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Abstract

In this work, noise removal in digital images is investigated. The importance of this problem lies in

the fact that removal of noise is a necessary pre-processing step for other image processing tasks such

as edge detection, image segmentation, image compression, classification problems, image registration

etc. A number of different approaches have been proposed in the literature. In this work, a non-linear

PDE-based algorithm is developed based on the ideas proposed in [1]. This algorithm consists of two

steps: flow field smoothing of the normal vectors, followed by image reconstruction. We propose a

finite-difference based additive operator-splitting method that allows for much larger time-steps. This

results in an efficient method for noise-removal that is shown to have good visual results. The energy

is studied as an objective measure of the algorithm performance.
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1 Introduction

In this work, removal of additive, zero-mean noise in digital images is investigated. We use
the ideas proposed in [1], based on a TV-norm approach. This results in two nonlinear partial
differential equations. The first of these equations is the smoothing of the flow-field (normal
field) of the original image. The second equation reconstructs a noise-reduced image from the
smoothed flow-field. This results in an efficient method for noise-removal that has good results.
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The contributions of this paper are as follows: a more efficient scheme for flow-field smoothing
is developed; an additive operator splitting (AOS) method ([15, 16, 17]) is employed to further
improve the efficiency of the flow-field smoothing; a comparison of the AOS method and
explicit methods are done in terms of numerical performance; and lastly, the use of the energy
is suggested as an objective measure of the performance of noise-reduction algorithms based
on energy minimization.
Let d be a digital image defined on a two-dimensional region Ω. Let (x, y) denote the position of
a single pixel. d(x, y) is the grey-level value associated with the pixel (x, y). The noise model is
assumed to be zero-mean and additive, denoted as η(x, y). The observed image values d0(x, y)
are

d0(x, y) = d(x, y) + η(x, y). (1)

The problem is to recover the (unknown) true image d(x, y) from the given observations
d0(x, y).
The visually annoying parts of the noise usually belong in the higher frequency regions of the
spectrum. A lot of noise can be effectively filtered by a lowpass filter. However, this will
remove the true high-frequency components of the image such as edges and texture. Isotropic
filters suffer from this problem. The challenge is to retain as much of the true high-frequency
information as possible while reducing the perceived noise levels in the image.
The Total Variation (TV) norm based filters proposed in [5], have been shown to be quite
effective in removing noise without causing excessive smoothing of the edges. The orignal
formulation of this filter is to obtain d(x, y) as a solution of the constrained optimization
problem

inf
d

∫

Ω
|∇d| dx subject to

∫

Ω
|d− d0|2 dx = σ2. (2)

where σ2 represents the noise level. The resulting Euler-Lagrange PDE to be solved in this
case is

−∇ ·
(
∇d
|∇d|

)
+ µ(d− d0) = 0. (3)

However, it is well known that the TV norm filter has the disadvantage of a stair-case effect :
smooth functions get transformed into piecewise constant functions. This lends an undesirable
blocky effect to the smoothed image. In [1], it is proposed to modify the equation (2). Instead
of minimizing the TV norm of d, it is proposed to minimize the TV norm of ∇d/|∇d|, giving
the following equation

inf
d

∫

Ω

∣∣∣∣∇
∇d
|∇d|

∣∣∣∣ dx subject to

∫

Ω
|d− d0|2 dx = σ2. (4)

∇d/|∇d| is called the normal field of the image. The fourth order Euler-Lagrange equation
that results from directly minimizing this functional is difficult to solve numerically in a stable
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manner. Therefore, in [1], a re-formulation of this equation is done. The above equation is split
into two steps. The first step involves the smoothing of the normal vectors ~n0 = ∇d0/|∇d0|.
The second step involves reconstructing an image whose normal field fits the smoothed normals
according to the noise variance levels σ2. It is shown that this two-step procedure provides
results superior to that of the original TV norm smoothing scheme (2).
This paper is divided as follows. In section 2, the first of the two steps is presented, smoothing
of the image flow field. A new model is proposed in this paper which converts the Euler-
Lagrange equation to a formulation based on angles. This is more than twice as efficient as
the original formulation. A semi-implicit AOS scheme [15, 16, 17] for the numerical solution
of the problem is also presented. In section 3, an equation for the reconstruction of the image
from the previously smoothed normal field is presented, along with an AOS scheme. In section
4, computational results are presented. The performance of the AOS scheme is compared
against that of the explicit scheme. It is also shown that the energy is a good measure of the
performance of the algorithms, and this can be used as an objective performance measure.

2 Flow Field Smoothing

For a given image d, the unit normal field ~n is given by

~n =
∇d
|∇d| . (5)

In numerical implementation, in areas of low gradient magnitude (|∇d| << 1), a small con-
stant is added to the evaluation of |∇d|, i.e. |∇d| is replaced by

√
|∇d|2 + ε. The TV norm

minimization to smooth the flow field is

inf
|~n|=1

{∫

Ω
|∇~n|+ λ

2
|~n− ~n0|2 dx

}
. (6)

where λ is a constant that balances smoothing and fidelity to the original flow field. In [1],
it is suggested that λ be set between 1 and 10. The value is determined by experimentation.
Setting λ to 0 is equivalent to smoothing using the original TV norm model as proposed in [5].
The unit vector constraint makes this a non-convex minimization problem. This may be
approached directly, as is done in [4], or indirectly through the use of either a projection
method or a penalty method, similar to [14]. We shall use a new formulation here. Let
~n = (cos θ, sin θ). Then it can be shown [1] that |∇~n| = |∇θ|. Let ~n0 = (cos θ0, sin θ0). Then

|~n− ~n0|2 = (cos θ − cos θ0)2 + (sin θ − sin θ0)2 = 2(1− cos(θ − θ0)) (7)

Then (6) can be re-written as

inf
θ

{∫

Ω
|∇θ|+ λ(1− cos(θ − θ0)) dx

}
. (8)
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The energy is the function

E(θ) =

{∫

Ω
|∇θ|+ λ(1− cos(θ − θ0)) dx

}
. (9)

The Euler-Lagrange equation corresponding to the above problem is

−∇ ·
{ ∇θ
|∇θ|

}
+ λ sin(θ − θ0) = 0. (10)

With an artificial time-discretization term added, the following equation is solved to steady-
state

θt = ∇ ·
{ ∇θ
|∇θ|

}
− λ sin(θ − θ0). (11)

Boundary conditions are Neumann, ∇θ · ~ν = 0, where ~ν is the outward normal at the image
boundaries. Let ∆x

∓θi,j = ∓(θi∓1,j − θi,j) and ∆y
∓θi,j = ∓(θi,j∓1 − θi,j). The numerical

approximations for first derivatives are

θx ≈ ∆x
−θ

n
i,j. (12)

θy ≈ ∆y
−θ

n
i,j. (13)

To compute an approximation to |∇θ|, central derivatives are first defined by

∆x
0θ
n
i,j =

∆x
−θ

n
i,j + ∆x

−θ
n
i+1,j + ∆x

−θ
n
i,j+1 + ∆x

−θ
n
i+1,j+1

4
. (14)

∆y
0θ
n
i,j =

∆y
−θ

n
i,j + ∆y

−θ
n
i+1,j + ∆y

−θ
n
i,j+1 + ∆y

−θ
n
i+1,j+1

4
. (15)

Then |∇θ| is approximated by

|∇θ|ni,j;x = ((∆x
−θ

n
i,j)

2 + (∆y
0θ
n
i,j)

2)
1
2 . (16)

|∇θ|ni,j;y = ((∆y
−θ

n
i,j)

2 + (∆x
0θ
n
i,j)

2)
1
2 . (17)

An explicit numerical scheme to solve (11) is

θn+1
i,j − θni,j

∆t
=

1

h
∆x

+

(
∆x
−θ

n
i,j

|∇θ|ni,j;x

)
+

1

h
∆y

+

(
∆y
−θ

n
i,j

|∇θ|ni,j;y

)
− λ sin(θni,j − θ0

i,j). (18)

An additive spatial operator splitting (AOS) can be used for a more efficient semi-implicit
numerical scheme. The AOS gives the semi-implicit scheme (c.f. [15, 16, 17])

dn+1 =
1

m

m∑

l=1

[I −mτAl(dn)]−1dn. (19)
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where I is the identity matrix and A contains the coefficients corresponding to the diffusivity
operator in (11). This algorithm was first proposed in Lu, Neittaanmaki and Tai [15, 16]. It was
discovered independently later in [17] and used in a different context for image processing. This
scheme splits the numerical scheme along the axes and combines the results additively. The
resulting scheme is tri-diagonal along each axis (due to the second-order diffusion operator).
Therefore, the individual split models can be solved efficiently and are simple to implement.
Under appropriate restrictions on the matrix A (which are satisfied by our current model), this
semi-implicit scheme is numerically stable and satisfies a maximum principle [3]. With AOS
splitting, the semi-implicit formulation of equation (18) can be re-written as

θ
n+ 1

2
i,j − θni,j

∆t
=

1

h
∆x

+

(
∆x
−θ

n+ 1
2

i,j

|∇θ|ni,j;x

)
− λ sin(θ

n
i,j − θ0

i,j). (20)

θ̂
n+ 1

2
i,j − θni,j

∆t
=

1

h
∆y

+

(
∆y
−θ̂

n+ 1
2

i,j

|∇θ|ni,j;y

)
− λ sin(θ̂

n+ 1
2

i,j − θ0
i,j). (21)

θn+1
i,j =

θ
n+ 1

2
i,j + θ̂

n+ 1
2

i,j

2
. (22)

The above tri-diagonal equations are re-arranged and iterated using a fast Thomas algorithm
[9] pp. 23-25.
In [1], the Euler-Lagrange formulation of (6) is done by treating the two components of ~n sep-
arately. More computations are introduced by the need to maintain the unit vector contraint.
The formulation presented in (11) is at least twice as efficient as that scheme. Numerical tests
confirm that similar results are achieved with both the original and new schemes. Hence, in
our results section 4, we will only present the results with the new formulation (11).

3 Image Reconstruction

The image reconstruction step recovers an image from the smoothed normal field that results
from solving (6). The recovered image d satisfies

∇d
|∇d| = ~n and

∫

Ω
|d− ~d0|2dx = σ2.

Taking the dot product of both sides of the first equation above by ~n, and noting that ~n is a
unit vector gives ∇d · ~n = |∇d|. Minimizing this over the whole domain gives the problem to
be solved

inf
d

{ ∫

Ω
(|∇d| − ∇d · ~n) dx

}
subject to

∫

Ω
|d− d0|2 dx = σ2. (23)
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where σ2 is the estimated noise variance. This can be estimated using statistical techniques
such in [6]. If the exact noise variance cannot be computed, then an approximate value may be
used. If the input value is less than the true value, then undersmoothing will result. A larger
value will result in oversmoothing. Using Lagrange multipliers for (23) gives the following
functional

L(d, µ) =

{∫

Ω
(|∇d| − ∇d · ~n) dx+

µ

2

( ∫

Ω
|d− d0|2 − σ2 dx

)}
. (24)

The optimality conditions for L(d, µ) are

−∇ ·
( ∇d
|∇d| − ~n

)
+ µ(d− d0) = 0 in Ω. (25)

and ∫

Ω

(d− d0

σ

)2
dx = 1. (26)

The boundary conditions to be used are again Neumann

( ∇d
|∇d| − ~n

)
· ~ν = 0 on ∂Ω. (27)

In the Numerical Results section (see below), the following portion of the Lagrange functional
will be used as a measure of the quality of the reconstruction

E(d) =

{∫

Ω
(|∇d| − ∇d · ~n) dx

}
. (28)

From (25), multiplying the equation by d− d0 and then integrating over Ω gives

∫

Ω
∇ ·
( ∇d
|∇d| − ~n

)
(d− d0)dx = µ

∫

Ω
(d− d0)2dx = µσ2. (29)

By the 2-dimensional divergence theorem
∫

Ω
∇ ·
( ∇d
|∇d| − ~n

)
(d− d0) +

( ∇d
|∇d| − ~n

)
· ∇(d− d0) dx =

∫

∂Ω

( ∇d
|∇d| − ~n

)
· ~ν = 0.

where ~ν is the outward normal on the boundary ∂Ω. Therefore, we can get the following
formula for µ

µ = − 1

σ2

∫

Ω

( ∇d
|∇d| − ~n

)
· ∇(d− d0) dx. (30)

Introducing a time variable t for (25) gives cf. [1]

dt = ∇ ·
( ∇d
|∇d| − ~n

)
− µ(d− d0). (31)
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which is solved to steady-state. The above equations are discretized as follows

dx ≈ ∆x
−d

n
i,j. (32)

dy ≈ ∆y
−d

n
i,j. (33)

∆x
0d
n
i,j =

∆x
−d

n
i,j + ∆x

−d
n
i+1,j + ∆x

−d
n
i,j+1 + ∆x

−d
n
i+1,j+1

4
. (34)

∆y
0d
n
i,j =

∆y
−d

n
i,j + ∆y

−d
n
i+1,j + ∆y

−d
n
i,j+1 + ∆y

−d
n
i+1,j+1

4
. (35)

|∇d|ni,j;x = ((∆x
−d

n
i,j)

2 + (∆y
0d
n
i,j)

2)
1
2 . (36)

|∇d|ni,j;y = ((∆y
−d

n
i,j)

2 + (∆x
0d
n
i,j)

2)
1
2 . (37)

µn = − h

σ2
×
∑

i,j

[(
∆x
−d

n
i,j

|∇d|ni,j;x
− ui,j

)
× ∆x

−(dni,j − d0
i,j)

+

(
∆y
−d

n
i,j

|∇d|ni,j;y
− vi,j

)
× ∆y

−(dni,j − d0
i,j)

]
. (38)

The explicit reconstruction equation is

dn+1
i,j − dni,j

∆t
=

1

h
∆x

+

(
∆x
−d

n
i,j

|∇d|ni,j;x
− ui,j

)
+

1

h
∆y

+

(
∆y
−d

n
i,j

|∇d|ni,j;y
− vi,j

)
− µn(dni,j − d0

i,j). (39)

If the values for ui,j and vi,j are set to 0, then the iterations above correspond to the TV norm
reconstruction (2). As before, ∆t is the time step, and h is the space mesh size. An additive
operator splitting on the above equation, similar to (20 - 22) gives

d
n+ 1

2
i,j − dni,j

∆t
=

1

h
∆x

+

(
∆x
−d

n+ 1
2

i,j

|∇d|ni,j;x

)
− µ(d

n+ 1
2

i,j − d0
i,j)−

1

h
(∆x

+ui,j + ∆y
+vi,j). (40)

d̂
n+ 1

2
i,j − dni,j

∆t
=

1

h
∆y

+

(
∆y
−d̂

n+ 1
2

i,j

|∇d|ni,j;y

)
− µ(d̂

n+ 1
2

i,j − d0
i,j)−

1

h
(∆x

+ui,j + ∆y
+vi,j). (41)

dn+1
i,j =

d
n+ 1

2
i,j + d̂

n+ 1
2

i,j

2
. (42)

4 Numerical Results

Figure 1 shows zero-mean noise added to a test image, a brain Magnetic Resonance (MR)
image.
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(a) Original Image (b) Noisy Image (c) Difference Image

Figure 1: Brain MR Image of size 167 × 128 with SNR = 25

To test the performance of the AOS and explicit schemes for flow-field smoothing and image
reconstruction, it is proposed to use the energy functionals (9) and (28) as a measure of the
quality of the results. The energies represent the quantity that we want to minimize in the
first place. It is therefore natural to expect that a lower energy will give a result of higher
quality. Figure 2 shows the results of processing the brain image with different time steps for
the explicit scheme (39) for the same input normal field ~n. The time step, iterations and final
steady-state energies are also shown below the figures. The iterations were terminated when
the change in energy falls below 10−1. This is usually a reasonable criterion for termination,
since the energies are in the order of hundreds or thousands for a typical image. It is seen that
a final lower energy leads to a visually superior image. Similar results are observed for our
other test cases. Therefore, we suggest that the energy can be used as an objective measure
of the quality of a numerical scheme for a particular energy minimization problem.
Now, we compare the results of flow-field smoothing of Section 2 using the AOS scheme (20 -
22) to the explicit scheme of (11). As before, the iterations are terminated when the change
in energy between 2 consecutive iterations falls below 10−1. The table below shows the final
energies and number of iterations for the two schemes at various time steps and with varying
value of λ. The maximum number of iterations is 2000, at which point we always terminate
since the scheme would be impractical for more iterations. The explict scheme is unstable
for time steps larger than 0.1, as can be seen from the drastic increase in energy. In all
experiments, we always set the space mesh size to 1, according to common practice. It can be
seen that for smaller values of λ, the AOS method is superior in terms of lower energy reached
at steady-state. For λ = 4, the explicit scheme is superior. In the original paper [1], it was
suggested that the value of λ was set to 1 or 2 generally. With these values, we can use the
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(a) Original Unnoised
Image

(b) τ = 0.0001, 930
Iter., Energy 239

(c) τ = 0.001, 200
Iter., Energy 260

(d) τ = 0.005, 95 Iter.,
Energy 312

Figure 2: Comparison of Output for different stable energies

AOS method.
The equations (11) and (31) are similar in their formulations, except for the presence of the
additional ∇ · (~n) term and the fact that the fidelity term parameter µ is a function of time,
instead of a constant like λ. Our numerical investigations reveal that the behaviour of the AOS
and explicit numerical schemes is similar for both these equations. As the value of the fidelity
term parameter (λ or µ) increases, the explicit scheme provides a superior result in terms of
lower energy. In case of the reconstruction, the value of µ is usually of a higher value than 4.
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Time Step λ = 0 λ = 2 λ = 4

Eng. Iter. Eng. Iter. Eng. Iter.

0.001 963 2000 37743 2000 36728 2000
0.01 306 2000 36256 2000 37172 2000
0.1 1904 2000 35458 645 37179 2000
1.0 17339 2000 72116 2000 141521 2000
2.0 35172 2000 94367 2000 195543 2000

Table 1: Explicit scheme energies for various values of λ

Time Step λ = 0 λ = 2 λ = 4

Eng. Iter. Eng. Iter. Eng. Iter.

0.001 124 2000 41476 1430 51039 2000
0.01 0 355 41647 255 48792 2000
0.1 0 65 34834 285 44481 280
1.0 0 30 30789 175 81957 2000
2.0 0 25 47753 2000 133351 2000

Table 2: AOS scheme energies for various values of λ

The explicit numerical scheme therefore provides a superior result. We have also tested the
result with a fully implicit scheme, and found that this provides the lowest energy stable result
with a larger time step, than either the explicit or the AOS schemes. Therefore, we hypothesize
that the splitting error of the semi-implicit scheme is the cause for the poorer performance at
higher absolute values of the fidelity term parameter.
Below are shown results of the processing of noisy original data. The brain image of Figure 1
is processed. The value of λ is fixed at 2, and the AOS scheme is used with time step 1 for the
processing. This offers a reasonable trade-off between smoothing and fidelity to the original
data. It is seen that the smoothed normal vectors are closer in alignment with the vectors of
the original (noise-free) image, especially at the major edges. The number of iterations was
175. The explicit scheme with time step 0.0001 is used for the image reconstruction. The
number of iterations was 930. It is seen that the noise has been removed to a large extent and
the edges are well-preserved.
Figure 4 shows the results of noise removal for the Peppers image with SNR 60. The value
of λ was set to 2. The time steps used were the same as for the brain image, i.e. 1 for the
flow-field smoothing and 0.0001 for the image reconstruction. The minimum energies reached
were 61701 for the smoothing and 370 for the reconstruction. The number of iterations was
165 for the flow-field smoothing and 1055 for the reconstruction.
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(a) Original Flow-field (b) Noisy Flow-field (c) Smoothed Flow-
field

(d) Original Image (e) Noisy Image (f) Reconstructed Im-
age

Figure 3: Flow-Field Smoothing Results for the Brain image of Figure 1
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(a) Original Flow-field (b) Noisy Flow-field (c) Smoothed Flow-
field

(d) Original Image (e) Noisy Image (f) Reconstructed Im-
age

Figure 4: Flow-Field Smoothing Results for the Brain Image of Figure 1
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