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Abstract

Multimodal image registration significantly benefits from previous denoising and
structure segmentation and vice versa. In particular combined information of different
image modalities makes segmentation significantly more robust. Indeed, fundamen-
tal tasks in image processing are highly interdependent. A variational approach is
presented, which combines the detection of corresponding edges, an edge preserving
denoising and the morphological registration via a non-rigid deformation for a pair of
images with structural correspondence. The morphology of an image function is split
into a singular part consisting of the edge set and a regular part represented by the
field of normals on the ensemble of level sets. A Mumford-Shah type free discontinuity
problem is applied to treat the singular morphology and the matching of corresponding
edges under the deformation. The matching of the regular morphology is quantified
by a second contribution which compares deformed normals and normals at deformed
positions. Finally, a nonlinear elastic energy controls the deformation itself and en-
sures smoothness and injectivity. A multi scale approach that is based on a phase field
approximation leads to an effective and efficient algorithm. Numerical experiments
underline the robustness of the presented approach and show applications on medical
images.

1 Introduction

Denoising, segmentation and registration are well established as fundamental tools in image
processing. E. g., the revolutionary advances in the development of imaging modalities has
enabled clinical researchers to perform precise studies of the immense variability of human
anatomy. As described in the excellent review by Miller, Trouvé and Younes [1] and the
overview article of Grenander and Miller [2], this field aims at automatic detection of anatom-
ical structures and their evaluation and comparison. Different images show corresponding
structures at usually nonlinearly transformed positions [3, 4]. As the image modality dif-
fers there is usually no correlation of image intensities at corresponding positions. What
still remains, at least partially, is the local geometric image structure or “morphology” of
corresponding objects. Viola, Wells et al. [5, 6] and Collignon [7] presented an information
theoretic approach for the registration of multi-modal images. Their statistical method is
based on a maximization of mutual information of images of different modality. In [8] a vari-
ational approach not relying on statistics is proposed for morphological image registration.
Both approaches do not make explicit use of segmentation results.
Traditionally, the different tools in image processing have been tackled independently. But in
fact, robustness and effectiveness of methods can be enhanced significantly by a coupling of
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Figure 1: Morphological registration of two test images. The template image is generated via
translation, nonlinear deformation and contrast chance of a reference image. The top row

shows reference image u0
R and template image u0

T . On the bottom left the matching result
solely based on the alignment of deformed reference edges and template edges is depicted.
An overlaid pattern renders the deformation of a checker board on the template domain.
On the bottom right pure edge matching is combined with the registration of the regular
morphology and its alignment of normal fields. Thereby, also the interior deformation in
the box is caught properly.

these methods. In this paper we will couple segmentation and denoising with morphological
registration (cf. Fig. 1). Already stated by D’Arcy Thompson in 1917 (cf. [1]), “in a very
large part of morphology, our essential task lies in the comparison of related forms rather
than the precise definition of each; and the deformation of a complicated figure may be a
phenomenon easy of comprehension, though the figure itself may have left to be unanalyzed
and undefined.”
In the last decade, different approaches to couple segmentation with registration have been
proposed. Young and Levy [9] used segmentation results for one image to guide the search
for edges in consecutive images to resolve boundaries even though they are not well defined
in all images. Yezzi, Zöllei and Kapur [10] have applied an active contour model proposed by
Caselles, Kimmel and Sapiro [11] for the simultaneous segmentation of structures in different
images. A related algorithm is described by Unal et al. [12]. They take into account a joint
energy for contour curves in different images and relax the curve geometry via a gradient
flow. Pre-segmented contours where applied to register functional MR images in an image
sequences by Chen et al. [13]. Wyatt and Noble [14] considered Markov random fields
in a maximum a posteriori model of joint segmentation and registration. Recently, Feron
and Mohammad-Djafari [15] proposed a baysian approach for the joint segmentation and
fusion of images via a coupling of suitable hidden Markov Models for multi modal images.
Applications of joint segmentation and registration were considered by Dohi and Kikinis
already in 2001 [16].
In this paper we aim for a variational approach which connects the classification of different
portions of image morphology and their proper matching. In mathematical terms, two
images u, v : Ω → R with Ω ⊂ R

d for d = 2, 3 are called morphologically equivalent, if
they only differ by a change of contrast, i. e., if u = v ◦ β for some function β : R → R

[17, 18]. What structurally remains if we introduce this invariance is the geometry of all
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level sets of an image. A strict notion of morphology was originally introduced by Matheron
[19] and considered further by Caselles, Coll and Morel [20]. They studied the so called
upper topographic map (see below). Our decomposition of the morphology will be based on
a nowadays classical segmentation approach. In their pioneering paper, Mumford and Shah
[21] proposed the minimization of the following energy functional:

EMS [u, Su] =

∫

Ω

(u− u0)
2 dL+

µ

2

∫

Ω\Su

‖∇u‖2 dL+ νHd−1(Su) , (1)

where u0 is the initial image defined on an image domain Ω ⊂ R
d and µ, ν are positive

weights. Here, one asks for a piecewise smooth representation u of u0 and a singularity set
Su consisting of the image edges, such that u approximates u0 in a least–squares sense. The
intensity function u ought to be smooth apart from the free discontinuity Su and in addition
Su should be small with respect to the the d − 1-dimensional Hausdorff-measure. Math-
ematically, this problem has been treated in the space of functions of bounded variations
BV , more precisely in the specific subset SBV [22]. A related, alternative decomposi-
tion has been proposed by Rudin, Osher and Fatemi [23]. They suggested to minimize
‖u‖BV + λ‖u− u0‖

2
L2 .

The free discontinuity set Su which represents edges is a morphological quantity. From the
regular part of the image, we can extract a second morphological entity representing the
ensemble of all level sets. This decomposition of the morphology can be seen as a refinement
of the above definition. It will enable us to treat the matching problem for both parts
separately incorporating our approach for the registration of normal fields [8]. In particular,
the combination prevents us from neglecting strong edges and their proper correlation. In
this paper, we will pick up a phase field approximation for the Mumford-Shah functional
(1), originally proposed by Ambrosio and Tortorelli [24]. They describe the edge set Su by
a phase field v which is supposed to be small on Su and close to 1 elsewhere. One asks for
minimizers of the energy functional

Eε
AT

[u, v]=

∫

Ω

(

(u− u0)
2 +

µ

2
(v2 + kε)‖∇u‖

2 + νε‖∇v‖2 +
ν

4ε
(1− v)2

)

dL , (2)

where ε is a scaling parameter and kε = o(ε) a small positive regularizing parameter. For
larger ε one obtains coarse, blurred representations of the edge sets and corresponding
smoother images u. For decreasing ε the representation of the edges is successively re-
fined and more and more image details are included. We will make use of this inherent
multi scale in a cascadic minimization algorithm. On each scale the regular image morphol-
ogy is computed on the current image representation. These representations result from the
corresponding Ambrosio-Tortorelli approximation.
Eventually, a variational formulation for image registration on a space of general non-rigid
deformations leads to an ill-posed problem [25, 26]. This is generally addressed by choosing
a suitable regularization. Motivated by models from continuum mechanics, one may ask
for a deformation that is additionally controlled by elastic stresses. For example see the
early work of Bajcsy and Broit [27] and significant extensions in more recent literature
[28, 29, 30, 31]. In particular, if large displacements are necessary to ensure a proper match,
a regularization based on non-linear elasticity with its built-in control of length, area and
volume changes is indispensable. Cohen [32] considered polyconvex elastic functionals and
Droske and Rumpf [8] as well as Litke et al. [33] used this type of regularization to guarantee
global injectivity and well-posedness. Here, we will incorporate these ideas to avoid local
over–folding in our deformation.
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2 Regular and singular image morphology

Let us consider different notions of image morphology and develop here a new one that is
appropriate for our morphological matching purposes. Two images u and v on an image
domain Ω are called morphological equivalent, if they differ only by a contrast change, i. e.,
u(x) = (v◦β)(x) for all x ∈ Ω. We here restrict to contrast changes β : R → R, which are
strictly monotone and continuous functions. Obviously, such a contrast modulation does
not change the order and the shape of level sets. Due to the enforced monotonicity, the
same holds true for the super level sets l+c [u] = {x : u(x) ≥ c} . Thus, an usual description
of the morphology M[u] of an image u is given by the upper topographic map, defined as
the set of all these sets

M[u] :=
{

l+c [u] : c ∈ R
}

.

Unfortunately, this set based definition is not feasible for a variational approach we intend
to develop here. Thus, in what follows, we derive an alternative notion based on a regular
and a singular morphology. Let us suppose the image function u : Ω → R on an image
domain Ω ⊂ R

n to be in SBV [34, 22]. Hence, we consider functions u ∈ L1(Ω) of which the
derivative Du is a vector-valued Radon measure with vanishing Cantor part. We consider
the usual splitting Du = Dacu+Dsu , where Dacu is the regular part, which is absolutely
continuous with respect to the Lebesgue measure L on Ω ⊂ R

d, and a singular part Dsu

defined on a singularity set S, which consists of the edges of an image. We denote by ns

the vector valued measure representing the normal field on S, such that the representation
Dsu = (u+ − u−)ns holds for the singular part of the derivative. Here u+ and u− are the
approximate lim sup and lim inf, values, respectively. This normal field is defined Hd−1 a.e.
on S. Obviously, ns is a morphological invariant as long as we consider continuous strictly
monotone contrast modulating functions β.
Now, we focus on the regular part of the derivative. First, we adopt the classical gradient
notion ∇acu for the L density of Dacu, i. e., Dacu = ∇acuL. As long as it is defined,

the normalized gradient ∇acu(x)
‖∇acu(x)‖ is the outer normal on the upper topographic set l+

u(x)[u]

and thus again a morphological quantity. It is undefined on the flat image region F [u] :=
{x ∈ Ω : ∇acu(x) = 0} . We introduce nac as the normalized regular part of the gradient

nac = χ
Ω\F [u]

∇acu

‖∇acu‖
(3)

with support Ω \ F and denote it the Gauss map of the image u.
With the regular normal nac and the singular normal measure ns at hand, we are now able to
redefine the morphologyM[u] of an image u as a unit length vector valued Radon measure
on Ω with

M[u] = nacL+ ns . (4)

We call nacL the regular morphology and ns the singular morphology (cf. Fig. 2). It turns
out that this new notion is equivalent to the above definition on sufficiently regular image
functions. It completely describes the topographical shape information of the image u. In
the next section, we aim to measure congruence of two image morphologies with respect to
a matching deformation. In particular, we will make explicit use of the decomposition of
image morphology derived here.

3 The variational approach

Let us suppose that an initial template image u0
T
∈ L2(Ω) and an initial reference image

u0
R
∈ L2(Ω) are given on an image domain Ω ⊂ R

d. Both images are assumed to be
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Figure 2: The concept behind morphological registration: Level sets of the regular morphol-
ogy of uR characterized by nac

R
are mapped onto the domain of uT and compared to the

regular morphology via the normals nac
T

. On the other hand morphological matching aims
at aligning edges of the singular morphologies (red) characterized by ns

R
and ns

T
respectively.

The alignment is illustrated by a non-rigid elastic deformation φ.

noisy. We aim for a simultaneous robust identification of smoothed and structural enhanced
representations uT , uR ∈ SBV and a deformation φ, which properly matches the underlying
image morphologies (4), such that

M[uT ◦φ] =M[uR] .

Thus, we proceed as follows. The expected edge set in the reference image SR := SuR
is

simultaneously treated as the pre image of the expected template edge set ST := SuT
under

the deformation φ, i. e.,

φ(SR) = ST .

This will imply in the variational formulation that up to the orientation the singular mor-
phologies have to be matched properly. The regular morphologies, which are also to be
matched by the deformation, will be evaluated on the smoothed image representations uT

and uR of both images. Thus, we consider as set of unknowns

uT , uR, ST , φ

and define three energy contributions, which together result in the actual variational formu-
lation for a simultaneous segmentation, denoising and matching of images:

• a Mumford-Shah type energy EMS[uR, uT , ST , φ] concerning about the actual image
segmentation and the proper correspondence of the singular morphologies,

• an energy EGM [uR, uT , φ] dealing with the alignment of the regular morphologies in
terms of the Gauss maps of the smoothed image intensities uR and uT under the
deformation φ, and

• an energy Ereg[φ] controlling the regularity of the deformation φ.

With respect to the algorithmical realization we later consider a phase field approximation
of the Mumford Shah energy EMS picking up the approach by Ambrosio and Tortorelli [24].
The edge set ST in the template image will be represented by a phase field function v, hence
v◦φ can be regarded as the edge representation in the reference. In what follows let us
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consider the different energy contributions separately:

Segmentation and matching of the singular morphology. If we would minimize the
Mumford-Shah functional (1) for u0

T
and u0

R
separately, we would obtain smooth represen-

tations uT and uR together with singularity sets ST and SR. Instead, we sum up these two
functionals and replace the reference image edge set SR by the pull back φ−1(ST ) of the
template image edge set. Thus, a deformation φ with SR = φ−1(ST ) contributes to the
minimization of the resulting combined energy. For any smooth deformation φ the Hd−1

measure of SR can be controlled by the Hd−1 measure of ST and the deformation φ, i. e.,
Hd−1(SR) =

∫

ST
detDφ−1

∥

∥DφDφTns
T
· ns

T

∥

∥ dHd−1. Indeed, the control of the deformation
on such lower dimensional sets is analytically and numerically difficult. Hence, we omit
the corresponding energy term here. Finally, the energy for the coupled Mumford-Shah
segmentation in the reference and the template image is given by

EMS [uR, uT , ST , φ] =
1

2

∫

Ω

(uR − u
0
R
)2 dL+

µ

2

∫

Ω\φ−1(ST )

‖∇uR‖
2 dL+ νHd−1(ST )

+
1

2

∫

Ω

(uT − u
0
T
)2 dL+

µ

2

∫

Ω\ST

‖∇uT‖
2 dL (5)

with µ, ν > 0. So far, the deformation φ is needed only on the singularity set ST and thus
it is highly under determined.

Matching the regular image morphology. The regular image morphology consists of
the normal field nac. Hence, given images uT and uR we observe a perfect match of the
regular morphology, if the deformation of the reference normal field nac

R
:= ∇acuR

‖∇acuR‖ (3)

coincides with the template normals field nac
T

:= ∇acuT

‖∇acuT ‖ at the deformed position. In fact,

all level sets of the pull back template image uT ◦φ and the reference image uR would then
be nicely aligned (see Fig. 2). Let us denote by nac,φ

R the transformation of the normal with

respect to the deformation φ. From the condition nac,φ
R ·Dφw = 0 for tangent vectors w on

level sets and the definition of the cofactor matrix Cof A := detAA−T we deduce that

nac,φ
R

=
Cof Dφnac

R

‖Cof Dφnac
R
‖

=
CofDφ∇acuR

‖CofDφ∇acuR‖
. (6)

Now, we ask for a deformation φ : Ω → R
d, such that nac

T
◦φ = n

ac,φ
R (cf. Figure 2). Let

us phrase this in terms of an energy integrand g : Sd−1 × Sd−1 → R
+
0 , which measures the

misalignment of vectors on Sd−1. E. g., we might consider g(w, z) := γ ‖(
�
− w ⊗ w)z‖

m

for γ > 0 and m ≥ 2, a⊗ b = abT . Thus, in a first attempt we consider the morphological
registration energy

∫

Ω

g(nac
T

◦φ, nac,φ
R

) dL ,

where normals are evaluated on the initial images. Here, we face different problems, which
have already been discussed in detail in [8]:

• Image normals nac are only defined apart from flat regions F and the above energy
density turns out to be discontinuous at ∂F .

• Due to the renormalization of nac,φ
R (6) by the factor ‖CofDφnac

R
‖, the matching

energy EGM in general fails to be weakly lower semi–continuous on a suitable set of
admissible deformations.
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• The evaluation of the regular morphology on the noisy images u0
T

and u0
R

is surely
questionable.

To avoid these shortcomings we modify the energy. At first, we use the regular image func-
tions uT and uR from the above Mumford-Shah model for the computation of the regular
image normal fields. Hence, the functional to be defined will depend on these unknowns as
well. Furthermore, we take into account a new energy integrand g0, which is a zero homo-
geneous extension of the integrand from our first trial, where we skip the above mentioned
renormalization. I. e., we define

g0(w, z,A) :=

{

g( w
‖w‖ , A

z
‖z‖ ), w 6= 0 and z 6= 0,

0, otherwise,
(7)

for v, z ∈ R
d and A ∈ R

d,d. Based on this function we finally define the regular matching
energy

EGM [uT , uR, φ] =

∫

Ω

g0(∇
acuT◦φ,∇acuR,CofDφ) dL . (8)

Let us emphasize that this energy is still not continuous in φ. The set of discontinuity is
given by DGM := DR ∪ φ

−1(DT ) ∪ ∂FR ∪ ∂
(

φ−1(FT )
)

, where DR and DT are the discon-
tinuity sets of the regular image gradients ∇acuR are ∇acuT , respectively. Furthermore,
FR := F [uR], FT := F [uT ] are the flat regions in the reference and the template image,
respectively. For the analytical treatment of these discontinuities we refer to [8].

Controlling regularity of the deformation. In a variational setting neither the matching
energy for the singular morphology nor the one for the regular morphology uniquely identify
the deformation φ. Indeed, the problem is ill-posed. E. g., arbitrary reparametrizations of the
level sets ∂l+c or the edge set S, and an exchange of level sets induced by the deformation
do not change the energy. Thus, we have to regularize the variational problem. On the
background of elasticity theory, we aim to model the image domain as an elastic body
responding to forces induced by the matching energy. We have to emphasize, that we do not
attempt to model the actual material of the objects represented by the image. Concerning
the structure of the resulting functionals, the nonlinear elastic energy we are going to consider
will be consistent with the nonlinearity in the regular matching energy. At first, let us
briefly recall some background from elasticity. For details we refer to the comprehensive
introductions in the books by Ciarlet [35] and Marsden & Hughes [36]. We interprete Ω as an
isotropic elastic body and suppose that the regularization energy plays the role of an elastic
energy while the matching energy can be regarded as an external potential. Furthermore
we suppose φ =

�
to represent the stress free deformation. Let us consider the deformation

of length, volume and for d = 3 also area under a deformation φ. It is well-known that the
norm of the Jacobian of the deformation ‖Dφ‖2 controls the isotropically averaged change

of length under the deformation, where ‖A‖2 := tr (ATA)
1

2 = (
∑

i,j AijAij)
1

2 for A ∈ R
d,d.

Secondly, the local volume transformation under a deformation φ is represented by detDφ.
If detDφ changes sign local self-penetration may be observed. Furthermore for d = 3,
||CofDφ||2 is a proper measure for the averaged change of area. In general, we consider a
so called polyconvex energy functional [37]

Ereg[φ] :=

∫

Ω

W (Dφ,Cof Dφ, detDφ) dL , (9)

where W : R
d,d × R

d,d × R → R is supposed to be convex. In particular, the built-in

penalization of volume shrinkage, i. e., W (A,C,D)
D→0
−→ ∞, enables us to successfully control
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singularity sets (cf. [8]). Such energies have already been introduced to the related optical
flow problem by Hinterberger et al. [38]. But their focus was neither on morphological
registration nor on the control of singularity sets. As an example, we can define a simple
physically reasonable isotropic elastic energy for d = 3, which separately cares about length,
area and volume deformation:

W (A,C,D) = αl ‖A‖
p

+ αa ‖C‖
q
+ αv

[

Dr + βD−s
]

(10)

with αl, αa, αv > 0. In nonlinear elasticity such material laws have been proposed by Ogden
[39] and for p = q = 2 we obtain the Mooney-Rivlin model [35].

Collecting the different energy contributions. Now, we have all the ingredients at
hand to formulate the variational problem for a matching of the singular and regular image
morphology combined with a simultaneous segmentation and denoising in the template and
the reference image. We collect the matching energy (5) for the singular morphology, the
matching energy (8) for the regular morphology, the elastic regularization energy (9) and
define the global energy

E[uR, uT , ST , φ] := EMS[uR, uT , ST , φ] +EGM [uR, uT , φ] +Ereg[φ] . (11)

Even for very simple image pairs u0
R

and u0
T

we expect the resulting energy landscape to be
very complicated. To address this issue, we will not restrict to a single fine scale problem but
consider an embedding into a scale of problems to be solved from coarse to fine. This scale
will be induced by an phase field approximation of the energy EMS . The scale parameter
will correspond to the width of the phase transition region. In particular, we will make use
of the multiple scales in the numerical algorithm. Together with a corresponding hierarchy
of function space this will enable us to derive an effective and efficient algorithm.

4 Multiple Scales induced by a Phase-Field Approxima-

tion

The singularity set ST as an explicit argument is difficult to treat algorithmically. For the
approximation of the edge set ST in [40] a level set formulation has been proposed. This
approach is in particular well-suited as long as the edge set is closed and topologically
simple. Whereas this may be convenient in some cases, for example, when the initialization
allows a certain degree of user control to preselect certain features, it may also be ambiguous
and tedious in other cases. Here, we propose a phase-field formulation (2) in the spirit of
Ambrosio and Tortorelli [24] to gain more flexibility and in addition to incorporate a simple
multi scale into the model. Concerning the coupling of the segmentation in the reference
and the template image we proceed analogously to the Mumford Shah model above. Let us
introduce an auxiliary variable v, describing the singularity set ST of the image uT . At the
same time v◦φ is taken into account to describe the edge set SR in the image uR. Apart from
ST and SR = φ−1(ST ) we aim for v ≈ 1. The phase field should vanish on ST and φ−1(ST ),
respectively. As in the original segmentation approach [24] a scale parameter ε controls the
thickness of the region with small phase field values. These requirements are reflected by
the energy

Eε
AT

[uR, uT , v, φ] :=
1

2

∫

Ω

(

(uR − u
0
R
)2 + (uT − u

0
T
)2

)

dL

+
µ

2

∫

Ω

(

(v2
◦φ+ kε) ‖∇uR‖

2
+ (v2 + kε) ‖∇uT‖

2
)

dL

+

∫

Ω

(

νε‖∇v‖2 +
ν

4ε
(v − 1)2

)

dL , (12)
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where kε = o(ε). The first integral measures the deviation of uR and uT to the data in L2 and
can be regarded as a fidelity term as in the Mumford Shaw approach. The second integral
forces the signature v2 to be small where uT has steep gradients and, correspondingly, v2

◦φ

to be small where ∇uR is large. Furthermore, for fixed signature and fixed deformation,
the smoothness of the images uR and uT is controlled apart from the edge sets, i. e., steep
gradients of uT are penalized where v 6≈ 0 and analogously for uR. Finally, the third integral
approximates the Hd−1 measure of the edge set and forces v ≈ 1 apart from edges. Not
aligning edges in uR with edges in uT◦φ would result in a v which reflects both edge sets
separately (cf. Fig. 7 and Fig. 10).
In that case we would count them twice with respect to the length measurement. Hence, it
is preferable to align them as long as the cost for the elastic deformation measured in terms
of Ereg is relatively low.
As already mentioned, the total energy E[·] is highly non-linear and the energy landscape
will be very complicated. Thus, minimizing already on the highest resolution with the fully
developed deformation is not feasible. In particular the energies controlling the registration
of regular and singular morphology cause many local minima in the energy landscape. We
take a multiscale approach, solving a sequence of matching problems ranging from coarse
to fine scales. This type of method is frequently applied and well understood in image
processing [41]. It remains for us to define a scale of energies. Thus, we consider the
parameter ε in the phase field approximation Eε

AT
as scale parameter. The width of the edge

regions indicated by small values of v is expected to be proportional to ε. For decreasing ε
we will obtain successively sharper regularized images uT and uR. This implicitly introduces
a scale in the energy EGM as well. I. e., the gradients ∇uT and ∇uR corresponding to uT and
uR are expected to be smoother for larger ε. Thus, we no longer have to distinguish regular
and singular gradients. To focus only on the regular morphology in this energy contribution
- in particular not measuring edges - we mask out a gradient comparison in the vicinity of
edges. Therefore, the integrant is multiplied by v2

◦φ and we obtain

Eε
GM

[uT , uR, v, φ] =

∫

Ω

v2
◦φ g0(∇uT ◦φ,∇uR,CofDφ) dL . (13)

Finally, gathering the energy contributions from (12), (13) and (9) we define a scale of global
approximate energies

Eε[uR, uT , v, φ] := Eε
AT

[uR, uT , v, φ] +Eε
GM

[uR, uT , v, φ] +Ereg[φ] . (14)

depending on the scale parameter ε (cf. Fig. 3 and 4 for results achieved via a relaxation
of this energy). Now, we consider a sequence of regularization parameters (εk)k=1,··· ,K .
On the coarsest scale, we start with εK of the order 1 and consider successively refined
εk = 1

2εk+1. In the numerical algorithm, the parameter ε1 is supposed to be of the order
of the pixel or voxel size. In essence, the energy landscape is smoothed, enabling “basin
catching” at coarse levels to provide good starting guesses for subsequently finer levels.
Note that it is not necessary to compute the exact minimizer on coarse scales. Instead we
apply a descent method (cf. Section 5) and stop iterating as soon as the update is sufficiently
small. In practice this proves to be a good heuristic to ensure that at the time we stop on
level k with a deformation φk , this deformation is already in the contraction region of the
global minimum on the next finer scale k + 1. Furthermore, in the finite element algorithm
we will resolve coarse scales on coarse grids (cf. Section 5). Consequently most iterations of
the algorithm are spent on coarse grids with corresponding performance benefits.
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Figure 3: Contrast invariant matching: We have inverted, moved and distorted the peppers
image (Left) to obtain a template image (Middle). On the Right the initial misfit is
shown.

Figure 4: Registration result for the input data from Fig. 3: The final phase field function v
is depicted on the Left. The image in the Middle shows a plot of the deformation due to
a relaxation of the combined energy Eε

AT
+Ereg +Eε

GM
, i. e., the registration of discontinuity

sets and level sets. On the right alternating slices of the reference and the pulled back
template image yield a validation of the matching result.

5 Energy Relaxation and Numerical Implementation

The energy introduced above depends on four unknown functions, the scalar valued regular-
ized images uT , uR, the scalar phase field v and the vector valued deformation φ. In what
follows, we will outline an energy relaxation method in the continuous setting. Secondly, we
will briefly describe how to discretize this approach based on finite elements. Furthermore,
for the convenience of the reader, a comprehensive collection of variations of the different
energy contributions with respect to the different unknown is given in the appendix.
Apart from EGM the energy depends quadratically on uT , uR and v. Thus the corresponding
necessary conditions to be fulfilled by a minimizer, i. e., the Euler Lagrange equations with
respect to these variables, turn into linear problems. Indeed, in contrast to the original
approach of [42], where approximating elliptic but non-quadratic functionals have been
used, our approximation of the Mumford Shah type energy for the matching of the singular
morphology follows (2) and gives rise for this simplification. We refer for instance to [43, 44]
and for the numerical treatment to [45].
In the relaxation scheme for the deformation, which actually describes the image matching,
we treat uT , uR, and v in a quasi stationary way. I. e., the iterative relaxation proceeds as
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follows:
For given images and deformation, we optimize w.r.t. the phase field v. In a next step, we
then optimize for the regularized images uT and uR for given φ and already optimized v.
Finally, we consider one gradient descent step for the global energy w.r.t. the deformation.
This procedure is repeated until convergence.
The variation δφE

ε of the global energy in φ is a functional acting on infinitesimal defor-
mations. We apply a regularizing operator A to map this energy variation onto a regu-
larized direction in the space of deformation. In abstract terms this regularized direction
is the gradient direction with respect to a regularized metric (·, ·)A on the space of defor-
mation, where A is essentially the inverse of the corresponding metric tensor. For details
we refer to [46]. In the actual implementation we consider a multigrid approximation of

A = (
�
− σ2

2 ∆)−1, with
�

being the identity matrix, similar to the one proposed in [47]. We
treat this as an approximation of a Gaussian filter, or in terms of a regularizing metric we

choose (ψ, ζ)A =
∫

Ω
ψ · ζ + σ2

2 Dψ : Dζ dL, where “·” indicates the Euclidean scalar product

in R
d and “:” is a scalar product on matrices with A : C = tr(ATB) for A,B ∈ R

d,d. As
step size control in the descent step we consider Armijo’s rule [48]. For the sake of simplicity
of the exposition we might assume Dirichlet boundary conditions φ(x) = x on the image
domain boundary ∂Ω. We refer to [49] and [33] for an attenuation towards an only partial
correspondence of the images. Next, let us sketch the method in pseudo code notation:

Energy-Relaxation(u0
T
, u0

R
) {

initialize (uK,0
T , u

K,0
R , φK,0)← (u0

T
, u0

R
,

�
) ;

for k = K, · · · , 1 do {
l = 0 ;
do {

vk,l+1 = argmin
v

Eεk [uk,l
T , u

k,l
R , v, φk,l] ;

(uk,l+1
T , u

k,l+1
R ) = argmin

uT ,uR

Eεk [uT , uR, v
k,l+1, φk,l] ;

For given smoothing operator A update

φk,l+1 = φk,l − τ lA δφE
εk [uk,l+1

T , u
k,l+1
R , vk,l+1, φk,l]

for a suitable time step τ l ;
l← l + 1 ;

} until (
∥

∥φk,l − φk,l−1
∥

∥ ≤ δk );

set (uk−1,0
T , u

k−1,0
R , φk−1,0)← (uk,l

T , u
k,l
R , φk,l) ;

}
}

Here, k is the current scale, l the number of already executed relaxation steps on this scale,
and ‖·‖ the usual L2 norm on the space of deformations. All functions are indexed by the
scale k and the relaxation step l. On the coarse scale we initialize the deformation φK,0 with
the identity deformation

�
(x) = x. We stop the inner iteration on each scale, if the norm of

the deformation update φk,l − φk,l−1 is below a threshold δk = Cεk.
To break down the different steps, we have to consider the variations of the different energy
contributions. The computation of these derivatives is a straightforward, albeit involved,
application of the chain rule. For the readers convenience we provide this calculations in
full detail in the appendix below.

Governing partial differential equations. From δvE
εk = 0, we deduce that for given

images uT , uR and deformation φ the updated phase field v solves the linear, elliptic partial
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differential equation

0 = −2νε∆v +
ν

2ε
(v − 1) + µ‖∇uT‖

2 v

+
µ‖∇uR◦φ−1‖2 + 2 g0(∇uT ,∇uR◦φ−1,CofDφ ◦ φ−1)

detDφ◦φ−1
v ,

with homogeneous Neumann boundary condition ∇v · n = 0, where n is the outer normal
on the image domain boundary ∂Ω.
Furthermore, for fixed v and φ the reconstructed images uR and uT are solutions of the
following non linear PDEs derived from the necessary conditions 0 = δuR

Eεk = δuT
Eεk .

0 = uR − u
0
R
− µ div

(

(v2
◦φ+ kε)∇uR

)

−div
(

v2
◦φ ∂zg0(∇uT◦φ,∇uR,Cof Dφ)

)

,

0 = uT − u
0
T − µ div

(

(v2 + kε)∇uT

)

−div

(

v2 ∂wg0(∇uT ,∇uR◦φ−1,CofDφ◦φ−1)

detDφ◦φ−1

)

,

Again, we assume natural boundary conditions ∇uT · n = ∇uR · n = 0 on the image domain
boundary. In the current implementation we neglect the impact of the ongoing segmentation
process on the variation of the energy concerned with the regular morphology and consider
the following simplification in the method:

(uk,l+1
T

, uk,l+1
R

) = arg min
uT ,uR

Eε
AT

[uT , uR, v
k,l+1, φk,l]

Thus, the last term on the left hand side is skipped in both equations above and uT and uR

turn out to be solution of the linear PDEs:

0 = uR − u
0
R
− µdiv

(

(v2
◦φ+ kε)∇uR

)

0 = uT − u
0
T − µdiv

(

(v2 + kε)∇uT

)

.

Even though, we no longer actually minimize the global energy, the proposed restricted
energy relaxation already leads to satisfying segmentation and matching results.

Spatial discretization by finite elements. Now, we describe the actual spatial dis-
cretization by finite elements and the construction of a discrete multi scale. We consider
images as piecewise multilinear (bilinear in our 2D applications) finite element functions on
a regular image domain. Each pixel or voxel value corresponds to a node of the regular
mesh. For the ease of implementation we suppose dyadic resolutions of the images with
2L +1 pixels or voxels in each direction. Thus, we are able to build a hierarchy on grids with
2l +1 nodes in each direction for l = L, · · · , 0. We restrict every finite element function via a
trivial restriction operation to any of these coarse grid spaces. We apply these finite element
space not only for the representation of discrete images but also for the discretization of the
phase field v and the d components of the deformation φ. The construction of the multigrid
hierarchy allows to solve coarse scale problems in our multi scale approach on coarse grids.
I. e., scale k is resolved on the corresponding l(k)th grid level (e.g. with l(k) = k). From the
above still continuous relaxation scheme, we derive a fully practical numerical algorithm in
a straightforward way.
Following the general finite element procedure, the discretization of the PDEs for the phase
field v and the regularized images uT , uR leads to linear systems of equations, which are
solved via a preconditioned CG method. In the assembly of these linear systems we apply
on each grid cell a third order Gaussian quadrature rule.
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For the variation of the energy with respect to φ, we consider the same quadrature rule and
assemble a vector of variations in all basis directions on the space of discrete deformations.
Next, this vector is smoothed applying one multigrid V cycle corresponding to a standard

finite element implementation of the differential operator
�
− σ2

2 ∆ . For details we refer to
[46, 8].
At various places, we have to evaluate discrete functions U at pushed forward or pulled back
positions under a discrete deformation Φ. In both cases we replace the exact evaluation
of these functions by a simple and effective interpolation. Indeed, we replace U ◦ Φ by
I(U ◦ Φ), where I is the classical Lagrangian interpolation on the grid nodes. Thus, each
grid node is mapped under the deformation Φ onto the image domain, U is evaluated at
these positions and these values define our new finite element function. Analogously, U ◦Φ−1

is replaced by I(U ◦ (I ◦ Φ)−1). Here, we proceed as follows. We map each grid cell
under the deformation onto the image domain. Next we identify all grid nodes, which are
located on this deformed cell. These grid nodes are then mapped back under the inverse
local deformation. Now, interpolation is applied to retrieve requested values of the finite
element function U . Inversion of multilinear deformation leads to nonlinear equations. To
avoid this shortcoming, we cut each cell virtually into simplices. On these simplices affine
functions approximate in a straightforward way the multilinear functions. Thus, we replace
the regular cells in the retrieval algorithm by the simplices and end up with piecewise affine
inverse mappings.

Figure 5: The registration of FLAIR and MR brain images is considered. The initial data, a
reference MR image (left) and a template FLAIR image (middle) and the initial mismatch
(right) are shown. The misfit is illustrated by overlaying the reference with stripes of the
template.

6 Results

We have applied the relaxation algorithm to several different scenarios in order to underline
the importance of coupling the different energy contributions. As our first example, shown
in Fig 1, we have considered a square on a white background as the reference image. As the
template we consider this square shifted to the bottom right but with an additional non-rigid
but smooth deformation in the interior. The object has strong edges on the outline, that
correspond to the singular morphology, while in the interior the morphology is completely
regular and characterized by the geometry of the level sets. After relaxation of the Mumford-
Shah type energy in combination with the hyperelastic regularization energy, it is possible to
recover the simple translation, while the interior remains completely rigid. After adding the
energy term Eε

GM
, which cares about a proper matching of the regular morphology, it is also
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Figure 6: For the initial data shown in Fig. 5, the left image shows the resulting registra-
tion result only taking into account the regularization and the regular morphology energy
Eε

GM
+Ereg. In particular regions with smoothly varying intensity are already in good corre-

spondence, but strong edges in the interior and close to the skull are not matched properly.
The results can be significantly improved by a relaxation of the total energy Eε

GM
+Eε

AT
+Ereg

shown on the right. We observe a good registration already in the first case. Measured
in image pixels, several, anatomically distinct discontinuities are very close to each other at
the skull outline, which causes the particular difficulty in this example and also leads to the
remaining artifact on the top of the image.

possible to recover the interior deformation. In these computations we have set µ = ν = 0.1,
γ = 0 resp. 100, µ = ν = 0.1, αl = 10, αv = 40, σk = 3hk and εk = 1

20hk. Another example
in the same spirit is shown in Fig. 3 and 4, where a reference and a template image that
differs by a large distortion and a contrast change are registered properly.
As a first real world example we have considered the matching of two magnetic resonance
images of the human brain: the reference in a standard T1 weighting and the template as
a FLAIR weighted MR image. The render the test problem even more difficult, we have in
addition artificially deformed the FLAIR image by a rotational twist in the interior of the
skull. Figures 5 shows the the initial images and the initial mismatch on the right. Figure 6
compares the registration results with and without the energy Eε

AT
. The combined method

clearly outperforms the registration solely based on a matching of the regular morphology.
The regular morphology however takes care of alignment of low-contrast shape information
such as in the region of the ventricle, which is characterized by level set geometry rather
than strong contrast. The deformation plot in the bottom row underlines that the match for
the edge-based registration via the singular morphology works well in the overall alignment
of the shape but still lacks the rotation in the interior. As can be seen in the bottom right,
the final match recovers those details well. In Figure 6 we collect the comparisons of the
reference against the original template, deformed template considering solely the regular
morphology, deformed template taking into account singular morphology only and the final
result. Hence, also dropping the Mumford-Shah type energy has a negative effect on the
result, which can be seen especially in the top right region of the image. Figure 7 shows a
comparison of the initial phase field function evaluated on the finest resolution after the first
iteration of the relaxation algorithm with the final phase field. The initial mismatch can be
observed in v by the fact that edges from both images are visible separately, while in the
final result v represents coinciding edges of uT and uR◦φ−1. Hence, in the latter case the
overall length of the joint discontinuity set is shorter. These computations were performed
with parameters µ = ν = 0.1, γ = 0 resp. 100, αl = 200, αv = 40, σk = 5hk and εk = 1

20hk.
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Figure 7: The phase field v corresponding to the registration in Figure 5. Left: Initial
phase field. Right: Phase field after alignment.

Figure 8: A facial texture matching problem. Initial reference texture map uR (left), initial
template uT (middle) and the initial misfit plot on the (right).

Finally, we demonstrate the applicability of the method by registering two different facial
texture maps. Figure 8 shows again the reference and template images in the top row,
while in the bottom row we compare registration based on the full model and a restricted
energy Eεk

AT
+Eεk

reg
neglecting the regular morphology. In the restricted case, we observe an

acceptable match of the outline at sharp edges in the region of the mouth, the eyebrows
and the eyes. However, the full method ensures a much better registration capturing further
geometric information. The deformation plots in the bottom row underline this improve-
ment. Figure 9 pinpoints the differences of the different matching approaches. As in the
previous example, Figure 10 illustrates the energetic improvement due to the interplay of
the deformation and the phase-field function, reducing the length of the overall interface by
alignment of edges. In these computations the chosen parameters are µ = ν = 0.1,γ = 0
resp. 10, αl = 10, αv = 5, σk = 5hk and εk = 1

20hk.
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Appendix: energy variations

Here, we give explicit formulas for the variation of the different energy contributions in directions
of the unknown functions uR, uT , v, φ required in the algorithm above. We denote by 〈δwE,ψ〉 a
variation of an energy E with respect to a parameter function w in a direction ψ. The variation of
Eε

AT (12) with respect to v in direction ζ is given by

〈δvE
ε
AT , ζ〉 = µ

Z

Ω

‖∇uT‖
2
v ζ dL +

‖∇uR◦φ−1‖2

detDφ◦φ−1
v ζ dL + ν

Z

Ω

2ε∇v · ∇ζ +
1

2ε
(v − 1)ζ dL .

Here, on account of the hyperelastic regularization Ereg we assume that φ is invertible [50] and have
applied an integral transform. Furthermore, for Eε

GM (13) one achieves

〈δvE
ε
GM , ζ〉 =

Z

Ω

2 (v◦φ) (ζ◦φ) g0(∇uT ◦φ,∇uR,Cof Dφ) dL

=

Z

Ω

2 v ζ
g0(∇uT ,∇uR◦φ−1,Cof Dφ◦φ−1)

detDφ◦φ−1
dL .
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Next, we consider variations of the energies (12) and (13) with respect to uT and uR and get

〈δuR
E

ε
AT , ϑ〉 =

Z

Ω

(uR − u
0
R)ϑ+ µ(v2

◦φ+ kε)∇uR · ∇ϑdL ,

〈δuT
E

ε
AT , ϑ〉 =

Z

Ω

(uT − u
0
T )ϑ+ µ(v2 + kε)∇uT · ∇ϑ dL ,

〈δuT
E

ε
GM , ϑ〉 =

Z

Ω

v
2
◦φ∂wg0(∇uT ◦φ,∇uR,Cof Dφ)(∇ϑ◦φ) dL ,

=

Z

Ω

v
2 ∂wg0(∇uT ,∇uR◦φ−1,Cof Dφ◦φ−1)(∇ϑ)

detDφ◦φ−1
dL ,

〈∂uR
E

ε
GM , ϑ〉 =

Z

Ω

v
2
◦φ∂zg0(∇uT ◦φ,∇uR,Cof Dφ)(∇ϑ) dL .

For the derivatives of the zero-homogeneous integrand g0 (7) in directions y occurring above, we
evaluate

∂wg0(w, z,A)(y) = ∂wg(w,Az)(P [w] ‖w‖−1
y) ,

∂zg0(w, z,A)(y) = ∂zg(w,Az)(x)(AP [z] ‖z‖−1
y) .

Here, we have taken into account that Dw
w

‖w‖
= 1

‖w‖
P [w] where P [w] is the projection matrix

( � − w
‖w‖

⊗ w
‖w‖

). In case of the integrand g(w, z) = γ ‖P [w]z‖2 we observe

∂zg(w, z)(y) = 2 γ P [w]z · y

∂wg(w, z)(y) = −2 γ

„

P [w]y

‖w‖
⊗

w

‖w‖
+

w

‖w‖
⊗
P [w]y

‖w‖

«

z · z

Finally, for the gradient descent step with respect to the deformation, we have to evaluate the
variation of the energy (14) in φ and compute

〈δφE
ε
AT , ψ〉 = µ

Z

Ω

‖∇uR‖
2
v◦φ (∇v◦φ) · ψ dL ,

〈δφE
ε
GM , ψ〉 =

Z

Ω

2 (v◦φ) (∇v◦φ) · ψ g0(M) + (v2
◦φ)∂Ag0(M)(∂ACof (Dφ)(Dψ))

+(v2
◦φ)∂wg0(M)(D2

uT ◦φ) · ψ) dL ,

〈δφEreg, ψ〉 =

Z

Ω

∂AW (Q) : Dψ + ∂CW (Q) : ∂ACof (Dφ)(Dψ) + ∂DW (Q)∂Adet (Dφ)(Dψ) dL ,

where we have used the abbreviations M = (∇uT ◦φ,∇uR,Cof Dφ) and Q = (Dφ,Cof Dφ, detDφ).
Consistent to the above proposed simplification we again neglect the impact of the segmentation
on the regular morphology extraction and hence skip the last term on the right hand side of the
equation for δφE

ε
GM in the concrete implementation. Furthermore, we apply the following formulas

for derivatives

∂Ag0(w, z,A)(C) = ∂zg

„

w

‖w‖
, A

z

‖z‖

« „

C
z

‖z‖

«

,

∂ACof (A)(C) = detA (tr(A−1
C)A−T −A

−T
C

T
A

−T ) ,

∂Adet (A)(C) = detA tr(A−1
C)

In case of the concrete example (10) for the regularization energy (9) we calculate

∂AW (A,C,D) = pαl ‖A‖
p−2

A ,

∂CW (A,C,D) = q αa ‖C‖q−2
C ,

∂DW (A,C,D) = αv(rDr−1 − βsD
−(s+1)) .
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