A Piecewise Constant Level Set Method for Elliptic Inverse

Problems
Xue-Cheng Tai Hongwei Li
Department of Mathematics, Center for Integrated Petroleum Research,
University of Bergen, Norway University of Bergen, Norway
Email: tai@mi.uib.no Email: Hongwei.liQcipr.uib.no

March 26, 2006

Abstract

We apply a piecewise constant level set method to elliptic inverse problems. The discontinuity
of the coefficients is represented implicitly by a piecewise constant level set function, which allows
to use one level set function to represent multiple phases. The inverse problem is solved using
a variational penalization method with the total variation regularization of the coefficients. An
operator splitting scheme is used to get efficient and robust numerical schemes for solving the ob-
tained problem. Numerical experiments show that the method can recover coefficients with rather
complicated geometry of discontinuities under a moderate amount of noise in the observation data.

keywords: inverse problem, level set method, piecewise constant, operator splitting

1 Introduction

Consider the partial differential equation:
~V (q(x)Vu) = f x€QC R?,

u(z) =0 x € 0N (1)

The problem is to use some observations of the solution u to recover the coefficient g(z). For many
applications, the coefficient g(x) is discontinuous. Sometimes, it is important to identify the location
of the discontinuities as well as the values for the coefficient. In this work, we assume that g(x) is
discontinuous over some subdomain boundaries, and inside the subdomains, the function values have
very little variations. Therefore, ¢(x) can be approximated by piecewise constant functions.

Identification of discontinuous functions has been an interesting problem for sometimes. One
traditional approach is to use proper regularization strategy to allow discontinuities in the recovered
functions, see [7, 6, 9, 10]. Recently, the level set method, firstly proposed by Osher and Sethian in
[25], has been extended and used for this kind of problems in [4, 8, 12, 17, 26, 14, 1, 2, 3]. In the recent
surveys [29, 5], some more detailed information about these approaches and references can be found.
In [17], the authors have used the level set idea to solve an inverse conductivity problem. Assuming
known conductivity values, the unknown interface (i.e. the shape) can be identified by using the
observed solutions in a thin layer along the boundary of a domain. In [12], the level set method has
been applied to electrical impedance tomography problem. Given a set of current density, as well
as the corresponding values of electrical potential on 0f2, the method can determine the electrical
conductivity inside €. In this paper, we assume that an observation for the solution is available at
every mesh point in . A new technique used in this work is to replace the traditional level set
methods of [25] by some recent piecewise constant level set methods (PCLSM). The PCLSM was
proposed by Tai et al. in [18, 31, 20, 19], and has been applied to image segmentation problems in
[31, 30]. We shall also refer to [16, 28, 27, 15, 13, 21] for some related and similar ideas.

The remainder of this paper is organized as following. We will first formulate the model problem
by a output-least-squares approach in Section 2, then the PCLSM will be introduced and incorporated
into the formulation in Section 3. The algorithm will be described in Section 4. We will address some
implementation issues in Section 5, and present our numerical experiments in Section 6. The last
section goes for the conclusion.

2 Formulations for the elliptic inverse problem

Due to the ill-posedness of the problem, output-least-squares method is often used for recovering g(x).
Assume that ug € L?(2) is an observation for u, and let K be the set of admissible coefficients
K ={dlge L=*(Q)NTV(Q), 0<q(x)<q(r) <qz) < oo}, (2.1)

where ¢(z) and ¢(x) are known a priori, and TV denotes the total variation norm. The minimization
functional for the output-least-squares method is

Fla) = [Glule) = uaPds + 5R(a). 2.2

where R(q) = [, |Vql|dz is the total variation norm of ¢, u(g) is the solution of (1.1) for a given ¢ and
0 is the regularization parameter which controls the regularity of the identified coefficient. We solve
the following minimization problem to find g(x):

min F. (2.3)
geEK

We restrict the solution for g(z) to the space of piecewise constant functions, i.e., we want to partition
into several subdomains, and in each subdomain ¢(x) is a constant. We want to know the subdomains
as well as the corresponding values inside the subdomains. This problem is very similar in nature to
the ”image segmentation” as studied in [31, 20]. We use the PCLSM as a mechanism to solve such a
kind of problems involving interfaces.

3 Piecewise constant level set formulation

Suppose a function ¢, defined in the domain Q C R2, has different properties in different subdomains
of (2. In many industrial applications, one needs to identify the subdomains of 2. In other words,
one needs to partition €2 into a union of subdomains, 2 = U?Zl Q;, so that each subdomain has a
distinctive property of q. Usually we apply some variational models and try to find the subdomains
and the properties by minimizing an energy functional. So we need some techniques to represent
the subdomains and the properties so that they can be incorporated into the minimization process.
The level set method proposed by Osher and Sethian [25], is a convenient and successful technique
for this kind of interface problems, which has the advantage of dealing with topological changes of
the implicitly represented curves. The curve that divides §2 into its subdomains, can be represented
implicitly as the zero level set curve I' = {x € Q, ¢(z) = 0} of a higher dimensional level set function
¢. Rather than evolving the curve itself, the level set approach evolves the level set function ¢. In
the standard level set method, ¢ is represented as the signed distance function:

distance(x, '), x € interior of T,
o) = { (@.1) (3.)

—distance(z,T"), x € exterior of T.

For multiple subdomains, one can use multiple level set functions [8]. In general, one can use n level
set functions to represent 2" subdomains.

The piecewise constant level set methods, proposed in [18, 20, 19], are alternatives to the level set
idea of [25]. The PCLSM has been used in [31, 30] for image segmentation problems. Here, in this
paper, we use them to solve the inverse problem.

We present the essential ideas of the PCLSM in the following. Assume that we need to partition
the domain into a set of subdomains €2;, ¢ = 1,2,...,n, where the number of subdomains n is a
priori known. In order to identify the subdomains, we try to identify a piecewise constant level set
function ¢ such that

¢o=1, InQ;, 1=12,...,n. (3.2)

Associated with such a level set function ¢, the characteristic functions of the subdomains are given

as
n

H ai= [] G-k (3.3)
_] 1,5# k=1,k#1
If ¢ is given as in (3.2), then we have v, () =1 for z € Q;, and ¥;(x) = 0 elsewhere. Under the
condition (3.2), any function given by

(z) = Z civvi(¢(x)) (3.4)

is a piecewise constant function, with ¢ = ¢; in Q;. In order to satisfy (3.2), we need to impose some
constraints on ¢. Define

K(9)=(6=1)(¢=2)(p=n) =][(6-3). (3.5)

The level set function ¢ should satisfy
K(¢) =0 (3.6)

at every point in Q. Thus, we can use (3.4) to represent ¢, and transform the minimization problem
with respect to ¢ into a minimization problem with respect to ¢; and ¢ under the constraint (3.6).
More precisely, we need to solve

1
min F, F :/ Slu—wal? + BR(g), (3.7)
ci,®
K($)=0 “
to find the constant values ¢; and the piecewise constant level set function ¢. Above, ¢ is a function
of ¢; and ¢ as in (3.4), and by the equation (1.1), u is related to ¢, thus u depends on ¢; and ¢.
One can transform the above constrained minimization problem to an unconstrained one by some

kind of penalization or Lagrangian techniques. In this work, we use the penalization method, i.e. we
choose a small constant ;1 > 0 and solve the following minimization problem

minL, L= F+—W / lu — uq|* + BR(q +—/K2 (3.8)

Ciy

Here, W(¢) = [, K*(¢)dx. In order to solve (3.8), the derivatives 3— and % are needed. It is known

that oF v
q
— =—-Vu-Vz—-3V- () 3.9
% V] &
where u is the forward solution of (1.1) with a given ¢(x), and z(z) € H}(Q) is the solution of the

adjoint problem
—Vu- (¢(x)Vz) =u—wugin Q, z=0on 0. (3.10)

According to (3.4) and (3.3), the computations of g% and g?q are straightforward, i.e.,

04 ~~ . g
_¢ - ;Czwi((b)a aci - "/Jz'

By using the chain rule, which was verified in the Appendix of [29], we have

OF OF 0q oF [OF 0q ron ,
6= e g | e W)= 2K@K @) (3.11)
As a result of these relations, it is easy to get
oL OF 1 OF 9q 1
9b % L “wrgy = LN L Lk K (6), 3.12
5= 55 30 = G+ K@K () (312)
OL _OF _ [OF 9q (3.13)

dc; Oci Jo Oq Oc;’

4 Algorithms

To find a minimizer of (3.8), we use the following general sequential algorithm.

Algorithm 1. Choose initial values for ¢° and ¢?, i =1,2,....,n. For k=1,2,..., do
1. Find ¢! = {cF™ i =1,2,...,n}, such that
"1 = argmin L(¢, ¢*). (4.1)
2. Find ¢**! such that
Pt = arg m(gn L(ET, ¢). (4.2)

3. Check the convergence, if converged, stop; else goto 1.

Here and after, we will use arg min L to denote the minimizer of L. We use a gradient based method
with a line search to find the minimizers for (4.1) and (4.2). In the computation, we assume that a good
guess for the constants are known a priori, and that the minimization variables {¢;, i = 1,2, ...,n} are
confined to intervals around the true values. The most time consuming part of the above algorithm
is the minimization problem (4.2). The minimizer of (4.2) satisfies

oL OF 1

—=—+—W'(¢) = 0. 4.3

R R0 (43)
The gradient descent method is often used to solve the above equation, i.e., we solve the following
ordinary differential equation to the steady state

oL
— =0. 4.4
ot + 9% (4.4)
Normally, explicit schemes are used to solve this equation. In order to get better efficiency and
stability, we use the operator splitting scheme of [22, 23] to solve the above equation. Given ¢°, we
find ¢*t1/2 and ¢**! from the following equations for k =1,2,...

k+1/2 _ Kk OF
% + 6_¢(Ek7 ¢k+1/2) = 07 (45)
¢k+1 _ ¢k+1/2

1 1o k+1N
- +EW(¢) =o0. (4.6)

The pseudo time-step 7 needs to be chosen properly. Note that (4.6) can be re-written as:

¢k+1 _ ¢/€+1/2 4 a2K(¢k+1)K/(¢k+l) _ O7 (47)

where ag = 7/p. To solve this equation, we need to find the roots for a polynomial of order 2n — 1.
By choosing 7 and p properly, we can guarantee that this equation only has one real root, and the
Newton method can be used to find the root very efficiently, see [11]. The equation (4.7) will be
referred to as the constraint equation later on.

Set ap = % Then the minimizer of the following problem is a solution of (4.5):

min(g-6 — 6*|? + F) = min(goa|6 —][> + F). (1)

So, we can apply a gradient like method with line search to determine the optimal step length.
Incorporating these operator splitting schemes into Algorithm 1, we get the following algorithm:

Algorithm 2. Choose initial values for ¢° and ¢?, i =1,2,....,n. For k=1,2,..., do

1. Find &t such that

&t = argmin L(, ¢%).
2. Compute ¢F*+1/2 by
oF
k+1/2 _ ik _ k1 ok
(b (b Tk 6¢ (C a¢)a

where 4 is determined by a line search method.
3. Compute ¢*! from (4.7) by a Newton method.

4. Check the convergence, if converged, stop; else goto 1.

5 Implementation issues

We would like to address some important issues in the implementation of Algorithm 2.

5.1 Regularization parameter

The regularization term in the first part F' plays a very important role. Because of the ill-posedness of
the inverse problem, the regularization term is ncecessary. The parameter 3, which is used to control
the influence of the regularization term, is vital not only for the convergence rate of the algorithm,
but also for the computed solution. In this work, we use the Total-Variation (TV) regularization. The
TV regularization controls both the length of the level set curves as well as the jumps of g over the
solution domain. Usually, # should be chosen according to the noise level in the observation data.

From our numerical experiences, we find that it is better to neglect the regularization term at the
beginning stage of the iteration. At this stage, we should let the output-least-squares term to drag ¢
into the right direction without thinking about the regularity of ¢. We adjust the value of 3 at a later
stage. We set 8 to be large or small for each iteration according to some criteria. In our applications,
when some conditions are met, we set 8 = Gnaz, Or else set 8 = Bin. The constants Gnin and Ghmae
may have a certain dependence on the problem, and to a large extent, on the noise level. In our
computations, we have used the following criterion:

Criterion for triggering regularization
a. The level set curves do not change any more.

b. F is decreasing, which means that F(¢*+1) < F(¢F).

To testify Criterion a., we define

¢ = round(e),

where round(-) denotes the function that rounds a variable to its nearest integers. So we can check

the norm ||5’“Jrl — 5’“” to testify if the level set curves are reluctant to change.
We can write the Criterion as a function:

8= TriggerRegu(¢k,¢k+1). (5.1)

During each iteration, we call this function to set (. If the criterion is met, then the function would
return 8 = Binaz, Or else return 8 = Bnin.

It should be pointed out that the above criterion is just based on our experiences, and we have
only heuristic reasons rather than rigorous mathematical justifications to do so.

5.2 Updating ¢;

We assume that good guesses for the values of ¢; are known. In our numerical experiments, we update
¢; after each 5 to 10 iterations. When updating c;, we confine the ¢; value to an interval which allows
a 20% perturbation of the true value. We use the line search to determine the step length to update
¢; by gradient method as in [8].

5.3 Constraint term

We also need to choose a proper value for ay for the constraint equation. In order to guarantee that
(4.7) has only one real root, the value of as needs to be chosen according to the phase number n. We
need to have as < 2 for n = 2 and ay < 0.71 for n = 3, c.f. [11]. We also implement the constraint
equation (4.7) in a dynamic manner. That means that we don’t solve (4.7) in every iteration, and we
just solve it when the following conditions are met:

a. The level set curves do not change any more.
b. F does not decrease, which means that F(¢**1) > F(¢").

The above criterion means that we don’t need to solve the constraint equation at the beginning
stage, and we just need it when the level set curve almost converges. Usually, we can also skip the
solving of (4.7) for the first ko iterations, and then switch it on, where kg is a number which may
depend on the problem. Integrating all these ingredients into Algorithm 2, the following algorithm is
the one we have used for our numerical experiments:

Algorithm 3. Choose initial values for ¢°, 3 and ¢?, i =1,2,...,n. For k=1,2,..., do
1. Update "1 by

’ 801-

k+1 _ k
¢, =c; —0

(c*, o).

2. Compute ¢¥+1/2 by

oF
OV = ¢F g (@60,

3. Solve (4.7) to get ¢**1 if needed, or else set ¢F+1 = pF+1/2

4. Compute
8= TriggerRegu((bk, ¢k+1).

5. Check the convergence, if converged, stop; else goto 1.

Here, the step sizes 0 = {95, i=1,2,...,n} as well as v, are determined by a line search method.

6 Numerical experiments

We take the examples in [8] to testify the efficiency of our Algorithm 3. Let Q@ = (0,1) x (0,1),
f = 20m?sin(wx) sin(my). Let u* be the exact finite element solution for the exact ¢, and o be the
noise level. We construct the observed solution by ug = u* + ol||u*||p2/||Ral|r2 Ra, where Ry is a
finite element function with nodal values being uniform random numbers between [—1,1] with zero
mean. Here we assume that the observation data is available at every node of 2. When the noise
parameter o > 5e — 3, then we apply the denoising technique of Chan and Tai [7] to smooth u4 and
use the smoothed uy as the observed solution. The domain €2 is divided into a rectangular mesh with
uniform mesh size h for both z and y directions. In all our numerical experiments, we take h = 1/64.
In the plots for the examples, we will always use solid lines to represent the numerical computed
interface while use dash lines to represent the true interface. The interface for the computed solution
at different iterations is obtained by rounding the value of function ¢ to the nearest integer value.

To alleviate the concern of inverse crime, the exact solution u* is produced on a much finer mesh
using the true g. For the tests given later, u* is obtained on a mesh with size h/4. It would be
more appropriate to get u* by using a different simulator on a completely different mesh. In some
of the experiments, we shall test on how much noise the algorithm can tolerate. For some of the
tested examples, rather large amount of noise can be tolerated and we believe that approximation
errors produced from a different simulator for producing the observation data shall not prevent our
algorithm from working. In [24, p.451], tests haven been done for another model problem and it was
shown that discontinuous coefficients can be recovered even the true discontinuity does not align with
the mesh.

6.1 Example 1

We first consider a simple problem in this example. The exact coefficient ¢(x) is given in Figure 1,
i.e., g(xz) = 1 inside a circle and g(x) = 2 outside the circle. We take o = 5%. The initial values for
¢; and ¢ are taken as ¢ = (0.6,1.6) and ¢ = 1.5. The level set curves for the computed solution at
different iterations and the exact level set curve are shown in Figure 2. Note that the initial guess
for the level set curve is rather poor. Algorithm 3 can recover the location of the discontinuities very
well in less than 40 iterations. We also show the results with different noise levels in Figure 3. We see
that ¢ can be recovered well even with 40% noise. Note that we use Bmin = 1075 for 40% noise, and
Bmin = 1072 for other cases.

In Figure 4, we try to show a case where the true ¢(x) is not piecewise constant, but a perturbation
of a piecewise constant function. More precisely, we assume that the true coefficient is

q(z) 4+ 0.4 * rand(q(x) — 0.5),

where ¢(x) is as shown in Figure 1, and rand(-) produces the random numbers between [-1, 1]. For the
observation, we take 0 = 5%. The level set curves for the computed solution at different iterations,
and the exact level set curve are shown in Figure 7. We see that with poor initial guess, ¢(z) can still
be recovered quite accurately in about 90 iterations.

6.2 Example 2

The exact coefficient ¢(x) is given in Figure 5, i.e., g(z) = 2 inside the two closed curves and ¢(z) = 1
outside the curves. The level set curves for the computed solution with different noise levels at different
iterations are shown in Figure 8, Figure 9 and Figure 10. With different noise levels, Algorithm 3
needs about 300-400 iterations to recover g(z). Compared to Example 1, more iterations are needed
here due to the fact that this problem is more complicated. For this example, it seems that we can
only tolerate up to 5% noise which is much less than in Example 1.

Exact level-set curve of ¢
N Exact q(x)

(a) exact level set curve (b) exact q(x)

Figure 1: The exact ¢(x) and the location of the discontinuity.

Computed and exact @ Computed and exact @
: :
09 iteration =0 09 iteration =10
08 PR . 0s
07] : s 07]
08 J 08 g |
0s 3 . 0s 3 '
0.4 " 0.4 " It
03] N 03]
02) Teeeee- -0 02)
o1 o1
TeTeT e e o5 es e w5 er i L I TR Rt RN
(a) Initial (b) 10 iterations
Computed and exact ¢ Computed and exact ¢
: :
iteration =20 iteration =30
0s 0s
o o0 prsesess
JEPEEEEEEEL T s ..
07 Fd R 07 e o
7 / \
06 06 H S
05 " 05 N ‘,]
o4 o4 R {
\l n‘ ,!
03] . 03] N s
el ead e Ler*”
02 o - 02 L,
o1 o1
o eT oz o3 s o5 o5 o7 o5 o5 1 ool oz o3 @ o5 o5 o7 ws v 1
(c) 20 iterations (d) 30 iterations
Computed and exact @
:
09 iteration =40
107
08 rrssca.
o el .
0.7] ((’ - 10
l{, X
os i ' we
" \
05 i .
" 4 10
os i\ :
) /S
03 KN 2 10
. 7
02 T o8|
w
o1
10
TeTeT e e o5 eE e w5 er i D I R R I
(e) 40 iterations (f) The error ||q—quL2(Q) v.s.

iteration number

Figure 2: The computed solution at different iterations and the computational error for Example 1
with o = 5%, Bmin = 107%, Bmaz = 0.015, ag = 0.2, initial ¢ = [0.6, 1.6] and initial level set function
¢ =1.5.

6.3 Example 3

The exact coefficient g(z) takes two different constant values inside the two curves, see Figure 6, i.e.,
q(z) = 2 inside one of the curves, ¢(x) = 3 inside the other curve and ¢(z) = 1 otherwise. So we
have three distinct constant subdomains for ¢(x). The level set curves for the computed solution with

Computed and exact
N s hJ Computed q(x)

iteration =40

Computed and exact @

1 Computed q(x)
09 iteration =40
08 rrssca.
T BREN
07 L o
P .
i
* i '
u u
05 i s
04 \ !
. .
03 “ e
A e
- i

Computed and exact @

iteration =40

Computed and exact ¢

iteration =40

(d) With o = 40%

Figure 3: The computed level set curves and g(x) with noise level o = 0%, 5% ,20%, 40%. We have
used Bpin and Bmae as before, except for o = 40%, we set Bmin = 1076,

different noise levels at different iterations are shown in Figure 11 and Figure 12. For this example, it
takes about 1000 iterations for the algorithm to get converge, and it seems that we can not tolerate
noise that is more than 1%.

7 Conclusions

In this paper, the piecewise constant level set method has been used to formulate the elliptic inverse
problem. We divide the energy functional into two parts, and we incorporate in them, both the con-

Exact level-set curve of ¢

(a) exact level set curve

Exact q(x)

(b) exact q(x)

Figure 4: The exact ¢(x) and the location of the discontinuity.

Exact level-set curve of @

(a) exact level set curve

Exact q(x)

(b) exact q(x)

Figure 5: The exact ¢(x) and the location of the discontinuity .

Exact level-set curve of @

(a) exact level set curve

Exact q(x)

(b) exact q(x)

Figure 6: The exact ¢(x) and the location of the discontinuity .

Computed and exact ¢ Computed and exact ¢

iteration =0 iteration =10

o 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1

(a) Initial (b) 10 iterations
Computed and exact @ Computed and exact @
: :
09l iteration =30 09l iteration =50
08 L2f13Iiiaa, 08 T
: s e
o7 o7 . .
06 y 06 \li"
o . o [;
Ry J
os os ;
S /
y , y o ‘
O ’ 02 SN iaaamaee
o1 o1
L I T R R R TeTTeT e e o5 es e w5 s i
(c) 30 iterations (d) 50 iterations
Computed and exact @
:
09l iteration =90
1077
o) P
- RN
0.7] ,,’ o 107
o8 / N
/ A o
os " :
h a
os y .
03 \\\ 7
. : w
oo TTSeeaenes
o1 w
TeTeT e e o5 es e w5 er i LR
(e) 90 iterations (f) The error ||q—quL2(Q) v.s.

iteration number

Figure 7: The computed solution at different iterations and the computational error for Example
1 with a perturbed g(z). We have used o = 5%, Bmin = 1072, Baz = 0.015, ay = 0.2, initial
¢ =10.6, 1.6] and initial level set function ¢ = 1.5.

straint and the total variation regularization in a dynamic manner. Numerical experiments show that
our approach is very efficient and robust with respect to the geometry of the coefficient discontinuities
and the initial guess of the level set function. Algorithm 3 can recover ¢(x) quite accurately with
moderate amount of noise in the observation data.

References

[1] U. Ascher and E. Haber. Grid refinement and scaling for distributed parameter estimation
problems. Inverse Problems, 17:571-590, 2001.

[2] U. Ascher and E. Haber. Computational methods for large distributed parameter estimation
problems with possible discontinuities. Symp. Inverse Problems, Design and Optimization, 2004.

[3] U. Ascher, E. Haber, and H. Huang. On effective methods for implicit piecewise smooth surface
recovery. Submitted 2004.

[4] M. Burger. A level set method for inverse problems. Inverse problems, 17:1327-1355, 2001.

11

Computed and exact ¢ Computed and exact ¢

iteration =0 iteration =10

© 01 o0z 03 04 05 06 07 08 08 1 0 01 o0z 03 04 05 06 07 08 08 1

(a) Initial (b) 10 iterations

Computed and exact ¢ Computed and exact ¢
))
09 iteration =100 09 iteration =200
o3 o3
o1 o1
o8 o8
o8 o8
os os
03 03
02 02
o o
O T R T LR A R R O T R T R A R R

(c) 100 iterations (d) 200 iterations

Computed and exact ¢

:
iteration =300
o9
o8
o7
.
o8
o4
o3
02
o
e e e o e e i o R e)
(e) 300 iterations (f) The error ||q—quL2(Q) v.s.

iteration number

Figure 8: The computed solution at different iterations and the computational error for Example 2
with 0 = 0%. We have used Bmin = 1075, Brax = 0.015, ap = 0.02, initial ¢ = [0.8, 1.8] and initial
level set function ¢ = 1.5 .

[5]

(6]

Martin Burger and Stanley J. Osher. A survey on level set methods for inverse problems and
optimal design. Furopean J. Appl. Math., 16(2):263-301, 2005.

T.F. Chan and X.-C. Tai. Augmented lagrangian and total variation methods for recovering
discontinuous coefficients from elliptic equations. In M. Bristeau, G.Etgen, W. Fitzgibbon, J.L.
Lions, J. Periaux, and M.F. Wheeler, editors, Computational Science for the 21st Century, pages
597-607, New York, 1997. Willey.

T.F. Chan and X.-C. Tai. Identification of discontinuous coefficients from elliptic problems using
total variation regularization. SIAM J. Sci. Comput., 25(3):881-904, 2003.

T.F. Chan and X.-C. Tai. Level set and total variation regularization for elliptic inverse problems
with discontinuous coefficients. Journal of Computational Physics, 193:40-66, 2003.

G. Chavent and K. Kunisch. Regularization of linear least squares problems by total bounded
variation. ESAIM Control Optim. Calc. Var., 2:359-376, 1997 (electronic).

Z. Chen and J. Zou. An augmented lagrangian method for identifying discontinuous parameters
in elliptic systems. SIAM J. Control Optim., 37(3):892-910, 1999(electronic).

12

Computed and exact ¢ Computed and exact ¢

iteration =0 iteration =10

© 01 o0z 03 04 05 06 07 08 08 1 0 01 o0z 03 04 05 06 07 08 08 1

(a) Initial (b) 10 iterations

Computed and exact ¢ Computed and exact ¢
))
09 iteration =80 09 iteration =200
o3 o3
o1 o1
o8 o8
o8 o8
os os
03 03
02 02
o o
O T R T LR A R R O T R T R A R R

(c) 80 iterations (d) 200 iterations

Computed and exact ¢

:
iteration =300
o9
o8
o7
.
o8
o4
o3
02
o
e e e o e e i o B N R)
(e) 300 iterations (f) The error ||q—quL2(Q) v.s.

iteration number

Figure 9: The computed solution at different iterations and the computational error for Example 2
with ¢ = 1%. The values for the other parameters are Bmin = 107°, Bnas = 0.015, as = 0.02, initial
¢ =10.8, 1.8] and initial level set function ¢ = 1.5 .

[11]

[12]

[13]

Oddvar Christiansen and Xue-Cheng Tai. Fast implementation of piecewise constant level set
methods. Cam-report-06, UCLA, Applied Mathematics, 2005.

Eric T. Chung, Tony F. Chan, and Xue-Cheng Tai. Electrical impedance tomography using level
set representation and total variational regularization. J. Comput. Phy., 205:357-372, 2005.

Jason T. Chung and Luminita A. Vese. Energy minimization based segmentation and denoising
using a multilayer level set approach. Lecture Notes in Computer Science (Springer-Verlag),
3757:439-455, 2005.

O. Dorn, E. Miller, and C. Rappaport. A shape reconstruction method for electromagnetic
tomography using adjoint fields and level sets. Inverse Problems, 16:1119-1156, 2000. Special
issue on Electromagnetic Imaging and Inversion of the Earth’s Subsurface.

Selim Esedoglu and Yen-Hsi Richard Tsai. Threshold dynamics for the piecewise constant
mumford-shah functional. Tech. Rep. CAM-report-04-63, UCLA Dep. Math, 2004.

Frédéric Gibou and Ronald Fedkiw. A fast hybrid k-means level set algorithm for segmentation.
Stanford Technical Report, 2002.

13

Computed and exact ¢ Computed and exact ¢

iteration =0 09 iteration =10

(a) Initial (b) 10 iterations

Computed and exact ¢ Computed and exact ¢

iteration =80 R iteration =200

(c) 80 iterations (d) 200 iterations

Computed and exact ¢

iteration =400

(e) 400 iterations (f) The error ||q—quL2(Q) v.s.
iteration number

Figure 10: The computed solution at different iterations and the computational error for Example 2
with 0 = 5%, Bmin = 1075, Bz = 0.015, ag = 0.02, initial ¢ = [0.8, 1.8] and initial level set function

p=15.

[17] K. Ito, K. Kunisch, and Z. Li. Level-set function approach to an inverse interface problem. Inverse
problems, 17:1225-1242, 2001.

[18] J. Lie, M. Lysaker, and X.-C. Tai. Piecewise constant level set methods and image segmentation.
In Ron Kimmel, Nir Sochen, and Joachim Weickert, editors, Scale Space and PDE Methods in
Computer Vision: 5th International Conference, Scale-Space 2005, volume 3459, pages 573-584.
Springer-Verlag, Heidelberg, April 2005.

[19] J. Lie, M. Lysaker, and X.-C. Tai. A binary level set model and some applications to image
processing. IEFEE Trans. Image Process., to appear. Also as UCLA, Applied Math., CAM-
report-04-31, 2004.

[20] J. Lie, M. Lysaker, and X.-C. Tai. A variant of the levelset method and applications to image
segmentation. Math. Comp., to appear. Also as UCLA, Applied Math. CAM-report-03-50, 2003.

[21] A. Litman. Reconstruction by level sets of m-ary scattering obstacles. Inverse Problems,
21(6):S131-S152, 2005.

[22] T. Lu, P. Neittaanméki, and X.-C. Tai. A parallel splitting up method and its application to

Navier-Stokes equations. Appl. Math. Lett., 4(2):25-29, 1991.

14

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

T. Lu, P. Neittaanméki, and X.-C. Tai. A parallel splitting-up method for partial differential
equations and its applications to Navier-Stokes equations. RAIRO Modél. Math. Anal. Numér.,
26(6):673-708, 1992.

T. K. Nilssen and X. C. Tai. Parameter estimation with the augmented Lagrangian method for
a parabolic equation. J. Optim. Theory Appl., 124(2):435-453, 2005.

S. Osher and J.A. Sethian. Fronts propagating with curvature dependent speed: Algrithms based
on hamilton-jacobi formulations. J. Comput. Phys., 79:12-49, 1988.

F. Santosa. A level-set approach for inverse problems involving obstacles. ESAIM: Contr. Optim.
Calc. Var., 1:17-33, 1996.

J. Shen. Gamma-convergence approximation to piecewise constant Mumford-Shah segmentation.
Tech. Rep. CAM-report-05-16, UCLA Dep. Math, 2005.

B. Song and T. Chan. A fast algorithm for level set based optimization. CAM-UCLA, 68, 2002.
Under revision for publication in SIAM J. Sci. Comput.

X.-C. Tai and T. F. Chan. A survey on multiple level set methods with some applications for
identifying piecewise constant functions. International J. Numer. Anal. Modelling, 1, 2004.

X.-C. Tai and C. Yao. Fast piecewise constant level set method with newton updating. Technical
report, UCLA, Applied Math. CAM-report-05-52, 2005.

Xue-Cheng Tai, Oddvar Christiansen, Ping Lin, and Inge Skjaelaaen. A remark on the mbo
scheme and some piecewise constant level set methods. Technical report, UCLA, Applied Math-
ematics, CAM-report-05-24., 2005.

15

Figure 11: The computed solution at different iterations and the computational error for Example 3
with o = 0.1%, Bmin = 1072, Bz = 0.015, az = 0.02, initial ¢ = [0.8, 1.8, 2.8], and initial level set

function ¢ = 1.0 .

Computed and exact ¢

iteration =0

(a) Initial

Computed and exact ¢

iteration =400

(el

(c) 400 iterations

Computed and exact ¢

iteration =1500

N

(e) 1500 iterations

16

Computed and exact ¢

iteration =130

08

07

08

:
04

(b) 130 iterations

Computed and exact ¢

iteration =1000
08
07
08
05
04

(d) 1000 iterations

o w0 G0 @0 1000 120 1400 1500 1800 2000

(f) The error ||q— qg*| lL2(q) V-s-
iteration number

Computed and exact ¢ Computed and exact ¢

: :
09 iteration =0 09 iteration =130
o8 o8
o7 o7
B
os os
os os
0s 0s
0z 0z
o1 o1
B B T S S T I B T S T
(a) Initial (b) 130 iterations
Computed and exact ¢ Computed and exact ¢
: :
09 iteration =200 09 iteration =400
o8 o8
o7 o7
os os
o5 o5
04 @ 04
0s 0s
0z 0z
o1 o1
I B T S S T L B T S T
(c) 200 iterations (d) 400 iterations
Computed and exact ¢ Computed and exact ¢
: :
iteration =1000 iteration =1500
00 00
0s 0s
o7 o7
os os
o8 o8
o4 o4
os os
0z 0z
o o
STeTeT T e w5 o5 T W s i L I I S
(e) 1000 iterations (f) 1500 iterations

Figure 12: The computed solution at different iterations and the computational error for Example 3
with 0 = 1%, Bmin = 1075, Brae = 0.015, az = 0.02, initial ¢ = [0.8, 1.8, 2.8] and initial level set
function ¢ = 1.0 .

17

