > 0 is a parameter.

Due to the relation (5.2) between ¢ and v, we may also write the functional

in terms of ¢y by replacing ¢ with (a,b,,0).

We minimize the functional simultaneously with respect to ¢ and v (that is,
the four-tuple (a,b,r,6)). The numerical algorithms will be discussed in section

5.5.

5.4.2 Shape prior segmentation for general cases

As stated in section 5.4.1, the shape comparison term (5.14) is defined on all
the domain. Hence, it is inapplicable to general cases that there are multiple
objects inside the given image, since other objects will contribute to the shape

comparison. In this section, our model for general cases is stated.

Besides the segmentation function ¢ and shape function v, we also introduce
one more level set function L, as called the labelling function in Cremers et al’s

work [CSS03]. Then, the prior shape will be compared with the region where
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both the level set function ¢ for segmentation and the labelling function L are
positive. Consequently, instead of (5.14), the shape comparison term is defined

as:

Epape (6, L)) = / (H(6)H(L) — H())*dzdy. (5.16)

Q

Here, H(¢)H (L) characterizes the intersection of {¢ > 0} and {L > 0}. Ideally,
the function L will segment from (2 a region inside which there is only the goal

object.

Some restrictions are needed to control the labelling function L. First, if
{(z,y) € Q: L(z,y) > 0} is empty, the shape comparison term (5.16) will exert
no effect on the segmentation process. Therefore, the region in which L takes
positive value should be as large as possible. Second, some regularity should be
added to the boundary, i.e., the zero level set of L, by which L separates the

domain §).

Thus, we may rewrite the shape comparison term (5.16) as:

BEunape(6, L, ) — / (H()H(L) — H(w)dzdy + / (1 - H(L))dzdy

Q

+/.1/2/ |\VH(L)|dzdy, (5.17)
o

where p1 > 0 and pe > 0 are two parameters. In this expression, the second term
encourages the area of the region {(z,y) € Q : L(z,y) > 0}, and the last one

smoothes the boundary by which L separates the domain 2.

However, it is elusive to choose an appropriate p;. Too large u; will weaken
the action of the labelling function because the region {L > 0} will contain other
objects besides the desirable object, and on the other hand, if it is so small, L

could be stable at a state that the region {L > 0} could be smaller than what
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it should be. Therefore, it is unlikely for the labelling function to control itself

independently.

To overcome this difficulty, and notice that when the ideally segmentation for
the goal object is obtained, the reference shape function 1 should be also close

to segment the object. We therefore introduce an additional term as:

Ey(,c1,0) = /Q{(U — 1)’ H(Y) + (u— 02)*(1 — H(v))}dady, (5.18)

where ¢; and ¢y are the same variables in Chan-Vese’s model (5.8). Generally,
this term will be smaller when the region 7 > 0 contains larger regions occupied
by objects and smaller regions of background. Therefore, the term prevents the
reference shape from stopping at a smaller scale than the desirable object. Then,
with the interaction between v and L in the shape comparison term (5.17), the

labelling function L can be controlled less difficultly.

By combining all the above terms (5.8, 5.17, 5.18), our model can be written

E(¢,v,L,c1,¢2) = Ecv + Eghape + By, (5.19)
or explicitly,
B.6,Le) = [ (u=afH@)+ (=) - H()
) [ HOHD) - HE)
s (0= L)+ [ [VHL)
o /Q(u C e H) + (1 — e)2(1— H),  (5.20)

where ¢ = (¢1,¢3), and A, u1, o and v are nonnegative parameters.
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Remark 1: In this functional, we omit the length term in Eqy . It is partially
because that the prior shape may control the smoothness of the zero level set
of ¢ to some extend, and on the other hand, without the length term, a fast
way for minimizing the functional can be developed, which will be discussed in
the following section. However, the length term can be included in the above
functional if it is necessary, and then we have to employ the conventional way to

decrease the functional.

Remark 2: With the term Ey (5.18), the parameters p; and po become easy

to choose. In fact, we fix them for all the experiments listed in this chapter.

5.5 Numerical algorithms

In this section, we discuss the numerical algorithms for minimizing the function-
als presented in the last section. We first provide a proof of a fast principle,
which is mentioned in [GF02] and similar to Song and Chan’s method [SC02], for
minimizing Chan-Vese’s segmentation model [CV01] without length term. We

thus extend the principle to the minimization of our proposed functionals.

5.5.1 Numerical algorithms for the simple case

Recall the functional (5.15):

Ble,d4) — / (u— )2 H(®) + (u— c2)’(1 — H()) + A / (H(9) — Hw))

Q

Here, we omit the length term in the Chan-Vese’s model.

Then, similarly as Chan-Vese’s method in [CV01], the minimization of func-
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tional (5.15) is performed by solving the following equations (5.21) ~(5.27):

B Jo uH (¢)dzdy
= ey (5.21)
e f? — Zﬁgy (5.22)

and for the shape function 7, the gradient descents with respect to the four-tuple

(a,b,r,0) are given as follows:

G = [ HW - HO) bl ) cost
—thoy (2%, y*) sin 0}6 (¢)dzdy, (5.23)
% = | HO) - HO) ol y)sind
+ihoy (2™, y*) cos 0}0 () dxdy, (5.24)
5= @) BNl ) bl )
+ Yoy (2", ")y }o () dzdy, (5.25)
00
5= ) = H@) it vy
+rtoy(z, y")x" }6(¥)dzdy, (5.26)

where 1)y is a fixed signed distance function representing the given shape, and v

is related to v, via (5.2), and

= (x —a)cosf + (y — b) sin b
r bl

v = —(z —a)sinf + (y — b) cosb
r bl
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and for the segmentation function ¢,

9¢
o = tu—a)’ = (u—c)’+2)H() - H$))}(9),  (5.27)
where §(z) is the derivative of the Heaviside function H(z) in the distribution
sense. In the numerical experiments, as in Chan-Vese [CV01], we choose slightly

regularized versions of them as follows:

H.(z) = %(1+§arctan(§)) (5.28)
and
1 ¢
= ——7 2
0c () el (5.29)

where € is always chosen to be proportional to the mesh size Azx.

In summary, for each iteration in the experiment, we can update c;, co, 1 and

¢ one by one according to formulas (5.21) ~(5.27).

However, due to the fact that we only need the sign of the segmentation
function ¢, we will update it instead of using formula (5.27) but the following

principle:

5 L —{(u—ea)? = (u—c)® +2XH(¢) — H(¥))} > 0; (5.30)

-1, —{(u—c1)? = (u—2)* + 2X\(H(¢) — H(¢))} < 0.

The principle will accelerate the minimization process remarkably. Similar

ideas can be found in [GF02, SC02].

In the following, we prove that this kind of principle is equivalent to the

conventional method if we consider Chan-Vese’s model without length term.
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Theorem 2. Let u : 0 — R be a binary image defined on the domain €2, for
simplicity, denoted as u = xa(x,y), where x4 is the characteristic function of
ACQ, and ¢: Q x {t > 0} — R be the segmentation function. Without length

term, Chan-Vese’s functional reads:

Blen,end) — / {(w— ) H($) + (u — ¢)*(1 — H(9))}drdy,

(5.31)
the Euler-Lagrange equation for updating ¢ is:
0
a—f = —[(u—-c1)? = (u—c)?(e), (5.32)

and ¢y, ¢y are given by (5.21), (5.22). In this case, the principle (5.30) becomes:

5 = L, —[lu—e)? = (u=c)?] > 0; (5.33)
-1, —[(u—c1)? = (u—c)? <O.

Then the minimization of the Chan-Vese’s functional by performing (5.21), (5.22)
and (5.32) will be equivalent to the procedure by performing (5.21), (5.22) and

the principle (5.33).

Proof. For convenience, let us replace ¢, ca by ¢1(t), ca(t) in expressions (5.21),
(5.22) and (5.32). And without loss of generality, suppose ¢;(0) > ¢3(0), which are

derived from (5.21) and (5.22) with the initial segmentation function ¢(z,v,0).

We claim that: by performing (5.21), (5.22) and (5.32), the term (u—cy(t))%*—

(u — ¢y(t))? will keep the sign.

In fact, the amount (c;(t) — co(¢))? will be non-decreasing as ¢ —oc. This is
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because:

dey (Jo ud(@)8r) (Jo H(9)) — (Jo uH (¢))(Jo 5(8)¢1)
di (Jo H(9))?

1
= ) 0@ e [ S0
= ) e O
= m /Q(U — c1(1)8()[—(u — e1(t))” + (u = c2(2))?16(9),
(5.34)
then, if co(t) < ¢1(t), thus, 0 < co(t) < ¢1(t) < 1, it is easy to check that:
(u—c1(1))[~(u—c1(t)* + (u — c(1))?] > 0, (5.35)

whenever u takes value 1 or 0. Therefore, dc;/dt > 0. On the other hand, if

c2(t) > ¢1(t), we have de; /dt < 0. Consequently,

dCl

() - () 2 0, (5360
similarly,
d62
(1(t) = e2(t)) o < 0. (5.37)

Combining (5.36) and (5.37), we have:

) e

that is, the amount (c;(t) — c2())? is non-decreasing.

By the assumption, ¢;(0) > ¢2(0), we may arrive that: ¢;(t) > c(t) for any
t > 0. Consequently, the term (u — ¢1(¢))? — (u — co(t))? will keep the sign as

1 —x.
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Recall (5.32):

39

ot = —[(u— 01)2 — (u— 02)2]5(¢)-

Since the right side will never change sign, i.e., the sign is the same as the sign
of —[(u — ¢1(0))? = (u — ¢2(0))?]. Therefore, if —[(u — ¢1(0))? — (u — ¢2(0))?] > 0
at point (z,y) € Q, ¢(x,y,t) will be positive as t —ox, otherwise ¢(z,y,t) will be

negative as t —o. This is just the principle (5.33). O

Remark 3: The theorem shows that it is reasonable to use (5.30) to minimize
the functional (5.15) to some extend. On the other hand, it will be unavoidable
to view some fuzzy boundaries during the evolution if we apply the principle for
very noise images. In this case, we prefer to use the conventional way with the

length term.

5.5.2 Numerical algorithms for the general case

We now return to discuss the numerical algorithms for the functional (5.20).
Similarly as discussed in the previous section, we update cq, co, L, b and ¢ for

each iteration in the experiments as follows:

_ JoulH () + vH(¢))dzdy
[ (H(¢) + vH(¥))dzdy

(5.38)

&]

 fyul(l = H(9) + (1 — H(y)))dady
Jo((T = H($)) + v(1 — H()))dzdy ’

(5.39)

Co

and

O = XH(@)(1— 2H()|VL| + ||

VL
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As for the shape function 1, we replace the term (H (¢))—H (¢)) in (5.23)~(5.26)

by the following one:
2MH (¢) — H(¢)H (L)) + v[(u — c1)” = (u— e2)°], (5.41)

and

% = —6(@){[(u— 1)’ = (u — )] + 2\H (L) (H(¢) H (1)) — H(L))}.

(5.42)

To speed up the minimization process, instead of (5.42), we update ¢ with

the principle similar to (5.30), which reads:

L —{[(u—ec1)® = (u—e)’] + 20H (L) (H(¢)H(¢p) — H(L))} > 0;
=1, —{[(u—e1)® = (u— )| + 2\H(L)(H(¢)H(v)) — H(L))} < 0.
(5.43)

Moreover, we use local level set method, which was proposed by Peng et al.
[PMO99], to update the labelling function L, e.g., we only calculate L in a tube
around its zero level set instead of the whole domain €2. All these techniques make
the minimization process much more faster than the conventional one. Generally,

it always takes 500 iterations for the experiments listed in this chapter.

5.6 Experiment results

In this section, we only present experimental results for the general cases (section
5.4.2) since the simple case (section 5.4.1) can be included in the general one.

The experiments include synthetic and real images. For the consistence and
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convenience for the choices of the parameters, we normalize the images by scaling

them linearly from [0, 255] to [—1.0,1.0].

5.6.1 Synthetic images

We report here two synthetic images: one is a triangle (close to an equilateral
triangle) occluded by other objects (Figure 5.1) and the other is an incomplete

triangle with missing part (Figure 5.2). The shape prior is the equilateral triangle.

To view the segmentation process clearly, we list three steps (initial, middle
and final) for each function: segmentation function ¢, labelling function L, shape
function ¢ and the goal segmentation which is represented by the boundary of

the region {¢ > 0} (N{L > 0}.

These two examples (Figure 5.1 and Figure 5.2) show that our model can
combine intensity information and the prior shape to segment an object with a
similar shape even though the object is occluded by other ones or some of its

parts are missing.

5.6.2 Real images

In this section, we present two images. One is a hand occluded by other objects
(Figure 5.3) and the other is the same hand with some missing parts (Figure 5.4).

The prior shape is a similar hand.

To get the signed distance function for the prior shape, we first apply Chan-
Vese’s segmentation model [CV01] to the image with only a hand inside, then we
obtain a level set function ¢, which is positive inside the hand and negative out-

side the hand. Secondly, we solve a Hamilton-Jacobi equation (Eikonal equation)
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as follows:

0

5 = sienleo)(1 - Vel), (5.44)

with ¢(z,0) = g, to get a signed distance function ¢. ¢ is the signed distance
function corresponding to the hand, and defines the prior shape.

The examples (Figure 5.3 and Figure 5.4) listed here validate that our model
is also capable of real images, that is, it can segment an object which is similar
in shape to the prior one from an image even though the object is occluded by

other ones or has some missing parts.

5.6.3 Discussion of our model

The difficulties of segmentation using shape priors lie primarily in several aspects.

Firstly, as shape priors are always employed as templates to supervise the
segmentation process, which parts of regions should be affected by the templates?
especially when there are other objects in images beside the desirable ones. In
this chapter, we borrow Cremers et al.’s idea in [CSS03] by introducing a labelling
function to indicate with which part of the segmentation region the prior shape

should be compared. Let’s recall our model (5.20):

B6.6,L0) = [ (u=e)?H(®)+ (= f"(1 = HO)
A [(HOHE) - HW)
s (0= H D)+ [ [VH)
w0 [ (4= e PHO) + (0= (1 - HE))

In this functional, the first line is Chan-Vese’s model without length term; the
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next term measures the shape difference between the prior shape and the region
encompassed by ¢ = 0 and L = 0, i.e., the prior shape region ¢ > 0 is compared
with the region {¢ > 0} {L > 0}, not {¢ > 0}; the remain terms in the last two
lines describe how the labelling function L will evolve. In fact, it is insufficient for
the terms py [,(1—H(L)) and s [, [VH(L)| to control the evolution of function
L. Therefore, we add more terms as on the last line to indirectly control the
evolution of the labelling function L via the shape comparison term. In this way,
the parameter i, uo are less difficult to handle. In fact, we fix them and vary

only the parameters A, v in the experiments listed in this chapter.

Secondly, how to choose the initial guess of the prior shape or shape template,
i.e., in this chapter, the shape function ¢? As many other methods, we put the
initial prior shapes close to the desirable objects. However, this requirement still
can not guarantee that the desirable objects can be segmented. For instance,
in Figure 5.3 or 5.4, if the initial shape position of the hand is upside down,
one can not expect the correct segmentation of the hand in the image, since
the segmentation process could be trapped into local minimizers. Therefore, the
initial position of the prior shape is crucial for the final results. We will explore

this problem in the future.

5.7 Conclusion

We propose a level set based variational approach that incorporates shape priors
into Chan-Vese’s model to the shape prior segmentation problem. In our model,
besides the level set function for segmentation, as in Cremers’ work [CSS03], we

introduce another level set function together with the former one to mutually
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indicate the regions with which the prior shape should be compared. Our model
can segment an object, whose shape is similar to the given prior shape, from
a background where there are several objects. Moreover, we provide a proof
for a fast principle, which is also mentioned [GF02] and similar to [SC02], for
minimizing Chan-Vese’s segmentation model without length term. We extend

the principle to the minimization of our prescribed functionals.
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Original Image Prior Shape

Initial

Middle

Final

¢ L P goal

Figure 5.1: The first row lists the original image and the prior shape. From the second
row to the fourth row, each column respectively represents the initial, middle and final
step of the segmentation function ¢, labelling function L, shape function 1, and the goal
segmentation which is represented by the boundary of the region {¢ > 0} N{L > 0}. In
this experiment, the parameters chosen are: A = 4.0, u; = 0.2, uo = 0.2, v = 2.0. This
example demonstrates that the model can segment the object, which is occluded by

other ones and similar to the prior shape, out from a background with several objects.
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Original Image Prior Shape

Initial

Middle

Final

¢ L P goal

Figure 5.2: The first row lists the original image and the prior shape. From the second
row to the fourth row, each column respectively represents the initial, middle and final
step of the segmentation function ¢, labelling function L, shape function 1, and the goal
segmentation which is represented by the boundary of the region {¢ > 0} {L > 0}.
In this experiment, the parameters chosen are: A = 6.0, y1 = 0.2, yo = 0.2, v = 0.5.
This example shows that our model is capable of capturing the object similar to the

prior shape by filling in it missing parts from an image with several other objects.
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Figure 5.3: The first row lists the original image and the prior shape. From the second

row to the fourth row, each column respectively represents the initial, middle and final

step of the segmentation function ¢, labelling function L, shape function 1, and the goal

segmentation which is represented by the boundary of the region {¢ > 0} {L > 0}.

In this experiment, the parameters chosen are: A = 3.0, 1 = 0.2, uo = 0.2, v = 2.0.

This example verifies that our model can capture an object occluded by other ones via

the supervision of the prior shape from a real image.
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Final

[0) L Y goal

Figure 5.4: The first row lists the original image and the prior shape. From the second

row to the fourth row, each column respectively represents the initial, middle and final

step of the segmentation function ¢, labelling function L, shape function 1, and the goal

segmentation which is represented by the boundary of the region {¢ > 0} {L > 0}.

In this experiment, the parameters chosen are: A = 2.0, y; = 0.2, uo = 0.2, v = 2.0.

This example shows that our model can also be applied to segment an object similar

to the prior shape by filling in the missing parts from a real image.
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