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Abstract. In this paper we generalize the iterated refinement method, introduced by the authors
in a recent work, to a time-continuous inverse scale-space formulation. The iterated refinement
procedure yields a sequence of convex variational problems, evolving toward the noisy image.

The inverse scale space method arises as a limit for a penalization parameter tending to zero,
while the number of iteration steps tends to infinity. For the limiting flow, similar properties as
for the iterated refinement procedure hold. Specifically, when a discrepancy principle is used as
the stopping criterion, the error between the reconstruction and the noise-free image decreases until
termination, even if only the noisy image is available and a bound on the variance of the noise is
known.

The inverse flow is computed directly for one-dimensional signals, yielding high quality restora-
tions. In higher spatial dimensions, we introduce a relaxation technique using two evolution equa-
tions. These equations allow fast, accurate, efficient and straightforward implementation. We in-
vestigate the properties of these new types of flows and show their excellent denoising capabilities,
wherein noise can be well removed with minimal loss of contrast of larger objects.

Key words. Iterated Refinement Techniques, Inverse Scale Space Methods, Image Restoration,
Total Variation, Denoising, Evolution Equations.

1. Introduction
The processing of noisy images is a central task in mathematical imaging. Over

the last decades, a variety of methods have been proposed ranging from filtering
methods over variational approaches to techniques based on the solution of partial
differential equations (cf. [9]). Since the noise in images is usually expected to be a
small scale feature, particular attention has been paid to methods separating scales, in
particular those smoothing small scale features faster than large scale ones, so-called
scale space methods.

Scale space methods are obtained for example by nonlinear diffusion filters [25]
of the form

∂u

∂t
=div(γ(|∇u|2)∇u), (1.1)

in Ω×R+ with u(x,0)=f(x), where f :Ω→R denotes the given image intensity (Ω
being a bounded open subset in R

2) and u :Ω×R+→R the flow of smoothed images.
The diffusion coefficient involves a positive and monotone function γ. For such meth-
ods it can be shown that small scales are smoothed faster than large ones, so if the
method is stopped at a suitable final time, we may expect that noise is smoothed while
large-scale features are preserved to some extent. For some examples of linear and
nonlinear scale-spaces see [2, 14, 18, 25, 32, 33] and the references therein. Diffusion
filters can be related to regularization theory (cf. [29]) with certain regularization
functionals, but theoretical foundations of choosing optimal stopping times are still
missing (see [15, 21] for two recent studies concerning the stopping time problem).

Recently, inverse scale space methods have been introduced in [28], which are
based on a different paradigm. Instead of starting with the noisy image and gradually
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2 NONLINEAR INVERSE SCALE SPACE METHODS

smoothing it, inverse scale space methods start with the image u(x,0)=0 and ap-
proach the noisy image f (which we normalize to have mean zero) as time increases,
with large scales converging faster than small ones. Thus, if the method is stopped at
a suitable time, large scale features may already be incorporated into the reconstruc-
tion, while small scale features (including the “noise”) are still missing. The inverse
scale space method can also be related to regularization theory, in particular iterated
Tikhonov regularization (cf. [16, 28]) with the same regularization functionals as for
diffusion filters. The construction of inverse scale space methods in [28] worked well
for quadratic regularization functionals, which led to an interesting, but linear evolu-
tion equation, but did not yield convincing results for other important functionals, in
particular for the total variation. In this paper we present a different version of con-
structing inverse scale space methods as the limit of an iterated refinement procedure
previously introduced by the authors (cf. [23]) and demonstrate its applicability to
image restoration. With the new approach we are able to easily implement nonlinear
inverse scale space methods even for the total variation functional, and, in contrast
to diffusion filters, we obtain a rigorously justified and simple stopping criterion for
the methods.

2. Iterated Refinement
In [23], an iterated refinement procedure for total variation restoration was intro-

duced, motivated by the variational problem

u=argmin
u∈BV (Ω)

{

|u|BV +
λ

2
‖f −u‖2

L2

}

(2.1)

for some scale parameter λ>0, where BV (Ω) denotes the space of functions with
bounded variation on Ω, equipped with the BV seminorm which is formally given by

|u|BV =

∫

Ω

|∇u|,

also referred to as the total variation (TV) of u. Problem (2.1) is called the ROF
model, introduced to the field of image restoration in [27].

In [23] the authors showed that an iterative procedure (which turned out to be
equivalent to Bregman’s relaxation method, cf. [6], and proximal point algorithms, cf.
[11]) could be used to improve the quality of regularized solutions to inverse problems,
based on regularization functionals as in (2.1). Given a convex functional J :U→R

(on a suitable Banach space U), e.g., J(u)= |u|BV , the iterated refinement method
defines a sequence {uk} by:

• Set u0 =0, p0 =0;
• Given uk−1 and pk−1∈∂J(uk−1), k≥1, perform the following two steps:

(i) compute uk =argmin
u

Qk(u) with

Qk :u 7−→J(u)−J(uk−1)−〈pk−1,u−uk−1〉+
λ

2

∥

∥f −u
∥

∥

2

L2 , (2.2)

where 〈·,·〉 denotes the usual duality product;
(ii) update the dual variable pk =pk−1 +λ(f −uk)∈∂J(uk).

• Increase k by 1 and continue.
Here ∂J(uk) is the subgradient of the functional J , given by

∂J(u)={p∈U∗ | 〈p,v−u〉≤J(v)−J(u), ∀ v∈U},



BURGER, GILBOA, OSHER AND XU 3

which is single-valued, i.e., ∂J(u)={J ′(u)} if J is Fréchet-differentiable. This pro-
cedure improves the quality of reconstruction for many problems with discontinuous
solutions, e.g., deblurring and denoising of images (cf. [17, 23]) when the least-squares
term ‖f −u‖2

L2 is replaced by an appropriate fitting term for individual examples.
Note that the regularization term used in the first step is a so-called generalized

Bregman distance between u and uk−1, defined as follows,

D(u,v)=J(u)−J(v)−〈u−v,p〉, p∈∂J(v), (2.3)

Note that the subgradient may contain more than one element if the functional J
is not differentiable, so that the distance would depend on the specific choice of the
subgradient. However, we shall suppress the dependence on the subgradient in the
notation below. Note that for smooth, strictly convex functionals the subgradient
contains at most one element and D(u,v) is a scalar “distance”, which is strictly
positive for u 6=v. We can then rewrite the functional Qk minimized in each iteration
step as:

Qk(u)=D(u,uk−1)+
λ

2
‖f −u‖2

L2 .

The Bregman distance and the associated iteration were not used in this fashion
previously, but they have been rather employed to minimize functions H(u,f) where
H is a (usually complicated) convex function of u having a unique minimum (cf. e.g.,
[11]).

It was shown in [23] that the iterated refinement method yields a well-defined
sequence of minimizers uk and subgradients pk ∈∂J(uk). Moreover, it was proved
that the sequence {uk} yields a monotonously decreasing residual ‖uk−f‖L2 , and

f ∈BV (Ω) ⇒ ‖uk−f‖2
L2 ≤ J(f)

k
,

i.e., uk converges monotonically to f in L2(Ω) with a rate of 1√
k
. Of course, this

convergence result does not give useful information on the behavior of the method as
a denoising method, in particular for the typical case of a noisy image f .

The key denoising result obtained in [23] is as follows: for g∈BV (Ω) we have

D(g,uk)<D(g,uk−1) if ‖f −uk‖L2 ≥ τ‖g−f‖L2 (2.4)

for any τ >1. Thus, the Bregman distance between a restored image uk and a possible
exact image g is decreasing until the L2-distance of f and uk is larger than the
L2-distance of f and g. This result can be used to construct a stopping rule for
our iterative procedure. If we have an estimate of the variance of the noise, i.e.,
f =g+n,‖n‖L2 =σ, where g∈BV (Ω) is the noise-free image and n is the noise, then
we can stop the iteration at the first k for which ‖f −uk+1‖L2

<τσ. The choice of τ
allows some freedom to apply the stopping rule also in the case when we only know
an upper bound for σ.

It is interesting to note that for denoising with any convex regularization J(u),
the sequence {uk} has the following interpretation (cf. [23]):

• Define u0 =0, v0 =f .
• Then inductively for k≥1, let

uk =argmin
u

{

J(u)+
λ

2
‖f +vk−1−u‖2

L2

}

and f +vk−1 =uk +vk.
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In other words, we add the “small scales” vk−1 back to f and perform (e.g. ROF)
minimization with f replaced by f +vk−1 and decompose this function into “large
scales” (uk) plus “small scales” (vk). This interpretation already yields a multiscale
interpretation of the method, since the “small scales” are somehow doubled in each
step and so their larger parts can be incorporated into the large scale part after
the next iteration. A related procedure involving the ROF model using Tikhonov-
Morozov rather than Bregman iteration which multiplies λ by two in each step yields
a multiscale method suggested in [16] and analyzed in [30]. This procedure does not
obviously extend to the nonlinear inverse scale-space method, discussed below, and
does not appear to satisfy an estimate analogous to that of equation (2.4).

3. Inverse Scale Space Methods
In the following we generalize the concept of inverse scale space theory introduced

in [16, 28] in the context of Tikhonov regularization for the case

J(u)=
1

2

∫

Ω

|∇u|2. (3.1)

We shall derive general inverse scale space methods as a limit of the iterated refinement
procedure for λ→0, with particular emphasis on the functional

J(u)=

∫

Ω

√

|∇u|2 +ε2, (3.2)

ε>0 is a small constant.
Recall that for a special λ>0 the iterative refinement procedure constructs se-

quences uλ
k of primal and pλ

k of dual variables such that uλ
0 =pλ

0 =0,

uλ
k =argmin

u∈U

{

D(u,uλ
k−1)+

λ

2
‖f −u‖2

L2

}

,

pλ
k ∈ ∂J(uλ

k).

From the Euler-Lagrange equation

pλ
k −pλ

k−1 +λ(uλ
k −f)=0

we are led to the dual iteration

pλ
k −pλ

k−1

λ
=f −uk, k =1,2,...

for the updates. We now reinterpret λ=∆t as a time step and the difference quotient
on the left-hand side as an approximation of a time derivative. Setting tk =k∆t,
p∆t(tk)=p∆t

k , and u∆t(tk)=u∆t
k , we have p∆t

k−1 =p∆t(tk−1)=p∆t(tk−∆t) and thus

p∆t(tk)−p∆t(tk−∆t)

∆t
=f −u∆t(tk).

For ∆t↓0 (dropping the subindex k) we arrive at the differential equation

∂p

∂t
(t)=f −u(t), p(t)∈∂J(u(t)), (3.3)

with initial values given by u(0)=p(0)=0.
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In order to obtain well-posedness also if J is only the total variation seminorm (or
any other functional vanishing on constant functions), we shall always assume in the
following that the image f is scaled such that

∫

Ω
f =0. At this point we mention that

all the inverse scale space methods and arguments discussed below can be generalized
in a straight-forward way for

∫

Ω
f 6=0, with the only difference that the initial value

has to be chosen as the constant u= 1
|Ω|
∫

Ω
f .

If the flow u(t) according to (3.3) exists and is well behaved (which can be shown
under reasonable assumptions on the functional J , in particular for total variation,
cf. [7]), it is an inverse scale space method in the sense of [16]. This means that
the flow starts at u(0)=0 and incorporates finer and finer scales (with the concept of
scale depending on the functional J) finally converging again to the image f as t→∞,
i.e. limt→∞u(t)=f . Through (3.3) the image u(t) flows from the smoothest possible
image (u(0)=0) to the noisy image f . Our goal is to use the flow to denoise the
image, and therefore we shall use a finite stopping time for the flow. As we shall see
below, we can use a simple stopping criterion related to the fitting term ‖u(t)−f‖L2

only.

3.1. Behaviour for Quadratic Regularization
We start by briefly reviewing the results obtained in [16] for the quadratic reg-

ularization (3.1). In this case we obtain from the variation of the functional J the
boundary value problem

−∆u=p in Ω,

∂u

∂n
=0 on ∂Ω,

∫

Ω

u=0=

∫

Ω

f.

Given p with
∫

Ω
p=0, there exists a unique solution u.

A simple manipulation (and the fact that ∂f
∂t =0) leads us to the equation

∂

∂t
(u−f)=∆−1(u−f)=−A(u−f),

with the notation A :=−(∆)−1. Thus, the function w=u−f satisfies an integro-
differential equation (the integral kernel corresponds to the Green’s function of −∆),
whose solution is given by

u(t)−f =w(t)=e−tAw(0)=−e−tAf.

It is well-known that A is a positive definite operator and thus, e−tAf decays to zero.
As a consequence, the difference u(t)−f =−e−tAf decays exponentially as t→∞.
Also, as a consequence of the results of the following section, for any function g for
which ‖∇g‖L2 <∞ and

∫

Ω
g =0, then the error ‖∇(u(t)−g)‖L2 decreases as long as

‖u(t)−f‖L2 >‖g−f‖L2 . This indicates that the inverse scale space procedure is a
good alternative to the classical Wiener filter or diffusion filtering via the heat equation

∂tu(t)=∆u(t), u(0)=f.

3.2. General Convex Regularization
We consider the case of general convex functionals J :U→R on a Banach space

U (the digital image in R
N is then interpreted as the discretization on a grid). If J is



6 NONLINEAR INVERSE SCALE SPACE METHODS

continuously differentiable, we can compute the implicitly defined primal variable u=
u(p) as the solution of J ′(u(p))=p. Note that if J is smooth and strictly convex, the
Hessian H =J ′′ is positive definite, and hence, the existence of a solution is guaranteed
under a standard condition like J(0)=0 by the inverse function theorem.

A possibility to invert the equation for u is the use of the dual functional (or
convex conjugate, cf. [12]), defined by

J∗(p) :=sup
u

{

〈u,p〉−J(u)

}

. (3.4)

Then one can easily show that p∈∂uJ(u) is equivalent to u∈∂pJ
∗(p) and we obtain

an explicit relation for u(p) provided we can compute the dual functional J∗.
Under the above conditions, we can obtain some important estimates for the

inverse scale space flow (3.3) associated to J . We start by computing the time-
derivative of the fitting functional and the (partial) time derivative of u:

1

2

d

dt
‖u(t)−f‖2

L2 = 〈u(t)−f,∂tu(t)〉

∂tu(t)=
d

dt
(∂pJ

∗(p(t)))=H∗(p(t))∂tp(t)=−H∗(p(t))(u(t)−f),

where we used the notation H∗ =∂2
ppJ

∗ for the Hessian of the dual functional. If J∗

is strictly convex, then there exists a constant a>0 such that

〈ϕ,H∗(q)ϕ〉≥a‖ϕ‖2

for all ϕ,q∈U∗. Hence, combining the above estimates we deduce

1

2

d

dt
‖u−f‖2

L2 =−〈u(t)−f,H∗(p(t))(u(t)−f)〉≤−a‖u−f‖2
L2

and using Gronwall’s inequality we have

‖u(t)−f‖L2 ≤e−a(t−s)‖u(s)−f‖L2 ≤e−at‖f‖L2

if t>s. Thus, as t→∞ we obtain convergence u(t)→f with exponential decay of the
error in the L2-norm.

Note that for the above L2-estimates, we do not need severe assumptions on f ,
so that the estimate holds for a clean image as well as for a noisy version used in
the algorithm. If we assume that f is a clean image and J(f)<∞, then we can also
obtain a decay estimate on the error in the Bregman distance via

d

dt
D(f,u(t))=

d

dt

[

J(f)−J(u(t))−〈f −u(t),p(t)〉
]

=−〈f −u(t),∂tp(t)〉=−‖u(t)−f‖2
L2 .

We can also have the following convergence of p(t) to q∈∂J(f) if we assume the
stronger condition q∈L2 (a so-called source condition, cf. [8]). From (3.3) we proceed
formally to

1

2

d

dt
‖p(t)−q‖2

L2 = 〈∂tp(t),p(t)−q〉= 〈f −u,p(t)−q〉

=−D(f,u)−D(u,f).



BURGER, GILBOA, OSHER AND XU 7

So for strictly convex smooth J and for J(f)<∞ we have that the subgradient of u(t)
monotonically goes to the subgradient of f in L2. Also, there are subsequences in t
going to infinity for which both D(f,u(t)) and D(u(t),f) converge to zero. Moreover,
since D(f,u(t)) is decreasing, we obtain

D(f,u(t))≤ ‖q‖2
L2

2t
.

All results so far give information about the convergence of u to the clean image
f (with a finite value J(f)) only. In a more practical situation, f is the noisy version
of an image g to be restored, and we might even have J(f)=∞, while J(g)<∞. In
this case we can state the following proposition:
Proposition 1. For the above conditions, the Bregman distance D(g,u(t)) is de-
creasing with time at least as long as ‖f −u(t)‖L2 >σ, where ‖f −g‖L2 ≤σ.

Proof. As in the case of the clean image we directly compute

d
dtD(g,u) = 〈−∂tp(t),g−u(t)〉=−〈f −u(t),g−u(t)〉

= −‖f −u(t)‖2
L2 −〈f −u(t),g−f〉

≤ −‖f −u(t)‖2
L2

2
+

‖f −g‖2
L2

2
.

The last term on the right-hand side is negative if ‖f −u(t)‖L2 >‖f −g‖L2 .
This means that u(t) approaches any “noise free” image g in the sense of Bregman

distance, as long as the residual (the L2 difference between u(t) and f) is larger
than the difference between the noisy image f and g. The left-hand side, namely
the residual ‖f −u(t)‖L2 can be monitored during the iteration, it only involves the
known noisy image f and the computed restoration u(t). The right-hand side is not
known for the “real” image g to be restored, since g itself is unknown. However, in
typical imaging situations, an estimate for the noise variance is known, which yields
a bound of the form ‖f −g‖L2 ≤σ. The above estimate guarantees that the distance
D(g,u) is decreasing at least as long as ‖f −u(t)‖L2 >σ, and one could terminate the
inverse scale space flow for the minimal t∗ such that ‖f −u(t∗)‖L2 =σ. This stopping
criterion is well-known in the theory of iterative regularization of inverse problems as
the so-called discrepancy principle (cf. [13, 26] for a detailed discussion). This is a
key justification for our denoising approach.

We emphasize this result because the Bregman distance is stronger than L2 for
the regularizations we are considering here, which is significant for denoising. For
example, if J(u)= 1

2

∫

Ω
u2 = 1

2‖u‖2
L2 then the inverse scale space equation is

∂tu=f −u, u(0)=0,

and D(g,u)= 1
2‖g−u‖2

L2 . Clearly, for any L2 function g, we have

d

dt
‖g−u‖2

L2 ≤ 1

2

(

‖f −u‖2
L2 −‖f −g‖2

L2

)

,

and ‖g−u‖L2 decreases until ‖f −u(t)‖L2 <‖f −g‖L2 . This does not imply any sort
of regularization or denoising! If, on the other hand, J(u)= 1

2

∫

Ω
|∇u|2, then we have

d

dt
‖∇(g−u)‖2

L2 ≤ 1

2

(

‖f −u‖2
L2 −‖f −g‖2

L2

)

,
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and we do have a regularization effect for
∫

Ω
|∇g|2 <∞.

For the total variation functional

J(u)=

∫

Ω

|∇u|,

then, formally,

D(g,u)=

∫

Ω

(

|∇g|− ∇g ·∇u

|∇u|

)

(ignoring the case of |∇u|=0) and this diminishes as the normal to the level curves
{u= c} line up with those of {g = c}. Although D(g,u) can vanish for g not identical
to u, it is fairly easy to show that D(g,u)=0 implies that g =R(u), R being a non-
decreasing function. This means that g and u are the same up to a contrast change.
For a discussion of this kind of morphological equivalence, see [1]. The proof can
be outlined as follows: D(g,u)=0 implies ∇g = |∇g| ∇u

|∇u| . When taking the curl of

this equation, the resulting linear partial differential equation for u has the general
solution u=F (|∇g|/|∇u|), which means that |∇g|= |∇u|r(u) for some nonnegative
function r. The solution to this eikonal equation is g =R(u), where R′ = r.

3.3. Conservation and Scaling Properties
So far we have mainly used dissipation properties to analyze the convergence

behaviour of the inverse scale space approach. Some interesting insights can also be
gained by investigating conserved quantities and scaling properties of the flow.

A natural quantity to be conserved in image processing is the mean value of the
image. Here we assume that

∫

Ω
f =0, and of course a natural regularization functional

for denoising should satisfy the invariance

J(v)=J(v+c), ∀ v∈U ,c∈R.

Then, for v =u+1 the subgradient p satisfies
∫

Ω

p= 〈p,1〉= 〈p,v−u〉≤J(v)−J(u)=J(u+1)−J(u)=0.

Similarly for v =u−1 we have
∫

Ω
p≥0. Consequently

0=
d

dt

∫

Ω

p=

∫

Ω

∂tp=

∫

Ω

(f −u)=−
∫

Ω

u,

i.e., u has mean zero.
Another interesting property concerns the scaling of solutions. If f̃ =αf for some

α∈R, and ũ (with subgradient p̃) denotes the solution of (3.3) with f replaced by f̃
, then

∂tp̃= f̃ − ũ=α(f −α−1ũ), p̃∈∂J(ũ).

In the quadratic case (3.1) we have ∂J(ũ)=α∂J(α−1ũ) and hence

∂t(α
−1p̃)=f −(α−1ũ), α−1p̃∈∂J(α−1ũ).

This means α−1ũ is a solution of (3.3) with subgradient α−1p̃, and by uniqueness
ũ=αu, p̃=αp. Hence, the method is invariant with respect to the scaling in the sense
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that first scaling the initial value and then performing the inverse scale space method
yields the same result as first performing the method and rescaling afterwards.

If J is a positively homogeneous of degree one functional like the total varia-
tion, then ∂J(αu)=∂J(u). Hence, with the notation as above, we obtain (with time
variable t̃)

α−1∂t̃p̃=f −(α−1ũ), α−1p̃∈∂J(α−1ũ).

After an additional time rescaling t=αt̃ we obtain again that α−1ũ(t) is a solution of
(3.3) with subgradient p̃(t). Again, by uniqueness, we obtain that for a solution u of
(3.3) with image f , the rescaling αu(α−1t) is a solution with image f̃ =αf .

3.4. Comparison to ROF Scale Space
In contrast to the evolution (3.3) generating u(t) we would like to show why a

different obvious inverse scale space, namely the one generated by varying the penalty
parameter in (2.1), is a less appealing alternative. Note that the improvement seen
with respect to (2.1) seen in numerical experiments is one of the major motivations
for investigating (3.3). Let us consider the inverse scale space defined by w(t) which
satisfies:

w(t)=argmin
u

{

J(u)+
t

2
‖u−f‖2

L2

}

, t≥0.

For the sake of simplicity we assume that J is twice differentiable. Clearly w(0)=0,
w(∞)=f if we have the usual hypotheses on J(u) and H(f,u) and consider the
familiar class of examples. The Euler-Lagrange equation is

p(t)+ t(w(t)−f)=0, p(t)=J ′(w(t)).

Differentiating in time yields

∂tp(t)+ t∂tw(t)=f −w(t). w(0)=0,p(0)=0. (3.5)

We claim that this evolution equation is not as useful as our inverse scale space
equation (3.3) (which it resembles). To show this, we first examine the convergence
to f :

d

dt

1

2
‖w−f‖2

L2 = 〈∂tw,w−f〉=−〈(J ′′(w)+ t)−1(w−f),w−f〉.

This means that ‖w−f‖L2 decays to zero, but only at a slow algebraic rate 1
t , not

exponentially. A more serious drawback comes from the relation

d

dt
D(g,w)=−〈g−w,f −w〉+〈g−w,t∂tw〉,

and an analogous reasoning as in Proposition 1 is not apparent due to the second
term. In fact, for the quadratic case (3.1) we have

d

dt
‖∇(w−g)‖2

L2 =−〈w−g,w−f〉+ t〈w−g,(−∆+ tI)−1(w−f)〉

=−〈w−g,−∆(−∆+ tI)−1(w−f)〉,
=−〈w−f,[I−(I− t−1∆)−1](w−f)〉
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and the discrepancy principle based on the L2 distances of f −g and w(t)−g fails.
For the ROF scale space the natural norms would be the ones generated by I−(I−
t−1∆)−1, which is on the other hand not the right one to control the image noise.
In particular for low-frequency components of w−g and large t, the evolution is very
slow, and this is the reason why the reconstruction obtained from (2.1) can lose a lot
of the image variation (cf. [20]) if λ<∞.

4. Inverse Scale Space for Signals

In the following we discuss the numerical solution of (3.3) in spatial dimension
one. We recall here that p(t)∈∂J(u(t)) and u(t)∈∂J∗(p(t)). We consider again the
regularized total variation J(u)=

∫
√

|∇u|2 +ε2, which yields

J ′(u(t))=−div

(

∇u(t)
√

|∇u(t)|2 +ε2

)

=p(t). (4.1)

Note that since ∂J(u+c)=∂J(u), the solution of (4.1) is not unique if we take the
standard assumption that u satisfies homogeneous Neumann boundary condition. In
this case, the solvability condition is

∫

p(x,t)dx=0 for all t and the conservation
of mean value discussed above provides an additional property implying uniqueness,
namely

∫

u dx≡
∫

f dx=0.

For a fixed time t, we have to solve

−
(

ux
√

u2
x +ε2

)

x

=p in I =(a,b),

∫ b

a

udx=0, (4.2)

If we denote q :=
ux

√

u2
x +ε2

, then

q(x,t)=−
∫ x

a

p(s,t)ds=

∫ b

x

p(s,t)ds (4.3)

and hence, ux = ε
q

√

1−q2
. Therefore,

u(x,t)= ε

∫ x

a

q(y,t)
√

1−q2(y,t)
dy+C (4.4)

where C is a constant chosen to normalize
∫ b

a
u(x)dx=0. We mention that the same

formula for u can be obtained by duality arguments, since J∗ can be explicitly calcu-
lated in spatial dimension one.

Thus, the inverse scale space flow can be computed by two simple integrations.
If we compute first the value of p by explicit time discretization in ∂tp=f −u, then
we can directly integrate to obtain the value of u at the new time step.

5. Relaxed Inverse Scale Space Flow

In order to implement the process in any dimension we resort to a new kind
of approximation. First, we would like write the general expressions of the discrete
Bregman procedure and the direct inverse scale-space having any convex smooth
fidelity terms H(f,u).
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5.1. General fidelity term H(f,u)
The process is based on a convex variational problem of the general form

min
u

{J(u)+λH(f,u)} , (5.1)

where H(f,u) is usually a fidelity to a known image (or signal) f , (in the L2 case
studied before H(f,u)= 1

2‖f −u‖2
L2). In our discussion we assume for simplicity that

f is normalized beforehand to have a zero mean:
∫

Ω
f =0. We also assume p(0)=0.

The general form of the series of variational minimizations, introduced in [23], is

uk =argmin
u

{

D(u,uk−1)+λH(f,u)

}

(5.2)

where u0 =0 and p0 =0.Expanding D(·,·) according to (2.3) and omitting constant
parts which are not relevant to the minimization yields

uk =argmin
u

{

J(u)−〈u,p(uk−1)〉+λH(f,u)

}

. (5.3)

The Euler-Lagrange equation of (5.3) is

p(uk)−p(uk−1)+λ∂uH(f,uk)=0.

We use ∂uH to denote that the variation is taken with respect to u. Assigning
p(uk)=p(u(t)), one can view the iterations in the limit λ→0 as a continuous process

∂tp=−∂uH(f,u(t)), p∈∂J(u) (5.4)

with the initial conditions u|t=0 =0, p|t=0 =0.

5.2. Relaxed Inverse Scale-Space Method
The concise formulation of (5.4) is not straightforward to compute, as the relations

between p and u are quite complicated in nonlinear cases. Here we present a relaxed
version which aims at having a flow with qualitatively similar properties to that of
(5.4) by using standard variational formulations, which are simple to compute.

Let us revisit the series of Bregman iterations stated in equation (5.3). Using
the update formula for the decomposed“noise” vk = pk

λ (cf. [23]) and the first order
optimality conditions, we deduce

vk =vk−1−∂uH(f,uk), k≥1, v0 =0

and hence,

vk =−
k
∑

j=1

∂uH(f,uj), k≥1.

The iteration can then be rewritten via the sequence of equivalent variational problems

uk =argmin
u







J(u)+λH(f,u)+λ

k−1
∑

j=0

〈u,∂uH(f,uj)〉







. (5.5)
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or, coupled for uk and vk

uk = argmin
u

{

J(u)+λ(H(f,u)−〈u,vk−1〉)
}

,

vk = vk−1−∂uH(f,uk),

(5.6)

where u0 =0,v0 =0, k =0,1,2,....
The standard way to solve these iterations for uk and vk (by an explicit scheme)

is first to evolve a steepest descent flow for uk, having a fixed vk, based on the Euler-
Lagrange equations:

∂u

∂t
=−p+λ(−∂uH(f,u)+vk), p∈∂J(u), u|t=0 =uk−1, (5.7)

where uk =u(t→∞). Note that we assume some regularity in the sequence uk (such
that ‖uk−uk−1‖L2 ≤ const) and therefore a good starting point for the time marching
is uk−1. After converging to a minimizer uk it is easy to compute ∂uH(f,uk) and
update vk+1. Then k is incremented by one and the process resumes, such that in
each iteration (5.7) is evolved. Although in practice a finite stopping time is used,
this process is computationally quite intensive.

Our observation is that the update for vk+1 in (5.6) can be viewed as an iterative
descent in vk for minimizing H(f,uk). This is an indirect minimization, which affects
uk by its coupling with vk. Let us write the solution for vk+1 in the following (more
complicated) manner:

∂τv =−∂uH(f,uk), v|τ=0 =vk, (5.8)

where vk+1 =v(τ =1). This extends the definition of the sequence vk to a continuous
formulation. [Note that for a fixed uk and a unit stopping time the result is a simple
linear interpolation between vk and vk+1]. In the case of Bregman iterations, these
flows are evolved iteratively, where in each time either uk or vk are being fixed while
the dual variable is evolved.

We propose to approximate the sequences uk,vk as two continuous flows u(t),v(t)
by evolving both descent flows, similar to (5.7) and (5.8), simultaneously. Let us define
the relation between the two time variables as τ =αt, and let v(t)=v(τ/α). Replacing
vk in (5.7) by v(t) and uk in (5.8) by u(t) yields the relaxed inverse-scale-space flow:

∂tu = −p+λ(−∂uH(f,u)+v),
∂tv = −α∂uH(f,u),

(5.9)

with p∈∂J(u) and initial conditions u|t=0 =v|t=0 =0.

5.2.1. Second order in time formulation
If H and J are smooth, the above flow can also be written as a single equation

in u with second order derivative in the time domain. This can be done by taking
the time derivative of the first equation in (5.9) and substituting for vt by using the
second equation, yielding the following evolution:

∂2
ttu=−∂tp(u)−λ(∂t(∂uH(f,u))−α∂uH(f,u)), (5.10)

with initial conditions u|t=0 =0,ut|t=0 =−λ∂uH(f,0), which can be written also as

∂2
ttu=−(J ′′(u)+λ∂2

uuH(u,f))∂tu−λα∂uH(f,u). (5.11)
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5.2.2. Relation to the direct flow
In order to understand the relation to the original inverse scale space formulation,

Eq. (5.4), we consider the special case H(f,u)= 1
2‖u−f‖2, rescale time to t̂= t

αλ and

define w(t̂)=λv(αλt̂). In this way we obtain

αλ∂t̂u = −p+λ(f −u)+w,
∂t̂w = f −u.

(5.12)

If λ is very small (and α not too large) then the leading order term in the first equation
is p=w, and hence the behaviour is close to the inverse scale space flow on this time
scale.

One can observe the strong similarity of the flows numerically in the one-
dimensional example presented in Section 7 (Figs. 7.2 and 7.3).

5.3. Examples
Below are some examples of processes that can be evolved using different J(u)

and H(f,u):
• Linear model: J = 1

2‖∇u‖2
2, H = 1

2‖f −u‖2
2.

ut = ∆u+λ(f −u+v),
vt = α(f −u).

(5.13)

• ROF model: J =
∫

Ω
|∇u|, H = 1

2‖f −u‖2
2.

ut = div
(

∇u
|∇u|

)

+λ(f −u+v),

vt = α(f −u).
(5.14)

• TV −L1 model (cf. [10]): J =
∫

Ω
|∇u|, H =‖f −u‖1.

ut = div
(

∇u
|∇u|

)

+λ(sign(f −u)+v),

vt = αsign(f −u).
(5.15)

[Note that H is not strictly convex or smooth here and sign is just the notation
for an element in the subgradient of H.]

• Deconvolution by ROF: J =
∫

Ω
|∇u|, H = 1

2‖f −K ∗u‖2
2, where K is a real

blurring kernel, K̂(x,y)=K(−x,−y)) and ∗ denotes convolution.

ut = div
(

∇u
|∇u|

)

+λ
(

K̂ ∗(f −K ∗u)+v
)

,

vt = αK̂ ∗(f −K ∗u).
(5.16)

6. Properties of the Relaxed Method

6.1. Linear Model
The linear case is naturally the easiest to analyze. We can write a closed form

solution in the frequency domain and see how the relaxed flow approximates the direct
flow.

It is easy to see that the steady state of these equations (ut =0,vt =0) is: u=f ,
v = q

λ . It remains to analyze the behaviour of the flow for suitable f , and to show
that the solutions converge to this steady state, which we will do in the linear case
below. A general convergence proof by Lie and Nordbotten [19], which can apply for
general convex J and L2 squared fidelity term, is discussed in the next section.



14 NONLINEAR INVERSE SCALE SPACE METHODS

We examine the second order in time formulation (5.11). In the linear case the
subgradient is unique and given by p=−∆u, and ∂uH(f,u)=u−f . The flow can be
written as:

∂ttu+(∆+λ)∂tu+λαu=λαf, (6.1)

where u|t=0 =0,ut|t=0 =λf .
We rewrite the flow in the frequency domain (with variable ξ), which is obtained

by taking the Fourier transform. The characteristic equation is r2 +(λ+ |ξ|2)r+αλ=
0, with the solutions

r± =
−(λ+ |ξ|2)±

√

(λ+ |ξ|2)2−4αλ

2
. (6.2)

Using the Taylor approximation
√

1+x≈1+ x
2 , x�1, one can approximate (for fre-

quencies for which |ξ|4�αλ)

r±≈
−(λ+ |ξ|2)(1±(1− 2αλ

(λ+|ξ|2)2 ))

2
, (6.3)

obtaining two roots with different characteristic behavior: r+≈−(λ+ |ξ|2), r−≈
−αλ

λ+|ξ|2 . The Fourier transform of the solution is

U(ξ)=(c+er+t +c−er−t +1)F (ξ) (6.4)

where c+ =
λ+r−
r+−r−

, c− =
λ+r+

r−−r+
.

We observe that the first part, containing r+, corresponds to a Gaussian convolu-
tion, which decays rapidly with time. The second part, containing r−, corresponds to
the inverse scale-space solution (with time rescaling by λα) which we actually want
to solve. Our numerical results indicate that this kind of behavior extends to the
nonlinear process.

From (6.2) we see that for both parts to have decaying exponential solutions (real
valued r±) we should require α≤ λ

4 . In the numerical experiments below we set α= λ
4 .

6.2. ROF Model
The ROF (TV -L2) model is a natural choice for image regularization since the

solution of the flow results in sharp and clean approximations of the input image f
without introducing noise (or fine-scale textures in the case of decomposition) up to
a very large time.

6.2.1. Convergence to Steady-State
In order to analyze the convergence behaviour we define the following energy

e(t)=
1

2λ
‖u−f‖2

2 +
1

2α
‖v− q

λ
‖2
2, (6.5)

where q∈∂J(f) is assumed to be an element of L2 (this is again a source-condition on
the data). Under this assumption, the following convergence property was elegantly
proved by Lie and Nordbotten [19]:
Proposition 2. Let u(0), v(0) be an initial value such that e(0)<∞, and let u(t),
v(t) be the solution of (5.14) with λ>0, α>0. Then, the energy e(t) decreases mono-
tonically. Moreover, there exists at least a subsequence tk →∞ such that

‖f −u(tk)‖→0, D(f,u(tk))→0, D(u(tk),f)→0. (6.6)
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Proof. We just compute the time derivative of the energy and insert the evolution
law to obtain

de(t)

dt
=

1

λ
〈u−f,ut〉+

1

α
〈v− q

λ
,vt〉

=
1

λ
〈u−f,−p(u)+λ(f −u+v)〉+ 1

α
〈v− q

λ
,α(f −u)〉

=−‖f −u‖2− 1

λ
〈f −u,q−p(u)〉

=−‖f −u‖2− 1

λ
(D(f,u)+D(u,f))

≤0,

which implies the monotone decrease. Moroever, by integrating the last inequality
with respect to time from 0 to t we have

∫ t

0

(

‖f −u(s)‖2 +
1

λ
(D(f,u(s))+D(u(s),f))

)

ds≤e(0).

From the uniform bound for the integral we deduce the existence of a subsequence
tk →∞ such that

‖f −u(tk)‖2 +
1

λ
(D(f,u(tk))+D(u(tk),f))→0,

and since the latter is the sum of three positive sequences, each of them converges to
zero.

Note that we slightly changed the original proof from [19] by using the sum of two
Bregman distances (just prior to the final inequality), and it is clear that the result
holds for any convex functional J . By this proposition it is clear that {u=f, v = q

λ}
is the only steady-state solution of (5.14).

6.2.2. Initial conditions

We also note that the flow can be extended to arbitrary initial conditions, and
we expect a similar behaviour for large time. Therefore, we would like to illustrate
two examples of the flow when u(0) is non-zero. In Figure 6.1 we present instances
of the flow from three very different initial conditions u(0), with v(0)=0. In the top
row we use the standard initial condition of the inverse scale space flow u(0)=0 (the
mean value of the original image is subtracted beforehand and added back after for
visualization). The two other initial conditions are white Gaussian noise (with zero
mean) in the second row and u=f in the bottom row. All three flows converge to
the input f . It appears that after some time (see third column t=80) the evolution
is fairly similar regardless of the initial condition. In Figure 6.2 the L2 distance to
the the steady states of u and v and the joint energy e (Eq. (6.5)) are plotted as a
function of time for all three cases of the above initial conditions. Note that e(t) is
monotone in all three cases. Naturally, for the case u(0)=f we have that ‖u−f‖2 is
not monotone.

Due to the multiscale interpretation of the flow we will however use zero initial
value in most computational examples, and in particular in the case of noise it is much
more reasonable to start with zero than with the noisy image.
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t=0 t=20 t=80 t=200 t=1000

Fig. 6.1. Evolution of u towards a clean image f with different initial conditions. Top u(0)=0,
second row u(0)=n (white Gaussian noise), bottom: u(0)=f . [v(0)=0, λ=0.02, α=λ/4].

6.2.3. The parameters α and λ

We have seen above that α corresponds to a time rescaling only, and both the
relation to the original model and the convergence proof hold for any positive α. This
allows more freedom in selecting the parameters but raises the issue of what values
of α are preferred. The linear analysis shows that we have complex modes for α> λ

4
which causes oscillations in the convergence. A similar phenomenon occurs for the
TV -L2 case in the analysis of the disk evolution (see Section 6.2.5), where we have
the same bound on α for monotone convergence. We show in Figure 6.3 numerically
that the value of α has a similar effect also when a much more complicated image is
evolved, such as the Cameraman image. In Figure 6.4 a somewhat extreme example
is shown where α=16λ (that is, 64 times larger than the upper bound). Though
eventually the flow converges (as seen in the corresponding plot in Figure 6.3), it
is highly non-monotone. It is worth mentioning that even in this regime of α the
oscillations are in the contrast of the entire image and the details within the image
do not become oscillatory.

Note that the convergence to steady state is proved to be monotone only for u and
v jointly. From our experiments, it appears that the distance ‖u−f‖2

2 is decreasing
monotonically in most cases for zero initial conditions and α≤ λ

4 . We have been able
to produce rare synthetic cases where ‖u−f‖2

2 is not monotone. This happens for
very large features when λ is very large. However, from the relation to the inverse
scale space flow above, a smaller choice of λ seems more reasonable anyway.

The parameter λ has a similar role as in the standard variational minimization
in the sense that its value should be lower for noisier images or when larger features
are considered textures in decomposition. In Figs. 6.5 and 6.6 we show the denoising
flow (u and the residual f −u, respectively) with various values of λ. When λ is too
high (e.g. top row) small features, and consequently noise, get in too early. Very
low values of λ, such as in the bottom row (λ=0.005) produce very good results,
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Fig. 6.2. Distance from steady state as a function of time: u (left), v (middle) and the joint
energy e (right) for different initial conditions. Top u(0)=0, second row u(0)=n (white Gaussian
noise), bottom: u(0)=f .
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Fig. 6.3. ‖u−f‖2

2
as a function of time for different values of α: α∈{ 1

16
, 1

4
,1,4,16}λ. [Cam-

eraman image, u(0)=v(0)=0, λ=0.02].

though medium values can suffice for a good balance between performance and short
evolution time.

6.2.4. Complexity

The relaxed inverse scale space flow, in most cases, has about the same complexity
as the standard gradient descent to steady state approach of ROF. The rate of the flow
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t=10 t=20 t=40 t=80

Fig. 6.4. Example of an evolution with large α. u(t) (top) and f −u(t) (bottom) at times:
10,20,40,80, for α=16λ. [u(0)=v(0)=0, λ=0.02].

depends on λ and α and the evolution time monotonically increases with the values
of these parameters decreasing. For most applications, however, the implementation
is efficient enough and much faster than an equivalent series of Bregman iterations.
For the linear case of the direct inverse scale space flow, as shown in [28], we obtain a
step size of order one yielding stability, i.e., no severe restriction on large time steps.
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Clean image g Noisy image f

λ ‖u−f‖2

2
=10σ2 5σ2 2σ2 σ2

0.1

0.05

0.02

0.005

Fig. 6.5. Denoising with different values of λ. Top row: original image (left) and noisy
image (right). Second to fifth rows: u for the following values of λ: 0.1,0.05,0.02,0.005, respec-
tively. Each column, from left to right, depicts the following L2 norm of the residual part ‖u−f‖2

2
:

10σ2,5σ2,2σ2,σ2, respectively. [u(0)=v(0)=0, α=λ/4, σ =20].
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f −g

λ ‖u−f‖2

2
=10σ2 5σ2 2σ2 σ2

0.1

0.05

0.02

0.005

Fig. 6.6. Denoising with different values of λ. Top row: f −g, an instance of white Gaussian
noise (σ =20) which was added to the clean image. Second to fifth rows: f −u for the following
values of λ: 0.1,0.05,0.02,0.005, respectively. Each column, from left to right, depicts the following
L2 norm of the residual part ‖u−f‖2

2
: 10σ2,5σ2,2σ2,σ2, respectively.
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6.2.5. Disk example
Analyzing the evolution of a disk image can be very illuminating, since the char-

acteristic function f of a disk is a basic shape with respect to the TV semi-norm
(e.g. satisfies the source condition q∈∂J(f)∩L2) and in some cases allows a direct
computation of a solution (cf. e.g. [20] for the ROF model). As we shall see also for
inverse scale space methods in the following, this example can provide insight into the
multiscale properties of the flow, at least for piecewise constant images with smooth
discontinuity sets.

Here we will analyze both the direct and the relaxed flows (which are based on
the ROF energy).

For the sake of simplicity we shall restrict our attention to the case of Ω⊂R
2

being the ball of radius R0 . We start with the indicator function of height h and
rescale it to a function of mean zero in order to apply the above analysis, i.e., we
assume

f(x)=



















h

(

1− R2

R2
0

)

if |x|<R,

−h
R2

R2
0

else,

(6.7)

for h∈R and R∈ (0,R0). For convenience we shall use the notation c0 =1− R2

R2
0

and

without restriction of generality we shall assume that h>0.
Let us start with a simple property of subgradients of the total variation functional

at f :
Proposition 3. Let J :BV (Ω)→R be the total variation seminorm and let f be
defined via (6.7). Then the function p defined via

p(x)=















2

R
if |x|<R,

− 2R

c0R2
0

else,

(6.8)

satisfies p∈∂J(f).
Proof. It is straight-forward to compute

∫

Ω

p dx=0,

∫

Ω

pf dx=J(f)=2πRh.

Now let q be the unique solution with mean zero of the problem

−∆q =p in Ω, ∂nq =0, on ∂Ω.

By a simple computation in polar coordinates it is straightforward to see that

∇q = qr

(

x
√

x2 +y2
,

y
√

x2 +y2

)

,

with the scalar function

qr(x)=



















(

√

x2 +y2

R

)

if |x|<R,

− R

c0r

(

1− r2

R2
0

)

else.
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One observes that ‖∇q‖∞≤‖qr‖∞≤1 and hence, by the definition of the total vari-
ation functional

∫

Ω

p(u−f) dx=

∫

Ω

∇·(−∇q)u dx−J(f)

≤ sup
g,‖g‖∞≤1

∫

Ω

∇·g u dx−J(f)=J(u)−J(f),

which implies that p is indeed a subgradient.
This result shows that the subgradient has the same structure as f , namely p a

piecewise constant function with discontinuity at the circle with radius R and p has
mean zero. This motivates to look for solutions of the form

(u(x,t),p(x,t),v(x,t))=

{

c0(u1(t),p1(t),v1(t)) if |x|<R,

(c0−1)(u1(t),p1(t),v1(t)) else.

We start with the original inverse scale-space method, where the above Ansatz yields
the ODE

dp1

dt
(t)=h−u1(t), p1(0)=u1(0)=0.

By the same technique as in the proof of Proposition 3 it is easy to see that for
|p1|≤ 2

Rc0
, p∈∂J(0). Thus, in the initial phase of the evolution, where p1 is still small

we will always have u≡0 and p∈∂J(0)=∂J(u). We denote this time interval by
(0,t1) and look for a solution with u≡ 0 for t<t1. This means that

dp1

dt
(t)=h ⇒ p1(t)= th.

Since by the above argument we need |p1(t)|≤ 2
Rc0

for t≤ t1, this yields

t1 =
2

Rc0h
, (6.9)

and by a simple integration

p1(t1)= t1h=
2

Rc0
.

From Proposition 3 we obtain that p(t1)∈∂J(f) and hence, we can continue the
solution via p1(t)=p1(t1) and u1(t)=h (and thus u(.,t)=f) for t>t1, which is clearly
a solution since

dp1

dt
(t)=f −u1(t)=0, p(t)∈∂J(f)=∂J(u(.,t)).

Hence, we have found a solution for the original flow in this way, and in particular
the reconstructed image satisfies

u(.,t)=

{

0 t<t1,

f t>t1.
(6.10)

This means that after an initial time interval of length t1, where the image remains
zero and just the dual variable p grows, the reconstruction suddenly jumps to the
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correct image f and remains constant afterwards. The length of the time interval t1
needed to obtain the correct image also gives an indication of the multicale properties
of the model. Note that the scale of the image can be characterized by the product of
radius and height, i.e., by Rh. Our analysis shows that t1 is inversely proportional to
Rh (note that c0 is of order 1 if R0 is sufficiently large) and hence, larger scales appear
faster than smaller ones. This property can be seen as the fundamental reason why
the inverse scale space method is a good denoising technique, since it first reconstructs
the large scale features and only later the very small scale ones (which are usually
caused by noise). An appropriate stopping rule as the one proposed above will ensure
that the flow is stopped before too small scales enter.

It is rather straight-forward to extend the above reasoning to the relaxed inverse
scale space method. If we look for an initial time period (t<t1) where u≡0, then we
are led to the ODE (with the above notation):

dv1

dt
=αh, p1 =λ(h+v1), p1(0)=v1(0)=0.

Hence, v1(t)=αht and p1(t)=λh(1+αt). We know that p∈∂J(0) if |p1|≤ 2
Rc0

, which
means that we obtain

t1 =

{

2−Rc0hλ
αλRhc0

λ≤ 2
Rhc0

,

0 otherwise.
(6.11)

Note that as λ→0, we obtain the same value for αλt1 as for the critical time t1 in
the original flow, Eq. (6.9) (the additional factor αλ corresponds again to the time
rescaling discussed before). In the second phase (t>t1) we know that p1 = 2

Rc0
and

therefore we can write the evolution as the coupled system

dr

dt
(t)= q(t)−λr(t),

dq

dt
(t)=−αλr(t) (6.12)

with r(t) :=u1(t)−h and q(t) :=λv1(t)− 2
Rc0

. The eigenvalues of this linear dynamical
system are given by

e± =−λ

2
± 1

2

√

λ(λ−4α).

Similar to the linear analysis, in order to have solutions with real roots we require
λ≥4α.

In the case of unbounded domain R0→∞ and having α= λ
4 , the solution of the

disk problem for the relaxed flow is

u(x,t)=

{

0, 0≤ t≤ t1
(

−(λh
2 (t− t1)+h)e−(t−t1)λ/2 +h

)

f(x), t1 <t<∞ (6.13)

with t1 as defined in (6.11). We will use this simple equation as a reference in the
following numerical experiment.

6.2.6. Disk Numerical Experiment
Below we display the results of a numerical experiment of an evolution of a disk.

The disk radius is R=10 and its height is h=1. The evolution is for t∈ [0,125]. For
simplicity, in order not to implement a circular domain, we take a large rectangular
Ω and use the model for R0→∞, c0→1. For λ=0.12,α= λ

4 the disk should start to
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appear at t1 =22.2. In Figure 6.7 the original disk f and u(t) at some time along the
evolution (t=50) are shown. In the image of u we also super-imposed a cross-section
at the center of the disk and the center point of the disk, for which the values are
plotted (Figure 6.8). In Figure 6.8, left, the values of a cross-section of the disk are
plotted for 40 equally spaced time points. On the right of Figure 6.8 the theoretical
model of equation (6.13) (dashed, red) is compared to the simulation at the central
point of the disk u(xp,yp,t) (solid, blue). In our case the mean value is not zero (here
the domain is 100×100 pixels and therefore the mean value is approximately π

100 ).
Therefore the initial condition u(x,y,0) (plotted in dashed line near 0) is different
than Eq. (6.13). Apart from that, the evolution is quite faithful to the model.

f u(t=50)

Fig. 6.7. Disk evolution: f (left) and u (right). The brighter line and point in u show which
values of u are plotted in Figure2.
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Fig. 6.8. Disk evolution. Left: plots of a cross section of u at equally spaced time points. Dashed
- cross section of f . Right: comparison between the simulation (solid, blue) and the theoretical model
(dashed, red).

6.2.7. The Initial Phase for General Images
In the following we are going to extend the results for the disk to general images,

at least the behaviour in the initial stage. We assume that f ∈L2 is a function with
mean zero. Following Meyer [20] we define the G-norm (the dual of the total variation
norm for functions with mean zero) as

‖u‖G := inf
∇·g=u

‖|g|`2‖∞.
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Then we can use a characterization of subgradients obtained in [20] namely that
p∈∂J(0) if and only if ‖p‖G ≤1. Thus, we immediately obtain the following general-
ization of the behaviour in the initial phase
Theorem 6.1. Let f 6=0 be as above and let t1 = 1

‖f‖G
. Then each solution (u,p) of

(3.3) satisfies

u(.,t)≡0, p(.,t)= tf, for t<t1.

Moreover, t1 is maximal with this property, i.e., u(.,t) is not identically 0 for t>t1.
Proof. For t<t1 we obtain that p(.,t)∈∂J(0) from the above reasoning and one

easily checks that (u,p) defined as above is a solution of (3.3). Now assume that t1
is not maximal, i.e., u≡0 in the time interval (0,t2) for t2 >t1. Then from (3.3) we
obtain p= tf , but p(.,t) /∈J(0) for t>t1 a contradiction. Hence, u is not identically 0
at least in the time interval (t1,t1 +ε) for some ε>0. Since we know that the residual
‖f −u(t)‖ is non-increasing in time (see Section 3.2), we deduce

‖f −u(t)‖L2 ≤‖f −u(s)‖L2 <‖f −0‖L2

for t>s and s∈ (t1,t1 +ε). Hence, u 6=0 for all t>t1.
Note that all computations of subgradients in the disk example were implicitly

computing the G-norm of the functions f and 0, so this generalization is not com-
pletely surprising.

We can also give a multiscale interpretation of Theorem 6.1. We can have f
scaled such that ‖f‖L2 =1. These properties can always be achieved by rescaling for
f different from a constant (and if f is constant the inverse scale space method and its
relaxed version are both stationary at the correct image anyway). We can write then

t1 as the ratio t1 =
‖f‖

L2

‖f‖G
which actually can be considered as a definition of scale.

Since the L2-norm is stronger than the G-norm, it will be large for high frequency
(small scale) features and small for low frequency (large scale) ones. This again
explains to some point why large scale features are incorporated earlier than small
scale ones. We also mention that by a standard inequality for dual norms (cf. [20,
p.32]) we have for ”clean images” f ∈BV (Ω)

t1 =
‖f‖L2

‖f‖G
≤ J(u)

‖f‖L2

,

which yields a similar interpretation of scales in terms of the ratio of total variation
and the L2-norm. E.g. in the disk example above one obtains equality in these ratios
as R0→∞ .

In the following proposition we state the analogue property which holds for the
relaxed flow:
Proposition 4. Let f 6=0,

∫

Ω
fdΩ=0, λ‖f‖G ≤1 and let t1 = 1−λ‖f‖G

αλ‖f‖G
. Then each

solution (u,v) of (5.14) satisfies

u(.,t)≡0, v(.,t)=αtf, for t<t1.

Proof. Let us define the following energy E(t) :=J(u)+ λ
2 ‖f +v−u‖2

L2 . Then the
flow of u in (5.14) can be viewed at each time point as a steepest descent of this
energy.
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Using the decomposition result of [20] (p. 32) and the condition λ‖f‖G ≤1 we
can verify that the initial condition u(0)=0, v(0)=0 at time t=0 is a stationary
point, where the energy E(0)=J(0)+ λ

2 ‖f‖2
L2 is minimal. Therefore ∂tu|t=0 =0 and

consequently u|t=0+ =0. By a similar argument u will stay zero as long as λ‖f +v‖G ≤
1. Solving for v we have a simple ODE d

dtv =αf , yielding v(t)=αft for t∈ (0,t1).
This evolution is valid until at some time t1 we have

λ‖f +v(t1)‖G =1.

As f 6=0, ‖f +v‖G =‖f‖G(1+αt) is increasing with time and this equality will be
reached in a finite time.

Note that as in the disk example, we can obtain the time of appearance t1 of the
direct solution (stated in Theorem 6.1) by multiplying the expression for t1 of the
relaxed flow by αλ and letting λ→0.

7. Numerical Results

In this section we present some numerical examples. We show an example of a
1D problem solved by the direct inverse flow (Section 4) and by the relaxed inverse
flow (Section 5, Eq. (5.14)) in order to test and compare their behavior. The 1D
example reveals a striking resemblance of the direct and relaxed processes, which well
justifies our interpretation of the relaxed flow as a good approximation of the direct
flow. Motivated by the agreement between the one-dimensional results, we proceed
by processing images using the relaxed flow.

We focus on denoising by ROF-based flows. A single example of image decompo-
sition by the TV −L1-based flow is also given (Eq. (5.15)). Further generalizations
and experiments with other J and H functionals are currently studied and will appear
elsewhere.
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clean g

100 200 300 400

−100
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0

50

noisy f, SNR=12.5

100 200 300 400
−20

−10

0

10

20

noise n, σ=10

Fig. 7.1. 1D signal denoising. From left to right: clean signal g, noisy signal f (SNR=12.5);
Gaussian noise n, σ =‖n‖L2 =10.

Example 1 (1D signal): We first consider a 1D denoising problem. Fig. 7.1
shows the clean signal g, the noisy signal f and the Gaussian noise n (σ =‖n‖L2 =
10≈ 1

4‖g‖L2). Fig. 7.2 shows the solutions u obtained by ROF, the direct inverse flow
(DISS) and the relaxed inverse flow (RISS). Fig. 7.3 shows a comparison between
these solutions at a region (180,220). The typical signal loss can be observed in the
result of ROF, and, as expected, the loss is much smaller for the inverse scale space
flows. The signal-to-noise-ratio (SNR) of the inverse flow results (21.94 and 21.95) are
also much higher than that of ROF (17.7). This supports our theoretical arguments
(see Proposition 1 and the following discussion) that the inverse TV flow yields better
restorations than the original ROF model.
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Fig. 7.2. 1D signal denoising. From left to right: restored signal u from ROF, the direct
inverse flow (DISS) and the relaxed inverse flow (RISS). SNR: ROF(u)=17.73, DISS(u)=21.94,
RISS(u)=21.95.

180 190 200 210 220
−100

−80

−60

−40

−20

0

20
g
ROF
DISS
RISS

Fig. 7.3. 1D signal denoising. Comparison between the solutions u from ROF, DISS, RISS
(part, at (180,220)).

In Fig. 7.3 the three solutions are plotted on the same grid, where the direct and
relaxed solutions virtually coincide although the flows’ equations and their implemen-
tations are very different. Both SNR results are also almost identical. This validates
our view of the relaxed flow as a faithful representation of the direct one.

We choose ε=h=1 for all three experiments, which is a relatively large value, due
to the sensitivity of DISS to numerical errors for small ε. Moreover, we used λ=0.01
for ROF, ∆t1 =10−9 for DISS, λ=10−4,∆t2 =0.5 for RISS. The difference of ∆t in
the two inverse flow experiments are only due to the different scaling.

Example 2 (Synthetic test image): We now turn to the denoising of 2D
images. In this example we consider an image with different scales and shapes and
corrupted by Gaussian noise, which is shown in Fig. 7.4. SNR(f)=7.4,σ =‖f −
g‖L2 =40. Fig. 7.5 shows the results obtained by ROF, iterated TV refinement
(Bregman ROF, cf. [23]) and relaxed inverse TV flow, column-by-column respectively.
The restoration result u, the corresponding residual part w=f −u and an enlargement
of part of w are displayed for each method. One observes that for the ROF model
visible components of the clean signal are contained in w (e.g. the small blocks and
grids) whereas almost no trace of the signal is visible in the other two models. Our
proposed method reaches the best SNR results: SNR(u)=9.9,11.8,12.5, for ROF,
iterated refinements, RISS, respectively.

Natural images are being processed in the next three examples.
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Fig. 7.4. 2D shape image. From left to right: original image g; noisy image f (SNR=7.4);
Gaussian noise n (σ =40).

Fig. 7.5. 2D shape image. Denoising results. From top to bottom: denoised u, residual w =
f −u and part of w from ROF, Bregman ROF and RISS (column-by-column). SNR : ROF(u)=9.9,
Bregman(u)=11.8, RISS(u)=12.5.

Example 3 (Cameraman):. In Fig. 7.6 we compare denoising of the Camera-
man image by ROF and RISS. Our proposed method retains great contrast, which is
most visible in the residual part f −u (bottom row), where the coat, tripod and cam-
era details are much less degraded. Both methods have the same L2 norm residual,
‖f −u‖L2 =σ. SNR results, ROF: 15.76, RISS: 16.42.

Example 4 (Sailboat): In Figs. 7.7 and 7.8 another comparison is made be-
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g f

uROF uRISS

f −uROF f −uRISS

Fig. 7.6. Cameraman image (σ =20, SNR=9.89). Top row: clean image g (left), noisy image
f (right). Second row: denoised image u by ROF, SNR=15.76 (left) and by the proposed inverse
flow, SNR=16.42 (Eq. (5.14), right). Third row: corresponding residual parts f −u. [λ=0.01].

tween ROF and RISS. Here it is very clear that thin lines, which get eroded by ROF,
are better preserved by our method (e.g. the poles and the number on the sail). Again,
in both methods we have ‖f −u‖L2 =σ. SNR results, ROF: 11.43, RISS: 11.98.

In Fig. 7.9 some more information on the evolution of Examples 3 and 4 is given.
Three performance criteria which measure the closeness of u to the clean image g are
shown as a function of the evolution time. In the first row the SNR is plotted (which is
based on the L2 distance), the second row depicts the L1 distance, ‖g−u‖L1 , and the
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g f

Fig. 7.7. Sailboat image (σ =20, SNR=4.40). Clean image g (left), noisy image f (right).

third row depicts the Bregman distance D(g,u). The SNR and the Bregman distance
are both monotonically approaching g. In the fourth row the L2 convergence of u to
the noisy image f is plotted as a function of time. One can observe that ‖f −u‖L2 is
monotonically decreasing in time and it is straightforward to select a stopping time
based on the discrepancy principle.

Example 5 (TV +L1 Decomposition, Barbara): In Fig. 7.10 it is demon-
strated that our method can work very well also for decomposition purposes. Eq.
(5.15) is evolved in order to separate a clean image f into its geometrical part u and
its textural part w=f −u. The stopping time in this case was chosen manually. We
note that qualitatively similar results were obtained within quite a large evolution du-
ration, therefore it seems that the process is not sensitive to a very specific choice of
the stopping time in order to obtain meaningful decomposition results. Further study
of this evolution and comparison to other decomposition methods will be published
elsewhere.
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uROF uRISS

f −uROF f −uRISS

Fig. 7.8. Sailboat image (cont’). Top row: denoised image u by ROF, SNR=11.43 (left) and
by the proposed inverse flow, SNR=11.98 (Eq. (5.14), right). Bottom row: corresponding residual
parts f −u. [λ=0.01].
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Fig. 7.9. Performance and convergence plots as a function of time. From top: SNR(u),
‖u−g‖L1 , D(g,u), ‖u−f‖L2 . Left - Cameraman image, right - Sailboat image.
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Fig. 7.10. Decomposition of part of Barbara using TV −L1 inverse flow, Eq. (5.15). Top:
original. Bottom: geometric part u (left), textural part f −u (right). [λ=0.02].
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8. Discussion and Conclusion

Two new types of nonlinear processes are presented in this paper for image simpli-
fication and regularization. Both extend the Bregman iterations procedure introduced
in [23] to a continuous formulation, creating stable flows going from a zero signal to
the input image.

Two basic characteristics distinguish these flows from the various variations of
forward linear and nonlinear scale-spaces (e.g. [2, 14, 18, 25, 32, 33]): First, the flows
advance in the inverse direction from the most simplified image (zero or mean value)
to the most detailed image (input image). This allows fast denoising of large objects,
which appear very early in the evolution. Second, the flows are based on both energy
terms - the regularization term J(u) and the fidelity term H(u,f). This is different
from forward scale space methods which, at least in some cases, can be viewed as
steepest descent flows of the regularization term J(u). Thus it is possible to construct
new PDE-based evolutions for problems which until now were solved primarily in the
variational setting. For example, one may evolve a deconvolution scale-space (with
H = 1

2‖f −Ku‖2
L2) or to have a flow based on the L1 fidelity term for removal of

impulsive noise or for structure-texture decomposition [10, 22, 34]. Other types of
fidelity terms may be considered in the future, for instance ones based on the G-norm
[3, 20, 31], H−1 norm [24] or on Gabor functions [4]. A scale-space, as opposed to
the variational setting, naturally introduces a continuous set of solutions. Whereas
for denoising usually a single solution is selected, for decomposition or segmentation
purposes several solutions may be preferred, understood as a multiscale representation
of the input image.

The proposed direct inverse scale space flow is based on evolving in time the
subgradient of the regularized image u. Various theoretical properties are shown
concerning the convergence of the flow to the input f . Moreover, the monotonic
approach of u to the clean image g (in the Bregman distance sense) is proved as long
as the L2 norm of the residual is larger than that of the noise. This well justifies
theoretically the use of a discrepancy principle as a stopping criterion. To the best of
our knowledge, no similar property is available in any forward scale-space evolution.
We have presented a way to compute the direct flow in one dimension.

The relaxed inverse scale space flow can be viewed as either two coupled equa-
tions which are first order in time or as a single second order in time PDE. Its imple-
mentation is very standard and can be achieved by applying the ordinary numerical
techniques used in variational minimizations. Although further theoretical study is
needed we have shown the similarity of the relaxed flow to the direct flow for small
λ (after time rescaling). Numerical solutions in one dimension (in which both flows
could be computed and compared) indicate a very high degree of similarity of the
flows. Convergence of the relaxed flow to the input image f was proved by colleagues
[19]. The flow produces excellent denoising results and retains very good contrast
of larger objects (in some cases contrast may be even slightly enhanced). An open
question concerning the relaxed flow is whether in some sense u approaches the clean
image g (as shown for the direct flow). The numerical indications are promising. We
are also investigating other types of inverse scale-space equations.
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