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Abstract
We present an unconditionally stable second order accurate projection method for the in-

compressible Navier-Stokes equations on fully adaptive Cartesian grids, allowing for constraint-
free mesh generation. We employ quadtree and octree data structures as an e�cient means to
represent the grid. We use the supra-convergent Poisson solver of Min et al. [18], a second order
accurate semi-Lagrangian method to update the momentum equation and an unconditionally
stable backward di�erence scheme to treat the di�usion term. We sample all the variables at
the grid nodes, producing a scheme that is straightforward to implement. We propose two and
three dimensional examples to demonstrate second order accuracy for the velocity �eld and the
divergence free condition in the L1 and L∞ norms.

1 Introduction
The incompressible Navier-Stokes equations describe the motion of �uid �ows and are therefore
used in countless applications in science and engineering. In non-dimensional form these equations
read:

Ut + (U · ∇)U +∇p = µ∆U + F in Ω,
∇ · U = 0 in Ω,
U |∂Ω = Ub on ∂Ω,

where p is the pressure, F is the sum of the external forces and µ is the viscosity coe�cient. Ω
represents the domain in which the velocity �eld U is to be found and ∂Ω denotes the boundary of
the domain, where the velocity �eld can be prescribed. These equations lack an evolution equation
for pressure, which thus only plays a role in ensuring that the velocity �eld is divergence free. As
a consequence, most numerical methods in the primitive variables are fractional methods, i.e. they
�rst solve the momentum equation ignoring the e�ects of pressure, and then project the velocity onto
the divergence free vector space. Starting with the seminal work of Chorin [7], several projection
methods have been introduced, see e.g. the work of Kim and Moin [12], Kan [11], Bell et al. [3]
and the references therein. The MAC grid con�guration [10], where the pressure is stored at the
cells' center and where the velocity components are stored at their respective cells' faces, is often
the preferred arrangement. This is mainly due to the fact that it produces methods that o�er a
straightforward mechanism to enforce discretely the incompressibility condition ∇·u = 0. However,
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other arrangements have been shown to produce high order accurate schemes for the velocity �eld,
without enforcing the incompressibility condition at the discrete level (see e.g. the work of E et al.
[9], Almgren et al. [2], the review by Brown et al. [6] and the references therein).

Physical phenomena have di�erences in length scales and numerical approximations on uniform
grids are in such cases extremely ine�cient in terms of C.P.U. and memory requirement. This
stems from the fact that only a small fraction of the domain needs high grid resolution to correctly
approximate the solution, while other parts of the domain can produce accurate solutions on coarser
grids (for example in regions where the solution experiences smooth variations). As a consequence
adaptive mesh re�nement strategies, starting with the work of Berger and Oliger [5] for compressible
�ows, have been proposed in order to concentrate the computational e�ort where it is most needed.
In the original work of Berger et al. [5, 4], a �ne Cartesian grid is hierarchically embedded into
a coarser grid. Almgren et al. [1] then introduced a projection method for the variable density
incompressible Navier-Stokes equations on nested grids. Sussman et al. extended this method to
two-phase �ows [25]. Within this block structured grid approach, a multigrid approach is necessary
to solve the Poisson equation. In contrast, the methods on quadtrees/octrees presented in [17, 16,
18, 20] build one linear system of equations that is then solved with standard iterative linear solvers
[21].

One of the main reasons behind considering block structured grids was to avoid spurious shock
re�ections occurring when the solution sweeps portions of the grid with di�erent levels of resolution.
However, in the case of incompressible �ows, shocks do not exist and a more optimal fully adaptive
grid structure can be used. One of the main di�culties in solving the Navier-Stokes equations on
irregular grids is in solving the Poisson equation associated with the incompressibility condition.
Rather recently, Popinet [20] introduced a Navier-Stokes solver using an octree data structure. In
this work, the discretization of the Poisson equation at one cell's center involves cells that are not
necessarily adjacent to it. As a consequence, a nonsymmetric linear system of equations was ob-
tained and graded octrees only were considered in order to ease the implementation. Later, Losasso
et al. [17] introduced a symmetric discretization of the Poisson equation in the context of free sur-
face �ows. In this case, the discretization at one cell's center only involves adjacent cells, therefore
producing a symmetric linear system of equations. Moreover, this method is straightforward to
implement and does not require any constraint on the grid. This approach produces �rst order ac-
curate solutions in the case of a fully adaptive mesh and is found to be second order accurate in the
case of a graded mesh. In this case, the pressure �uxes de�ned at the faces are the same for a large
cell and its adjacent smaller cells. Using ideas introduced in [15], Losasso et al. then extended this
method to second order accuracy. In [18], Min et al. introduced a second order accurate method to
solve the Poisson equation on fully adaptive grids as well. A hallmark of this approach is that the
solution's gradients are found to second order accuracy as well. In this case, the linear system is
nonsymmetric but is proven to be diagonally dominant. In this paper, we propose a second order
accurate Navier-Stokes solver on fully adaptive grids, making use of the Poisson solver introduced
in [18].

2 Spatial Discretization
The physical domain in two (resp. three) spatial dimensions is discretized into squares (resp. cubes),
and we use a standard quadtree (resp. octree) data structure to represent this partitioning. For
example, consider the case depicted in �gure 1 in the case of two spatial dimensions: The root of the
tree is associated with the entire domain that is then split into four cells of equal sizes, called the
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Figure 1: Discretization of a two dimensional domain (left) and its quadtree representation (right).
The entire domain corresponds to the root of the tree (level 0). Then each cell can be recursively
subdivided further to four children. In this example, this tree is ungraded, since the di�erence of
level between cells exceeds one.

children of the root. The discretization proceeds recursively, i.e. each cell can be in turn split into
four children until the desired level of detail is achieved. In three spatial dimensions, the domain
(root) is split in eight cubes (children) and each cell can be recursively split in the same manner.
We refer the interested reader to the books of Samet [23, 22] for more details on quadtree/octree
data structures.

The level of a cell is set to be zero if it is associated with the root and is incremented by one
for each new generation of children. A tree in which the di�erence of level between adjacent cells
is at most one is called a graded tree. Meshes associated with graded trees are often used in the
case of �nite element methods in order to produce procedures that are easier to implement. In
[20], Popinet also uses a graded grid to simplify the �nite di�erence formulas associated with his
discretizations. As a consequence, such methods must introduce a large amount of extra grid cells
in regions where they are not necessarily needed, consuming some computational resources that
cannot be spent elsewhere, eventually limiting the highest level of detail that can be achieved. In
fact, Moore [19] demonstrates that the cost of transforming an arbitrary quadtree into a graded
quadtree could involve 8 times as many grid nodes. Weiser [26] proposed a rough estimate for
the three dimensional case and concluded that as much as 71 times as many grid nodes could be
needed for balancing octrees. In contrast, we do not impose any constraint on the di�erence of level
between two adjacent cells in the proposed method, allowing for a fully adaptive mesh generation.

3 Numerical Methods
In this section, we present an unconditionally stable second order accurate projection method for
the incompressible Navier-Stokes equations. All the variables are stored at the nodes, producing
a scheme that is straightforward to implement. We use the quadtree and octree data structures
described in section 2 and we allow for fully adaptive grids, hence removing the di�culties associated
with grid generations. We use the supra-convergent Poisson solver of Min et al. [18], a second order
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Figure 2: Quadratic interpolation in quadtree: The shaded cell is the smallest cell containing the
location x where the data must be interpolated at. The parent cell of the shaded cell has a 3 × 3
locally uniform grid that enables a straightforward quadratic Hermite interpolation.

accurate semi-Lagrangian method to update the momentum equation and an unconditionally stable
backward di�erence scheme to treat the di�usion term.

3.1 Second Order Accurate Semi-Lagrangian Method
Semi-Lagrangian schemes are extensions of the Courant-Isaacson-Rees [8] method for hyperbolic
equations. They are unconditionally stable and therefore allow for large time steps, which is a
particularly desirable feature in an adaptive setting since for standard explicit schemes the time
step restriction imposed by the CFL condition is proportional to the smallest grid cell. The general
idea behind semi-Lagrangian methods is to reconstruct the solution by integrating numerically the
equation along characteristic curves, starting from any grid point xi and tracing back the departure
point xd in the upwind direction. Interpolation formulas are then used to recover the value of the
solution at such points. Consider for example the linear advection equation

φt + U · ∇φ = 0,

where U is an externally generated velocity �eld (i.e. does not depend on φ). Then φn+1(xi) =
φn(xd), where xi is any grid point and xd is the corresponding departure point from which the
characteristic curve originates from. In this work, we use the following second order explicit mid-
point rule for locating the departure point, as in [27]:

x̂ = xn+1 − ∆t
2 · Un(xn+1),

xn
d = xn+1 −∆t · Un+ 1

2 (x̂),

where we de�ne the velocity at the mid time step tn+1/2 as a linear combination of the velocities
at the two previous time steps tn and tn−1, i.e. Un+ 1

2 = 3
2Un − 1

2Un−1.
Since x̂ is not guaranteed to be on a grid node, a procedure must be provided to interpolate

the value of Un+ 1
2 (x̂) from the values of Un+1/2 de�ned at the nodes. Likewise, φn(xn

d ) must be
interpolated from the values of φn de�ned at the nodes. Piecewise multilinear interpolation schemes
on nonuniform grids are often used in conjunction with semi-Lagrangian methods (see e.g. [17, 24]).
In this work, we use a quadratic Hermite interpolation [13], which is constructed from the solution's
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Figure 3: Local structure around a node v0 in a quadtree mesh: At most one node in the two
Cartesian directions might not exist. In this case, we de�ne a ghost node (here v4) to be used in
the discretizations.

values at nine distinct nodes in two spatial dimensions (27 in three spatial dimensions). Since the
local structure of a nonuniform cell is arbitrary, we use the four children of the parent cell to select
a uniform grid of 3 × 3 nodes in two spatial dimensions (3 × 3 × 3 in three spatial dimensions) as
illustrated in �gure 2. Similarly, the discretization of the momentum equation in the projection
method of section 3.4 requires the de�nition of xn−1

d , which is given by

x̂ = xn+1 −∆t · Un(xn+1),
xn−1

d = xn+1 − 2∆t · Un(x̂).

3.2 Basic Finite Di�erences on Nonuniform Cartesian Grids
In this section, we provide the formulas we use to compute the �rst and second order derivatives
on a nonuniform mesh.

3.2.1 Two Spatial Dimensions
Consider a node v0 in a two dimensional nonuniform grid as depicted in �gure 3. Standard �nite
di�erence approximations for the �rst and second order derivatives in the y-direction, namely

Dyf(v0) = f3−f0
s3

s2
s2+s3

+ f0−f2
s2

s2
s2+s3

,

and
Dyyf(v0) = f3−f0

s3

2
s2+s3

− f0−f2
s2

2
s2+s3

,

where fi = f(vi), are respectively second and �rst order accurate since all the nodes involved in
these discretizations are aligned on the same axis.

On the other hand, standard �nite di�erence approximations for the �rst and second order
derivatives in the x-direction �rst require the de�nition of a ghost node in order to construct a
locally Cartesian stencil1. Given a discrete function f sampled at the nodes of a quadtree grid, the

1We emphasize that in two spatial dimensions at most one ghost node must be de�ned in order to construct a
locally Cartesian stencil.
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function's value at the ghost node v4 is de�ned as a linear combination of the function's values at
the nodes v5 and v6:

f(v4) =
s6f5 + s5f6

s5 + s6
.

Then the standard �nite di�erence approximations for the �rst and second order derivatives in the
x-direction read:

D̃xf(v0) =
f4 − f0

s4

s1

s1 + s4
+

f0 − f1

s1

s4

s1 + s4
,

and
D̃xxf(v0) =

f4 − f0

s4

2
s1 + s4

− f0 − f1

s1

2
s1 + s4

.

A straightforward Taylor analysis demonstrates that D̃x is locally2 �rst order accurate and that
D̃xx is locally inconsistent because the linear interpolation de�ning the ghost node v4 introduces
errors in the transversal direction. These spurious terms can be removed by a weighted average of
the approximations in the y-direction, i.e. we de�ne

Dxf(v0) = D̃xf(v0)− s1s5s6

2s4(s1 + s4)
Dyyf(v0),

and
Dxxf(v0) = D̃xxf(v0)− s5s6

s4(s1 + s4)
Dyyf(v0).

In this case, Dxf(v0) is locally second order accurate. Likewise, Dxxf(v0) is locally �rst order
accurate, and becomes second order accurate if the grid is locally uniform at v0, i.e. s1 = s4 and s2 =
s3. We note that one-sided di�erence formulas are used at the wall's boundaries. Similarly, formulas
can be derived for Dy and Dyy in the case where a ghost node is needed in their discretizations.

3.2.2 Three Spatial Dimensions
Consider a node v0 in a three dimensional nonuniform grid as depicted in �gure 4. Standard �nite
di�erence approximations for the �rst and second order derivatives in the z-direction, namely

Dzf(v0) = f6−f0
s6

s3
s3+s6

+ f0−f3
s3

s6
s3+s6

,

and
Dzzf(v0) = f6−f0

s6

2
s3+s6

− f0−f3
s3

2
s3+s6

,

where fi = f(vi), are respectively second and �rst order accurate since all the nodes involved in
these discretizations are aligned on the same axis.

On the other hand, standard �nite di�erence approximations for the �rst and second order
derivatives in the x- and y- directions �rst require the de�nition of two ghost nodes in order to
construct a locally Cartesian stencil3. Referring to �gure 4, the function's value at the ghost nodes

2By de�nition, a cell is locally nonuniform if its size is di�erent from the size of at least one of its neighbors. A
cell is locally uniform if its size is equal to that of all of its neighbors.

3We emphasize that in three spatial dimensions at most two ghost nodes must be de�ned in order to construct a
locally Cartesian stencil.
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Figure 4: Neighboring vertices of a vertex three spatial dimensions.

v4 and v5 are de�ned as a linear combination of the function's values at the nodes v7, v8 v9, v10,
v11, and v12:

f(v4) =
s7f8 + s8f7

s7 + s8
,

and
f(v5) =

s11s12f11 + s11s9f12 + s10s12f9 + s10s9f10

(s10 + s11)(s9 + s12)
.

Then the standard �nite di�erence approximations for the �rst and second order derivatives in the
x- and y- directions read:

D̃xf(v0) =
f4 − f0

s4

s1

s1 + s4
+

f0 − f1

s1

s4

s1 + s4
,

D̃yf(v0) =
f2 − f0

s2

s5

s2 + s5
+

f0 − f5

s5

s2

s2 + s5
,

D̃xxf(v0) =
f4 − f0

s4

2
s1 + s4

− f0 − f1

s1

2
s1 + s4

,

and
D̃yyf(v0) =

f2 − f0

s2

2
s2 + s5

− f0 − f5

s5

2
s2 + s5

.

As in the two dimensional case, a Taylor analysis reveals that D̃x and D̃y are locally �rst order
accurate and that D̃xx and D̃yy are locally inconsistent because the linear interpolations de�ning

7



the ghost nodes v4 and v5 introduce errors in the transversal directions. These spurious terms can
be removed by a weighted average of the approximations in the x-, y- and z- directions, i.e. we
de�ne

Dxf(v0) = D̃xf(v0) + s7s8
2

s1
s4(s1+s4)

Dzzf(v0),

Dyf(v0) = D̃yf(v0) + s10s11
2

s2
s5(s2+s5)

Dzzf(v0) + s9s12
2

s2
s5(s2+s5)

Dxxf(v0),

Dxxf(v0) = D̃xxf(v0)− s7s8
s4(s1+s4)

Dzzf(v0),

Dyyf(v0) = D̃yyf(v0)− s10s11
s5(s2+s5)

Dzzf(v0)− s9s12
s5(s2+s5)

Dxxf(v0).

In this case, Dxf(v0) and Dyf(v0) are locally second order accurate. Likewise, Dxxf(v0) and
Dyyf(v0) are locally �rst order accurate, and become second order accurate if the grid is locally
uniform at v0, i.e. s1 = s4, s2 = s3 and s3 = s6. We note that one-sided di�erence formulas are
used at the wall's boundaries. Similarly, formulas can be derived for Dz and Dzz in the case where
a ghost node is needed in their discretizations.

3.3 Supra-Convergent Poisson Solver
Consider a Cartesian domain Ω ∈ Rn with boundary ∂Ω and the Poisson equation with Dirichlet
boundary conditions:

∆u = f on Ω,

u|∂Ω = g.

3.3.1 Discretization and Analysis
We have presented in Min et al. [18] a Poisson solver on fully adaptive grids that produces sec-
ond order accurate solutions with second order accurate gradients. Moreover, the discretization
associated with one grid nodes involves only two (resp. three) adjacent cells in two (resp. three)
spatial dimensions, producing a scheme straightforward to implement. Finally, the linear system
associated with this solver is an M -matrix, which allows the application of the following theorem:

Theorem 1 (supra-convergence - from [18]) Let uh be the solution of ∆huh = f with a Dirichlet
boundary condition on at least one node, where ∆h is a discretization of the Laplace operator that is
mth order accurate at locally uniform cells and nth order accurate at locally non-uniform cells, with
m,n ≥ 1. Suppose that the matrix associated with −∆h is an M -matrix. Then, the approximation
is globally min(m,n + 1)th order accurate in L∞ norm.

This theorem implies that second order accuracy in the maximum norm can be achieved with
discretizations that are only �rst order accurate at locally nonuniform cells, but second order
accurate at locally uniform cells. Based on this fact, we proposed in [18] a second order accurate
discretization of the Poisson equation making use of the �nite di�erence formulas de�ned in section
3.2 for Dxxu, Dyyu and Dzzu. The solutions' gradients are also computed using the formulas in
section 3.2 (i.e. ∇u = (Dxu,Dyu,Du)) and are found to be second order accurate in the L∞ norm.
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Figure 5: Two-step procedure to solve the Poisson equation with Neumann boundary conditions.
The squares (¤) represent Dirichlet boundary conditions while the bullet points (•) represent Neu-
mann boundary conditions. Left: In the �rst step the Poisson equation is solved in the entire domain
with Neumann boundary conditions on the domain's boundary and a single Dirichlet boundary con-
dition (here at the center of the domain). Right: In the second step, the Poisson equation is solved
on a small portion of the domain with Dirichlet boundary conditions on that domain's boundary.

3.3.2 Neumann Boundary Condition
Projection methods for the Navier-Stokes equations require the solution of a Poisson equation with
Neumann boundary conditions on the domain's boundary. Since the corresponding linear system is
singular, a solution must be picked out of the in�nite possibilities, for example by adding a Dirichlet
boundary condition at one node. In this case however, we observed in [18] that this procedure lowers
the accuracy of the solution's gradients to �rst order. We then proposed a simple two-step procedure
illustrated in �gure 5 that produces solutions with second order accurate gradients: First, in order to
select one particular solution, we impose a Dirichlet boundary condition at one node (for example,
the center of the domain). This introduces spurious errors in the solution's gradients localized near
that center node as depicted in �gure 6. These errors are removed by considering a small portion of
the domain containing the center node. Letting Ωp be that portion, we solve the Poisson equation
on Ωp with Dirichlet boundary conditions on its boundary ∂Ωp. The Dirichlet boundary conditions
are the solution' values obtained in the �rst step. Numerical experiments demonstrate that the
gradients are second order accurate in the L∞ norm (see [18]). We note that the cost of solving the
Poisson equation in the second step is negligible since it only uses a small portion of the domain.

3.4 Projection Method
Consider momentum equation:

Ut + (U · ∇)U +∇p = µ∆U + F.

The Crank-Nicholson scheme has often been used for discretizing implicitly the viscosity term
[3, 12]. However, in the case where the convection term is treated with a semi-Lagrangian method, a
di�culty arises: The corresponding pressure is not de�ned at the grid nodes, making the projection
step complicated to implement in conjunction with a Crank-Nicholson scheme. The backward
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Figure 6: Solving −∆u = f with u = cos(x) cos(y). Plot of ||∇u −∇uh||∞ before (left) and after
(right) applying the procedure in section 3.3.2

di�erentiation formula o�ers a more convenient choice, since in this case the corresponding pressure
is de�ned at the grid nodes [27]. The discretization of the momentum equation using a backward
di�erentiation formula and a semi-Lagrangian method for the convection term can be written as:

1
∆t

(
3
2
Un+1 − 2Un

d +
1
2
Un−1

d

)
+∇pn+1 = µ∆Un+1 + Fn+1 (1)

This equation is solved using a three-step projection method approach: First, given the velocity
�eld Un at time tn, an intermediate velocity U∗ is calculated by ignoring the pressure component:

1
∆t

(
3
2
U∗ − 2Un

d +
1
2
Un−1

d

)
= µ∆hU∗ + Fn+1. (2)

Second, in order for the velocity Un+1 at time tn+1 to satisfy the incompressibility condition
∇·Un+1 = 0 the second step de�nes a potential function φn+1 through the solution of the following
Poisson equation:

∆hφn+1 =
1

∆t
(∇h · U∗) . (3)

In the last step, the �uid velocity Un+1 at the new time step is projected to the divergence free
�eld:

Un+1 = U∗ −∆t · ∇hφn+1. (4)

Taking the divergence of equation 4 and using the relation given by equation 3 yields a velocity
�eld Un+1 that is indeed divergence free. The relation between φn+1 and the pn+1 is found by �rst
combining equation 2 and equation 4 to get the following expression relating Un+1 to φn+1:

1
∆t

(
3
2
Un+1 − 2Un

d +
1
2
Un−1

d

)
+

3
2
∇φn+1 = µ∆Un+1 + Fn+1 + ∆tµ∆∇φn+1, (5)

and then comparing this expression to equation 1. This leads the following expression relating φn+1

to pn+1:
∇pn+1 =

3
2
∇φn+1 −∆tµ∆∇φn+1.
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An analysis similar to that in [6, 12] demonstrates that the following boundary conditions for
U∗ and φn+1 are su�cient to ensure second order accuracy for the velocity �eld:

N · U∗|∂Ω = N · Un+1|∂Ω,
T · U∗|∂Ω = T · Un+1|∂Ω + ∆t · T · ∇φn,
∇φ · n|∂Ω = 0,

where N and T denote the normal and tangent vectors at the boundary, respectively.
We note that the �rst step of the projection method computes the intermediate velocity U∗ by

solving the following convection-di�usion equation:
(

3
2
Id−∆tµ∆h

)
U∗ = 2Un

d −
1
2
Un−1

d + ∆tFn+1,

with Dirichlet boundary conditions at the domain's boundary. As demonstrated in [18], the matrix
associated with −∆h is an M -matrix, implying that 3

2Id −∆tµ∆h is also an M -matrix. In turn,
the supra-convergence theorem of [18] thus guarantees that U∗ is second order accurate in the L∞

norm. We also note that we use a starting routine to guess the initial value ∇φ0 as described in
Brown et al. [6].

4 Examples
In this section, we present numerical evidences that the proposed projection method yields second
order accuracy for the velocity �eld and the divergence free condition in the L1 and the L∞ norms.
All the examples were tested on highly arbitrary grids to demonstrate that this scheme is applicable
to fully adaptive grids. The linear systems are strictly diagonally dominant, and are solved using
the BiCGSTAB algorithm with an ILU preconditioner [21].

4.1 Single Vortex in Two Spatial Dimensions
Consider a domain Ω = [−π

2 , π
2 ]2 and a single vortex �ow with an exact solution of:

u(x, y, t) = − cos(x) sin(y) cos(t),
v(x, y, t) = sin(x) cos(y) cos(t),
p(x, y, t) = − 1

4 cos2(t) (cos(2x) + cos(2y)) ,

We use the grid depicted in �gure 7 and impose Dirichlet boundary conditions on the domain's
boundary. We emphasize that the di�erence of level between some cells and their neighbors exceeds
one, demonstrating the ability of our method to produce second order accurate solutions on arbitrary
grids. The time step is chosen as ∆t = 5×∆xs, where ∆xs is the size of the �nest grid cell. Table 1
demonstrates the second order accuracy of the velocity �eld in the L1 and L∞ norms while table 2
demonstrates the second order accuracy for the divergence free condition in the L1 and L∞ norms.
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Figure 7: Arbitrarily generated quadtree (left) and streamlines of the numerical solution (right) for
example 4.1.

E�ective Resolution ||U − Uh||∞ Order ||U − Uh||1 order
322 5.71× 10−2 2.91× 10−2

642 1.57× 10−2 1.85 7.06× 10−3 2.04
1282 2.54× 10−3 2.63 1.17× 10−3 2.59
2562 3.92× 10−4 2.69 1.82× 10−4 2.68
5122 8.38× 10−5 2.22 3.42× 10−5 2.41

Table 1: Accuracy of the velocity �eld in the L1 and L∞ norms for example 4.1.

E�ective Resolution ||∇ · Uh||∞ Order ||∇ · Uh||1 order
322 1.50× 10−1 2.31× 10−2

642 5.59× 10−2 1.42 5.55× 10−3 2.05
1282 1.34× 10−2 2.05 7.30× 10−4 2.92
2562 3.44× 10−3 1.96 1.21× 10−4 2.58
5122 8.35× 10−4 2.04 1.84× 10−5 2.72

Table 2: Accuracy of the divergence free condition in the L1 and L∞ norms for example 4.1.
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E�ective Resolution ||U − Uh||∞ Order ||U − Uh||1 order
322 4.21× 10−1 2.78× 10−1

642 2.04× 10−1 1.03 3.97× 10−2 2.80
1282 2.23× 10−2 3.19 5.58× 10−3 2.83
2562 2.92× 10−3 2.93 9.16× 10−4 2.60
5122 8.17× 10−4 1.83 1.86× 10−4 2.29

Table 3: Accuracy of the velocity �eld in the L1 and L∞ norms for example 4.2.

4.2 In�ux/Out�ux Flow in Two Spatial Dimensions

Figure 8: Arbitrarily generated two dimensional grid (left) and streamlines of the numerical solution
(right) for example 4.2.

This example is taken from [14]. Consider a domain Ω = [−π
2 , π

2 ]2 and a �ow with a nonzero normal
velocity �eld at the domain's boundary with an exact solution is given of:

u(x, y, t) = − cos(t) sin2(x) sin(2y),
v(x, y, t) = cos(t) sin(2x) sin2(y),
p(x, y, t) = 1

4 cos(t) (2 + cos(x)) (2 + cos(y)) .

We use the grid depicted in �gure 8 and impose Dirichlet boundary conditions on the domain's
boundary. We emphasize that the di�erence of level between some cells and their neighbors exceeds
one as in the previsous example. The time step is chosen as ∆t = 5 ×∆xs, where ∆xs is the size
of the �nest grid cell. Table 3 demonstrates the second order accuracy of the velocity �eld in the
L1 and L∞ norms while table 4 demonstrates the second order accuracy for the divergence free
condition in the L1 and L∞ norms.
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E�ective Resolution ||∇ · Uh||∞ Order ||∇ · Uh||1 order
322 5.23× 10−1 8.07× 10−2

642 2.80× 10−1 0.89 1.29× 10−2 2.64
1282 3.25× 10−2 3.11 2.15× 10−3 2.58
2562 1.17× 10−2 1.46 1.74× 10−4 3.62
5122 3.26× 10−3 1.84 2.01× 10−5 3.11

Table 4: Accuracy of the divergence free condition �eld in the L1 and L∞ norms for example 4.2.

Figure 9: Arbitrarily generated three dimensional grid (left) and one of its cross section (right) used
in example 4.3.
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E�ective Resolution ||U − Uh||∞ Order ||U − Uh||1 order
322 6.92× 10−2 2.60× 10−2

642 2.64× 10−2 1.38 9.73× 10−3 1.41
1282 6.28× 10−3 2.07 2.49× 10−3 1.96
2562 1.07× 10−3 2.54 4.98× 10−4 2.32
5122 2.23× 10−4 2.26 3.94× 10−5 2.90

Table 5: Accuracy of the velocity �eld in the L1 and L∞ norms for example 4.3.

E�ective Resolution ||∇ · Uh||∞ Order ||∇ · Uh||1 order
322 3.56× 10−1 4.82× 10−2

642 1.36× 10−1 1.38 1.59× 10−2 1.60
1282 3.74× 10−2 1.87 2.30× 10−3 2.78
2562 9.55× 10−3 1.96 2.94× 10−4 2.96
5122 2.56× 10−3 1.90 3.94× 10−5 2.90

Table 6: Accuracy of the divergence free condition in the L1 and L∞ norms for example 4.3.

4.3 Three Spatial Dimensions
Consider a domain Ω = [−π

2 , π
2 ]3 and an exact solution de�ned by:

u(x, y, z, t) = −2 cos(t) cos(x) sin(y) sin(z)
v(x, y, z, t) = cos(t) sin(x) cos(y) sin(z)
w(x, y, z, t) = cos(t) sin(x) sin(y) cos(z)
p(x, y, z, t) = 1

4 cos2(t) (2 cos(2x) + cos(2y) + cos(2z))

The time step is chosen as ∆t = 5 × ∆xs, where ∆xs is the size of the �nest grid cell. Figure
9 depicts the grid used. In particular, the level di�erence between some cells and their neighbors
is larger than one, illustrating the ability of our method to retain second order accuracy on fully
adaptive grids. Table 5 demonstrates the second order accuracy of the velocity �eld in the L1 and
L∞ norms while table 6 demonstrates the second order accuracy for the divergence free condition
in the L1 and L∞ norms.

5 Conclusions
We have presented an unconditionally stable second order accurate projection method for the
incompressible Navier-Stokes equations on fully adaptive Cartesian grids. Quadtree and octree
data structures are used to provide an optimal representation of the mesh. We use the supra-
convergent Poisson solver of Min et al. [18] to account for the incompressibility condition, a second
order accurate semi-Lagrangian method to update the momentum equation and a sti�y stable
backward di�erence scheme to treat the di�usion term. All the variables are sampled at the nodes,
producing a scheme that is straightforward to implement. Two and three dimensional examples
have been presented to demonstrate second order accuracy for the velocity �eld and the divergence
free condition in the L1 and the L∞ norms.
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