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Abstract. In this note we present, how anisotropic surface energies may be
incorporated into the finite element method for parametric surface diffusion
given by Bänsch et al. [2]. We present the adapted variational formulation,
and the resulting semi-implicit discretization. Finally several simulations
with strong (convex) anisotropies are shown, where the corresponding Wulff
shapes are approached as the steady state.

1. Introduction

A surface Γ(t) is evolving according to anisotropic surface diffusion if the
normal velocity v satisfies the 4th order parabolic equation

(1) v = ∆Γκγ on Γ(t),

where ∆Γ denotes the Laplace-Beltrami operator on Γ(t) and κγ its anisotropic
mean curvature, which may be derived formally as the first variation of the
anisotropic surface energy. The notion of surface diffusion goes back to Mullins[8]
appearing in the context of material science. Consider a crystal surface, whose
dynamic is diffusion dominated, i.e., the morphological evolution does not hap-
pen via attachment and detachment of atoms but rather by atoms moving along
the surface. Then, the atomic flux JΓ on the surface is assumed to be propor-
tional to the surface gradient of the chemical potential κγ , and the continuity
equation v = −Ω∇ΓJΛ, Ω denoting the atomic volume, takes the form (1).

In this article, we discuss the incorporation of anisotropy into the finite el-
ement method for isotropic surface diffusion of parametric surfaces by Bänsch
et al. [2]. Here the starting point is a second order splitting of (1), where the
vector valued mean curvature ~κ := κ~n, appearing as an additional unknown,
is expressed as the Laplace-Beltrami of the position vector [7]. A semi-implicit
time discretization and integration by parts leads to a weak formulation of the
second order system, which is discretized in space using linear finite elements.
We will incorporate anisotropy into this scheme by using an appropriate weak
formulation for the vector valued anisotropic mean curvature κγ~n, see e.g. [4, 5].

2. Model and Notations

In this section we fix our notation and present some basic differential geo-
metric results. For more details and references to the subject see [10, 5]. Let
Γ ⊂ R3 denote a smooth closed hypersurface with normal vector field ~n. In
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the following we assume all functions and vector fields to be defined in a neigh-
borhood of Γ. The tangential gradient ∇Γf of a function f and the tangential
divergence ∇Γ · ~vof a vector field ~v are given by

∇Γf = ∇f − (~n · ∇f)~n, ∂if :=
(
∇Γf

)
i
= ∂if − (~n · ∇f)ni,

∇Γ · ~v = tr(∇Γ~v) =
∑

i

∂ivi,

where tr denotes the trace in R3. The Laplace Beltrami operator on Γ may
then be expressed as

∆Γf = ∇Γ · ∇Γf =
∑

i

∂i∂if.

The mean curvature κ is the trace of the shape operator S = ∇Γ~n, or, equiva-
lently the tangential divergence of the surface normal:

κ = tr(S) = ∇Γ · ~n.(2)

Also we recall the formula

(3) ∆Γ~x = −κ~n,

which is obtained from (2) using the identity ∂jxk = δjk − njnk for the coordi-
nate functions xk. Eq. (3) is the starting point of a finite element discretization
of mean curvature flow of parametric surfaces in [7], since by integration by
parts it implies

(4)
∫

Γ
κ~n · ~φ dA =

∫
Γ
∇Γ~x · ∇Γ

~φ dA

Alternatively, the curvature κ may be obtained as the first variation of the
surface energy E[Γ] :=

∫
Γ 1dA with respect to normal variations. In terms of

a physical interpretation, E[Γ] is the surface free energy and κ is the (local)
chemical potential µ, describing the rate of change of the free energy when
moving the surface in normal direction.

The notion of anisotropic mean curvature is most naturally obtained by in-
troducing an anisotropic surface energy density γ depending on the orientation
of the surface Γ. Thus, γ is a smooth function S2 → R+, which may be assumed
to be given as a function on R3 − {0}, being positively homogeneous of degree
1. In particular this implies for the second derivative (where we use the symbol
D for differentiating with respect to z ∈ R3 not to be confused with a point in
space)

D2γ(z) · z = 0,

and therfore D2γ can be interpreted as an endomorphism on the tangent space
of Γ. The first variation of the surface energy Eγ [Γ]

Eγ [Γ] =
∫

Γ
γ(~n)dA,

will be called the anisotropic mean curvature κγ and is given by

κγ := tr(D2γ ◦ S) = ∇Γ ·Dγ.
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Note that in the above definition, γ and Dγ are evaluated at z = ~n(~x). Dγ(~n)
is called the Cahn-Hoffman vector. To ensure, that the surface energy Eγ is a
convex functional – which ensures a well defined gradient flow with respect to
this functional – we make the following convexity assumption on γ (for some
γ0 > 0)

D2γ(p)q · q ≥ γ0q · q; for all p, q ∈ R3, |p| = 1, p · q = 0.

Associated with an anisotropy γ is the Wulff shape Wγ , defined as

Wγ = {z ∈ R3|z · q ≤ γ(z) for all q ∈ R3}.
If γ is convex, Wγ is convex and the boundary of Wγ may be parameterized
over S2 using the Cahn-Hoffmann vector, i.e. S2 → ∂Wγ ⊂ R3, ~n 7→ Dγ(~n)
[3].

For a fixed volume, the boundary of the (rescaled) Wulffshape is the unique
minimizer of the surface energy (2) [12]. Moreover, the anisotropic mean cur-
vature is constant on the boundary of the Wulff shape [9].

An analog of Eq. (4) for the anisotropic case reads (cf. [4, 5])

(5)
∫

Γ
κγ~n · ~φ dA =

∫
Γ
γ(~n)∇Γ~x · ∇Γ

~φ dA−
3∑

k,l=1

∫
Γ
γzk(~n)nl∇Γxk · ∇ΓφldA,

where we have used the notation γzk
:= Dkγ. In particular note, that no second

derivative of γ is involved in this weak form. Again this identity is the starting
point of a finite element discretization of anisotropic mean curvature flow of
parametric surfaces, see [4, 5] and will be used in the next section.

A surface Γ(t) is evolving according to anisotropic surface diffusion if the
normal velocity v satisfies the following 4th order parabolic equation

v = ∆Γκγ on Γ(t).

We note that this evolution has the following geometric properties: if Γ(t) is
a closed surface, then the volume of the bounded domain is preserved and the
total energy Eγ decreases. In particular, the boundary of the Wulff shape is
a stable steady state. Except for the isotropic case, there are no existence or
uniqueness results for this highly nonlinear equation.

3. Variational formulation and finite element discretization

In view of the identity (5), we start as in the isotropic case [2, 7] by rewrit-
ing Eq. (1) as a system of 2nd order equations. Using the position vector ~x,
the curvature vector ~κγ = κγ~n, and the velocity vector ~v = v~n, (1) becomes
equivalent to the following system of equations for ~κγ , κγ , v, and ~v

(~κγ)i = −∇Γ · γ(~n)∇Γxi +
3∑

k=1

∇Γ ·
(
γzk

ni∇Γxk

)
, i = 1, 2, 3(6)

κγ = ~κγ · ~n,(7)

v = ∆Γκγ(8)

~v = v~n.(9)
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Let Γ(t) denote the interface at time t. Now split the time interval by discrete
time instants 0 = t0 < t1 < . . . and define time steps τm := tm+1 − tm.
We represent the next interface Γm+1 = Γ(tm+1) in terms of Γm = Γ(tm) by
updating the position vector

(10) ~xm+1 ← ~xm + τm~v.

In the time discretization, all geometric quantities such as ~n and ∇Γ are evalu-
ated on the current interface Γm, i.e. they are treated explicitly and we end up
with a linear system of equations. In contrast to the geometric quantities, the
unknowns ~κγ , κγ , v, and ~v may be treated implicitly. In Eq. (6), the first term
on the right hand side will be treated implicitly, whereas we treat the second
term explicitly. Thus, in view of (10), when evaluating ~κm+1

γ in Eq. (6), the
first term is evaluated at ~xm+1 = ~xm + τm~v

m+1, whereas the second term is
evaluated at ~xm.

To derive a weak formulation, we proceed as in [2, 7]: multiply (6),(7), (8)
and (9) by test functions ~ψ ∈ ~H1(Γ) and ψ ∈ H1(Γ), and use integration
by parts for the tangential divergence ∇Γ. For simplicity, we have hereafter
dropped the superscript m+1 for the unknowns ~κm+1

γ , etc. Furthermore, using
the notation 〈·, ·〉 for the L2 inner product over the current interface Γm, we
arrive at the following set of semi-implicit equations:

Problem 1. For m = 1, 2, . . . find ~κγ ∈ ~H1(Γm), κγ ∈ H1(Γm), v ∈ H1(Γm),
and ~v ∈ ~H1(Γm) such that ∀ψ ∈ H1(Γm) and ∀~ψ ∈ ~H1(Γm)

〈~κγ , ~ψ〉 − τm〈γ(~n)∇Γ~v,∇Γ
~ψ〉 = 〈γ(~n)∇Γ~x

m,∇Γ
~ψ〉 −

3∑
k,l=1

〈γzk
(~n)nl∇Γx

m
k ,∇Γψl〉

〈κγ , ψ〉 − 〈~κγ · ~n, ψ〉 = 0,

〈v, ψ〉+ 〈∇Γκγ ,∇Γψ〉 = 0,

〈~v, ~ψ〉 − 〈v~n, ~ψ〉 = 0.

As compared to the isotropic case, the anisotropy function γ(~n) introduces
an additional non-linearity, which is treated in an explicit way. Thus the sys-
tem may no longer be expected to be unconditionally stable in contrast to the
isotropic case, where this has been shown in [2]. Therefore, similar as in [6], we
add a stabilizing term to the left hand side of the first equation in Problem 1.
From numerical experiments it turned out, that the following term is a good
candidate:

(11) −τmλ
(
〈γ(~n)∇Γ(~v − ~vm),∇Γ

~ψ〉+
3∑

k,l=1

〈γzk
(~n)nl∇Γ(vk − vm

k ),∇Γψl〉
)
.

Now the discretization in space is straightforward: Consider a polygonal
curve Γm

h approximating Γm. The polygonal segments are thought of as finite
elements. Also for the polygonal curve, we denote by ~n the outer unit normal
to Γm

h , which may be discontinuous across inter-element boundaries. Denote
by Wm

h ⊆ H1(Γm
h ) the finite element space of globally continuous, piecewise

linear functions with corresponding nodal basis functions (ψl)L
l=1, where L is
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the number of degrees of freedom. By ~Wm
h ⊆ ~H1(Γm

h ) we denote the finite
element space of vector valued functions with nodal basis functions (~ψq

l )
q=1,2,3
l=1,...,L,

where ~ψq
l = ψl~eq with ψl the scalar basis function defined above and (~e1, ~e2, ~e3)

the standard basis in R3. Problem 1 is discretized by expanding the functions
~κγ , κγ , v, ~v in terms of the basis functions and testing against all discrete test
functions, i.e. solving Problem 1 in the finite dimensional spaces Wm

h , ~Wm
h .

To arrive at an algorithm in matrix form, expand the unknowns

~κγ =
L∑

l=1

~Klψl, κγ =
L∑

l=1

Klψl, ~v =
L∑

l=1

~Vlψl, v =
L∑

l=1

Vlψl

for some

~K = ( ~K1, . . . , ~KL)t ∈ R3×L, K = (K1, . . . ,KL)t ∈ RL

~V = (~V1, . . . , ~VL)t ∈ R3×L, V = (V1, . . . , VL)t ∈ RL

and define the mass, stiffness, and normal matrices M , A, B, C, N with
matrix entries

Mkl = 〈ψk, ψl〉; ~Mkl = (M qr
kl ) = (δqrMkl)

Akl = 〈∇Γψk,∇Γψl〉;

Bkl = 〈γ(~n)∇Γψk,∇Γψl〉; ~Bkl = (Bqr
kl ) = (δqrBkl)

Cqr
kl = 〈γzr(~n)nq∇Γψk,∇Γψl〉; ~Cqr

kl = (Cqr
kl );

~Nkl = (N q
kl) = 〈ψk, ψlnq〉

where the index ranges are 1 ≤ k, l ≤ L and 1 ≤ q, r ≤ 3, δqr = ~eq · ~er is the
Kronecker symbol, and nq = ~n ·~eq is the q-th spatial component of the normal.

The following algorithm is the matrix form of the discretized Problem 1:

Algorithm 2. Find ~K, ~V ∈ R3×L, K,V ∈ RL such that
~M 0 0 − ~N
0 M − ~N t

0
−τm

(
~B + λ(~B + ~C)

)
0 ~M 0

0 A 0 M



~V
K
~K
V

 =


0
0

(~B − ~C) ~Xm − λτm(~B + ~C)~V m

0


A Schur complement equation for ~K, V reads

S

(
~K
V

)
=
(

(~B − ~C) ~Xm − λτm(~B + ~C)~V m

0

)
,

where

S =
(
~M 0
0 M

)
−
(
−τm

(
~B + λ(~B + ~C)

)
0

0 A

)(
~M 0
0 M

)−1
(

0 − ~N
− ~N t

0

)

=

(
~M −τm

(
~B + λ(~B + ~C)

)
~M
−1 ~N

AM−1 ~N
t

M

)
.
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Figure 1. Wulffshape Wγ for regularized l1-anisotropy and disk anisotropy

The above formulation in turn gives rise to the final Schur complement equation
for the single unknown V :(

τmAM−1 ~N
t ~M

−1(~B + λ(~B + ~C)
)
~M
−1 ~N + M

)
V

= AM−1 ~N
t ~M

−1(
(~C − ~B) ~Xm + λτm(~B + ~C)~V m

)
.(12)

We note that for λ = 0, the same arguments as in the isotropic case [1] show
that the linear system (12) is uniquely solvable: Introduce the symmetric non-
negativ matrix L and denote the matrix in the left-hand side of (12) by T

L = ~N
t ~M

−1 ~B ~M
−1 ~N , T = τmAM−1L + M .

It is enough to show, that if TV = 0 then V must be 0. Now, assuming TV = 0
implies V tLM−1TV = 0. Thus, we obtain

0 = τmV
tLM−1AM−1LV + V tLV ≥ 0,

by symmetry and non-negativity of the involved matrices. It follows that
V tLV = 0, implying LV = 0. Thus, we obtain MV = TV . Since M is
invertible we finally conclude that TV = 0 implies V = 0.

Once the scalar velocity V is obtained by solving (12), the unknown ~V is
easily computed by solving ~M ~V = ~NV , and then ~X is updated through

~X ← ~X + τm~V .

4. Implementation and results

In this section, we present some numerical results. To test the proposed
method, we chose the following two strong (convex) anisotropies

γ(z) =
3∑

k=1

(ε|z|2 + z2
k)

1
2 , ε = 0.01 (regularized l1-anisotropy )(13)

γ(z) = (αz2
1 + z2

3 + z2
3)

1
2 , α = 0.1 (disk anisotropy)(14)

The corresponding Wulffshapes Wγ are depicted in Fig. 1. We investigate the
evolution of a sphere with volume V = 1.0 to the corresponding Wulff shape
as the steady state solution of eq. (1). In all simulations, the stabilization
parameter λ = 1. The numerical method is implemented in AMDiS [11]. In
each time step, the non symmetric system (12) is solved using a GMRES-Solver.
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t = 0 t = 2× 10−4 t = 5× 10−4 t = 10−3

Figure 2. Evolution of a sphere with volume V = 1.0 towards its steady
state with anisotropy (13). No space/time adaptivity: 1538 grid points and
time step τ = 10−5. The surface is shown at times t = 0, t = 2 × 10−4,
t = 5 × 10−4, t = 10−3. Note that the rounded corners of the Wulff shape
in Fig. 1 are not properly resolved in the steady state (t = 10−3) since the
spatial discretization is not fine enough.

We use a local mesh regularization and angle width control to prevent mesh
distortion as well as time step control and adaptivity in space along the lines
as described by Bänsch et al in [2], which will be shortly reviewed below.

As a first example, we present a simulation without using space/time adaptiv-
ity in Fig. 2. The time evolution of a sphere using the regularized l1-anisotropy
given in (13) approaches a steady state at t ≈ 10−3. Comparing with Fig. 1, it
reveals that the rounded corners of the Wulff shape are not resolved properly.

Therefore we use adaptivity in space to resolve the zones of high curvature
appropriately. However, decreasing the local mesh size considerably, we are
forced to use smaller time steps when the evolution of the surface is fast. Thus,
to increase the computational accuracy we use a time step control enforcing
small time steps whenever the dynamics is fast and/or the normal velocity
exhibits large variations and allow large time steps otherwise. The dynamics is
measured by the position change of a node given by τv. In view of eq. (10) the
relative position change of two nodes in an element with mesh size h tangential
to Γ is bounded by Cτh|∇Γ~v|, with C being a mesh independent constant.
Thus, to ensure that the position change of a node in tangential and in normal
direction does not exceed a fraction of the local mesh size h, we chose two
parameters αt, βt and require

τ < αt

(
max(|∇Γ~v|)

)−1 + βt

(
max(|v/h|)

)−1
.

Moreover, a minimal and a maximal time step is fixed. In all simulations with
time step control, we use αt = βt = 0.01, τmin = 10−8, τmax = 10−5. Note, that
in [2] βt = 0 and αt = 0.1.

Space adaptivity is based on a geometric criterion, as proposed by [2]: here
the idea is to assume that the (local) accuracy of the mesh in representing Γ is
proportional to h2|∇Γ~n|, where h is the local mesh size and ∇Γ~n is the shape
operator. Considering two adjacent elements with corresponding normals ~n1,~n2,
|∇Γ~n| at the common edge S may be approximated as

h|∇Γ~n| ≈ |~n1 − ~n2| =: es.
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t = 0 (386) t = 2× 10−4 (338) t = 5× 10−4 (314) t = 10−3 (494)

t = 0 (386) t = 2× 10−4 (855) t = 5× 10−4 (894) t = 10−3 (1085)

Figure 3. Evolution of a sphere with volume V = 1.0 towards its steady
state with anisotropy (13). Refinement in regions of high curvature and
coarsening in nearly flat regions (the number of grid points is given between
parentheses). Top row: element tolerance εs = 0.1, bottom row: εs = 0.05

Thus, for each triangle T , define the local error indicator

ET :=
∑
S⊂T

esh.

Choosing an element tolerance εs and refinement and coarsening parameters
0 < γr, γc, one does proceed as follows: If max(ET ) > εs, all elements with
ET > γr are refined. In any case all elements with ET < γc are coarsened. For
details see [2].

Setting γc = 0.3, γr = 0.7, the resulting meshes, for two different values
of εs are depicted in Fig. 3. As shown in Fig. 4, the rounded corners of the
Wulff shape are resolved if the mesh is refined appropriately in the regions
of high curvature. In lack of an analytical solution for anisotropic surface

(494) (1085) (2650)

Figure 4. Evolution of a sphere with volume V = 1.0 towards its steady
state with anisotropy (13). Solution at t = 2 × 10−3: (from left to right)
element tolerance εs = 0.1, 0.05, 0.02. Note that the number of grid points
(given between parentheses) in the steady state is roughly proportional to

1/εs
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diffusion of parametric surfaces, we investigate the accuracy and (experimental)
convergence of our numerical method as follows: As shown in Fig. 5(left), the
volume is conserved within less then 1%. The decay of the surface energy is
roughly exponential, and the energy of the steady state approaches the energy
of the Wulff shape (with the same volume as the numerical steady state), when
increasing the spatial resolution, see Fig. 6. Moreover, also the area of the
numerical steady state converges to the area of the Wulff shape as shown in
Fig. 5(right).
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Figure 5. Evolution of a sphere with volume V = 1.0 towards its steady
state with anisotropy (13). (Left) Volume versus relative time t/Tfinal

(Tfinal = 2 × 10−3): the volume is conserved within less then 1% in all
simulations. (Right) Relative area A/AWulff versus relative time, where
AWulff is the area of the Wulff shape with volume V (Tfinal); (for V = 1,
AWulff ≈ 5.3097). The area of the steady state approaches AWulff for small
εs very accurately.
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Figure 6. Evolution of a sphere with volume V = 1.0 towards its steady
state with anisotropy (13). Surface energy E −EWulff , versus relative time,
where EWulff is the surface energy of the Wulff shape with volume V (Tfinal);
(for V = 1, EWulff ≈ 6.8922). The surface energy decays exponentially and
the energy of the steady state approaches EWulff with decreasing tolerance

εs.

As a final example we present the evolution of a sphere to the steady state
using the disk anisotropy (14). Note that in this case it is even more important
to resolve the high curvature zones appropriately, see Fig. 7.
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t = 3× 10−4 (1543) t = 3× 10−3 (1934) t = 3× 10−2 (2527).

Figure 7. Evolution of a sphere towards its steady state with anisotropy
(14) and element tolerance εs = 0.02. The number of grid points is
given between parentheses. The color-coding indicates the normal veloc-
ity (rescaled), ranging from red (maximal outwards) over yellow to blue
(maximal inwards)
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