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Abstract

Error minimization of global functionals provides a natural setting for analyzing image
processing and regularization. This approach leads to scale spaces, which in the continuous
formulation are the solution of nonlinear partial differential equations. In this work we derive
properties for a class of inverse scale-space methods. The main contribution of this paper is
the development of a proof that the methods considered are convergent for convex regulariza-
tion operators. The proof is based on energy methods and the Bregman distance. Further,
estimates for convergence toward a clean image with noisy forcing data is provided in terms of
both the L2 norm and Bregman distances. This leads to natural estimates of optimal stopping
scale for the inverse scale space method. These analytical results are discussed in the context
of a numerical example.

1 Introduction

During the last two decades, variational image
processing using partial differential equations
has been intensively studied (see e.g. [2, 7]).
One common task is noise removal or regular-
ization, i.e from noisy data f = g + η, with η
representing noise, one would like to reconstruct
the underlying data g. This task can be handled
by solving the minimization problem

min
u
{J(u) + λH(f, u)}, (1)

where J(u) is a convex regularization func-
tional, and H(f, u) is a convex fidelity functional
[6, 15, 20]. The variable u is defined as a func-
tion of the image coordinates and time through-
out. In Section 3 we will show J and H com-
monly encountered in applications.

A minimum of (1) is the steady-state of the
partial differential equation

∂tu = −∂uJ(u) + λ∂uH(f, u), (2)

with u(x, t) = f for t = 0. [6, 15, 20]. Through-
out this paper ∂x will refer to the derivative (for
functions) or subgradients (for functionals) with
respect to the variable x. Thus ∂uJ and ∂uH
denote elements of the subgradients (or general-
ized gradients) of J and H respectively [1, 17].

For convex functionals, this system is known to
approach a steady state as t → ∞, which leads
to a sequence {uk}N

k=1, where uk is gradually
more regular for increasing k. The notion of
regularity however depends on both J and H
[6]. Note that if λ = 0 in Equation (2), the set
of images {uk} is said to form a scale space, with
t as the scale [2, 21].

Recently, methodology from the inverse
problem community has been used to construct
inverse scale spaces [4, 5, 14, 22]. These scale
spaces are highly related to Tikhonov type
of regularization of ill-posed inverse problems
[12, 13]. The idea as devised in [4, 5] is to con-
struct a sequence of images uk by solving the
constrained partial differential equation

∂tp = −∂uH(f, u), p ∈ ∂uJ(u), (3)

with a constant initial condition u0. For this
system it can be proved that limk→∞ uk = f ,
and one may choose K in such a way that uK is
a regularized version of f [4]. We will later refer
to this method as the direct inverse scale space
method.

Inverse scale spaces for image denoising were
motivated by Lysaker, Osher and Tai in [16].
Later, iterative refinement techniques have been
studied in a large number of works including
[18, 19]. While the direct inverse scale space
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has many desirable theoretical properties, it is
difficult to compute numerically, particularly in
higher dimensions [4].

An interesting numerical method for inverse
scale space modeling called relaxed inverse flow
was devised in [5]. This method approximates
the solution to Equation (1) by solving the cou-
pled system of constrained partial differential
equations

∂tu = −p(u) + λq(f + v, u)
∂tv = αq(f, u) (4)

with p ∈ ∂uJ(u) and q ∈ ∂uH(f, u). The scalar
function v is dependent on the image coordi-
nates and time.

The system of equations (4) has the obvi-
ous advantage over Equation (3) that the time
derivative appears on the primary variables u
and v of the image, which are more regular than
the subgradient p. The model numerically han-
dles the challenging case of Total Variation flow,
but convergence of the method was proved only
when p is linear [4]. In this paper we prove
that the relaxed inverse flow in fact is conver-
gent for a class of linear and nonlinear operators,
using energy-methods and Bregman distances
[3, 8, 10]. In the context of image regulariza-
tion, the Bregman distance has previously been
used in numerical computations [19]. We con-
tinue by providing estimates of the behavior of
the flow toward the unknown clean image, which
leads to stopping criteria for the method. These
stopping criteria are compared to the Discrep-
ancy Principle commonly used in applications.
Further, in Section 3 we extend the numerical
investigation of the relaxed inverse flow before
we conclude the paper in Section 4.

2 Convergence Estimates of
the relaxed inverse flow

In this section we first prove convergence of the
flow using energy methods and Bregman dis-
tances [3, 8, 10]. Subsequently, we give esti-
mates for the solution of equations (4) to the
clean image.

2.1 Convergence to the forcing
data

The relaxed inverse flow corresponding to the
minimization problem (1) is stated in equations

(4). If we fix the functional H = 〈f, u〉 as the
L2 inner product of f and u then we have the
subgradient q(f, u) = ∂uH(f, u) = f − u, and
Equations (4) have the stationary solution

u = f, (5)

v =
p(f)
λ

. (6)

Previously it has been shown that the flow in
Eq. (4) converge to this steadystate solution for
linear p [4, 5]. To show that u and v converge
to the stationary solution for a more general p
we will first derive an energy for the system (4).
Multiply equations (4) with test functions ωu

and ωv, (ωu, ωv ∈ C∞0 ) and integrate over the
domain:

∫

Ω

ωuutdx =
∫

Ω

[−p(u) + λ(f + v − u)]ωudx, (7)

∫

Ω

ωvvtdx = α

∫

Ω

(f − u)ωvdx. (8)

Where throughout this section p(u) = ∂uJ(u).
Define the deviations from the stationary solu-
tions as:

ũ = u− f, (9)

ṽ = v − p(f)
λ

. (10)

Inserting equations (9) and (10) into equa-
tions (7) and (8) while choosing ωu = ũ/λ and
ωv = ṽ/α we obtain:

1
λ

∫

Ω

ũũtdx =
∫

Ω

[
p(f)− p(u)

λ
− ũ + ṽ

]
ũdx, (11)

1
α

∫

Ω

ṽṽtdx = −
∫

Ω

ũṽdx. (12)

We sum these equations to eliminate the mixed
term, and get

∂te =
1
λ

∫

Ω

[p(f)− p(u)]ũdx−
∫

Ω

ũ2dx, (13)

where the energy of the solution is defined as

e =
1
2

[
1
λ
‖ũ‖22 +

1
α
‖ṽ‖22

]
. (14)
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From the definition, e can never be negative,
and e = 0 if and only if u and v are equal to the
stationary solution. We are therefore interested
in the sign of the right hand side of equation
(13). We introduce the Bregman distance D in
terms of a functional J [8, 19]

D(u, v) = J(u)− J(v)− 〈∂J(v), u− v〉, (15)

The Bregman distance can be seen as the differ-
ence between J(u) and the first order approx-
imation to J(u) from J(v), and is thus non-
negative for continuously differentiable convex
J . It is however not a distance in the sense of
a metric. The triangle inequality does not hold,
and D is not symmetric. For a strictly convex J ,
D(u, v) = 0 implies u = v, but not for a general
J . The introduction of the Bregman distance
allows us to rewrite Equation (13),

∂te = −
(

1
λ

Ds(f, u) + ‖ũ‖22
)

. (16)

Here we have introduced the symmetric distance

Ds(u, v) = D(u, v) + D(v, u). (17)

The sum of the elements in the parenthesis on
the left hand side of Equation (16) are strictly
positive for u 6= f . Further, since e is bounded
below by zero, we have that as t →∞, the deriv-
ative of the energy must satisfy limt→∞ ∂te = 0.
Since both the elements in the parenthesis are
non-negative, they must tend to zero individu-
ally, and we have the following convergence re-
sult of the relaxed inverse scale space flow de-
fined by Equations (4) subject to the convexity
of the functional J .

Theorem 2.1. If p(u) is the continuous sub-
gradient of a convex functional J(u), then the
energy e as defined in Equation (14) will be
strictly decreasing. For initial conditions sat-
isfying e(0) < ∞, the energy will dissipi-
tate limt→∞ ∂te = 0, and in the limit both
‖f − u‖2 → 0 and D(f, u) → 0.

The operators p considered herein are sub-
gradients of convex functionals on the domain
of continuous functions. However, the require-
ment that e must be bounded places restrictions
on the admissible forcing data f .

2.2 Convergence to the clean im-
age in L2

The forcing data f consists of the clean image g
and noise η. Theorem 2.1 gives us proof of con-

vergence to the forcing data, however what we
are really interested in is the behavior in terms
of the clean data. In particular, if we have a
good estimate of the error ‖u−g‖2, this will pro-
vide us with a criteria for an optimal stopping
time t∗. We will now derive inequalities provid-
ing estimates for distances D(u, g), where the
distance D will in this section be the L2 norm,
and in the next section the symmetric sum of
Bregman distances defined above.

Define the deviation of u with respect to the
clean image g as

û = u− g, (18)

and the associated energy

E =
1
2

[
1
λ
‖û‖22 +

1
α
‖ṽ‖22

]
. (19)

The time derivative of this energy is obtained by
choosing ωu = û/λ and ωv = ṽ/α in equations
(7) and (8):

∂tE = ∂te +
∫

Ω

(
v − p(u)

λ
− ũ

)
ηdx (20)

≤ ∂te +
∥∥∥∥v − p(u)

λ
− ũ

∥∥∥∥
β

β−1

‖η‖β ,(21)

where we have used Hölder’s Inequality. We see
that in the last line the Lβ norm of the noise
appears. We will treat this as a known quan-
tity for some value of β. This is more formally
stated as

Corollary 2.2. If p(u) is the continuous sub-
gradient of a convex functional J(u), then the
energy E as defined in Equation 19 will be de-
creasing at least as long as

Ds(f, u) + λ‖ũ‖22
‖p(u) + λ(ũ− v)‖ β

β−1

≥ ‖η‖β ,

for all β ≥ 0.

For η = 0, Corollary 2.2 trivially reduces to
Theorem 2.1. Corollary 2.2 comes closer to giv-
ing information about the convergence to the
true image, however it does not provide us with
direct information about ‖û‖2. We can obtain
this information from Inequality (21) by insert-
ing the definitions of the energies e and E:

Corollary 2.3. If p(u) is the continuous sub-
gradient of a convex functional J(u), then the
L2 norm of the deviation from the true image
‖û‖2 satisfies

∂t‖û‖22 ≤ ∂t‖ũ‖22 + 2‖p(u) + λ(ũ− v)‖ β
β−1

‖η‖β .
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2.3 Convergence to the clean im-
age in the Bregman distance

For applications, it may be desirable to have an
estimate of the deviation u− g in the Bregman
distance Ds. This is also an interesting metric,
since it is known that D(u, g) is decreasing when
‖η‖2 ≤ ‖u − g‖2 for the direct model stated in
Equation (3) as shown in [4]. This property is
known as the Discrepancy Principle.

By definition, the time derivative of the
Bregman distance D(g, u) can be written as

∂tD(g, u) = −∂tJ(u)− ∂t〈p(u), u− g〉 (22)
= ∂tD(f, u) + 〈∂tp(u), g − f〉.(23)

By applying Hölder’s Inequality we can bound
the last term on the right hand side of the equa-
tion to obtain the following lemma

Lemma 2.4. If p(u) is the continuous subgra-
dient of a convex functional J(u), the Bregman
distance D(g, u) satisfies

∂tD(g, u) ≤ ∂tD(f, u) + ‖η‖β‖∂tp(u)‖ β
β−1

.

We have the equivalent derivation for the sym-
metric sum of Bregman distances

∂tDs(u, g) = ∂t[〈p(u) − p(g), u − g〉] = (24)

∂t[Ds(u, f)+〈p(f)−p(g), u〉+〈p(u), f−g〉].
(25)

By applying Hölder’s Inequality we can bound
the last term on the right hand side of the equa-
tion to obtain

Lemma 2.5. If p(u) is the continuous subgra-
dient of a convex functional J(u), the sum of
Bregman distances Ds(u, g) satisfies

∂tDs(u, g) ≤ ∂tDs(u, f)+
‖η‖β‖∂tp(u)‖ β

β−1
+ 〈p(f)− p(g), ∂tu〉.

The applicability of this lemma is depen-
dent on the availability of an approximation of
the last term. If we consider the linear case,
where p(u) = −∇2u = ∂ 1

2‖∇u‖22, we can for
∇(f − g) = ∂t∇u = 0 on ∂Ω simplify Equation
(25) such that we obtain

∂tDs(u, g) = ∂t[Ds(u, f) + 2〈p(u), η〉] (26)

≤ ∂tDs(u, f) + 2‖η‖β‖∂tp(u)‖ β
β−1

. (27)

For this special case we see that we obtain a
bound on the Bregman distance which only de-
pend on the Lβ norm of the noise. We thus have

Corollary 2.6. If p(u) is the continuous sub-
gradient of the convex functional J(u) =
1
2‖∇u‖22, the sum of Bregman distances
Ds(u, g) = D(u, g) + D(g, u) satisfies

∂tDs(u, g) ≤ ∂tDs(u, f) + 2‖η‖β‖∂tp(u)‖ β
β−1

.

2.4 Stopping criteria

It is of interest to obtain an estimate for t∗

defined such that ‖û(t∗)‖2 = mint∈<+ D(u, g).
Here the distance D refers to a distance mea-
sure of interest. Define t′ as the time when

∂tD(u, g) = 0. (28)

We may expect that t′ should be a good esti-
mate of t∗, where ∂tD can be estimated from
the preceding sections. However, as observed
by Burger et al [4], the both distances D = ‖ũ‖2
and D = Ds(u, g) may be oscillating such that
t′ is multivalued. They go on to show that for
idealized cases oscillations can be avoided for
parameters α and λ satisfying λ ≥ 4α. We here
point out that this can be seen directly from
equations (4) by considering them in zero spa-
tial dimensions. For this special case, the spatial
derivative vanishes, and the equations reduce to
a single second order equation in time

0 = ∂ttu + λ∂tu + λαu− λαf. (29)

We see from the characteristics of the equa-
tion that oscillatory solutions appear for λ < 4α.

The above discussion together with exten-
sive experiments, as well as the results reported
in [4] indicate that we can make the hypothesis

Hypothesis 2.7. There exists a critical value
of λ dependent on α and the choice of distance
D, denoted λc such that for all for all λ satisfy-
ing

0 < λ ≤ λc ≤ 4α (30)

the distance D will have at most one local min-
imum.

Under Hypothesis 2.7 and a choosing D
such that we can apply either Corollary 2.3,
Lemma 2.5, or Lemma 2.4 we choose to define
t∗ as the minimum value of the (still possibly
multivalued) variable t′.
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In Section 3, we refer to the stopping criteria
derived from Corollary 2.3 and Lemma 2.4 as
the L2 and Bregman criteria respectively. The
corresponding stopping times are denoted by t′L2

and t′D. We further compare with the stopping
time t′η of the discrepancy principle of the cor-
responding direct inverse scale space flow.

3 Numerical Implementa-
tion and Experiments

In this section we investigate the behavior and
show details of numerical implementation of a
specific realization of the relaxed inverse flow,
namely the relaxed inverse Total Variation (TV )
flow. After a short introduction to the TV de-
noising model, we show some essential proper-
ties of the relaxed inverse TV scale space. Then
we proceed to show numerical realizations of the
various stopping criteria introduced in section 2.

The TV (TV L2) model introduced by
Rudin, Osher and Fatemi is a model of great
importance in PDE image processing [20]. The
model has the property that it preserves edges,
but removes random oscillations and thus is
suitable for image regularization purposes, see
e.g [23]. Using this model, the regularization
functional from (1) reads

J(u) =
∫

Ω

|∇u|dx. (31)

The subgradient of J is given by

p(u) = −∇ ·
( ∇u

|∇u|
)

. (32)

We restrict ourselves to show details of the
numerical implementation of this flow in two
spatial dimensions. The generalization to higher
dimensions is however straight forward.

All derivatives are approximated using fi-
nite difference schemes. Superscripts denotes
iteration index, while subscripts denotes spa-
tial derivatives. P and Q denotes numerical
approximations to p and q respectively. Time
derivatives are approximated by forward Euler
schemes, while spatial derivatives are approx-
imated using forward and backward schemes
which jointly form central difference schemes in

a standard way.

P (un) = −D−
x


 D+

x un

√
(D+

x un)2 + (D+
y un)2 + ε




−D−
y


 D+

y un

√
(D+

x un)2 + (D+
y un)2 + ε


 , (33)

where ε is a regularization parameter. D+ and
D− denotes forward and backward differences in
the direction of the subscript. The finite differ-
ence schemes used here are consistent with the
schemes from [9]. For the fidelity-term we use

Q(f, un) = f − un. (34)

Thus the numerical scheme for the forward flow
can be written analogously as the equations (4)

un+1 = un + ∆t (−P (un) + λQ(f + vn, un))
vn+1 = vn + ∆tαQ(f, un) (35)

By appropriately changing the terms P and Q,
the scheme (35) can be used for other regular-
ization flows. In order to be consistent with the
theory introduced in section 2, we need to pick
P as a numerical approximation to the subgra-
dient of a convex functional J(u) and Q as the
L2 fidelity measure.

3.1 Basic properties of relaxed in-
verse total variation flow

We will first illustrate the basic properties of
the inverse scale space model. A more detailed
treatment over a wide range of examples can be
found in the papers by Burger et.al [4, 5]. In
all simulations shown herein, we initialize u as
the mean of f , and v = 0. This is a reason-
able initial condition on u, reflecting that we
are considering an inverse scale space method.
The initial condition is consistent with the pre-
sentation in [4]. We point out that this initial
condition (on u) corresponds to the steady state
solution (t = ∞) of the forward scale space flow
with λ = 0. In all simulations, we use the regu-
larization parameter λ = 1

10 , and motivated by
Hypothesis 2.7 we use α = λ

3 . Choosing an opti-
mal regularization parameter is not in the scope
of this paper, however we indicate that visually
better looking results can be achieved by tuning
the regularization parameter according to the
noise level in f , and apriori knowledge of the
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t = 0 t = 30 t = 40 t = 80

t = 120 t = 200 t = 240 f .

Figure 1: An illustration of the inverse scale space, with u evolving from the mean value of f at
t = 0 towards f at t = ∞.

actual problem that is solved. The size of the
regularization parameter should be somehow in-
versely proportional to the noise level. We do
not study the exact relationship between λopt

and ‖η‖2 in this paper, although optimal para-
meter selection is an important issue in regular-
ization methods. For a treatment on optimal
regularization parameter selection (although in
a forward setting), see [11].

In Figure 1, the relaxed inverse TV L2 model
is used for regularization of a noisy Magnetic
Resonance (MR) image. By studying Figure 1,
we see that the relaxed inverse scale space
method performs as intuitively expected, i.e
large scales are evolving into u earlier than small
scales. Note that u eventually converge to f
if no stopping criteria is enforced, as proved in
Section 2. By inspection of the time evolution,
as shown in Figure 1, we see that after some
time noise is beginning to evolve into the reg-
ularized image u. Therefore a stopping criteria
must be choosen in such a way that the flow will
stop at a time where u is more regular than f
and still close to g. Such stopping criteria were
discussed such stopping criteria theoretically in
Section 2.4, and we look at numerical realiza-
tions in the next subsection.

3.2 Optimal stopping criteria.

The relaxed inverse flow must be stopped at an
appropriate time in order to perform as a prac-
tical regularization method. In Section 2.4 a
set of stopping criteria are discussed. In the

current section we investigate how the theoret-
ically derived stopping criteria perform, both
in terms of stopping the flow at a time which
gives a visually appealing result, and in terms
of predicting the actual minimum of the corre-
sponding distance functions. In order to quan-
titatively compare the theoretical predictions t∗

to the numerical stopping times t′ we introduce
the notation [t] = t′/t∗. If [t] ≈ 1, the numer-
ical stopping time approximates the theoretical
stopping time well. In this section we discuss the
stopping criteria corresponding to approximate
minima of the distances D(g, u) and ‖g − u‖2
from Section 2. We also compare the proposed
stopping criteria with the commonly used Dis-
crepancy Principle stopping criterium, see e.g
[4].

In Figure 2 the MR image from Figure 1 is
processed with the relaxed total variation in-
verse flow. The norms ‖u − f‖2 and ‖u − g‖2
are not monotone, as expected from the discus-
sions in Section 2.4 and in the paper [4], since
λ < 4α. We show the result from stopping times
t′D,t′L2

and t′η corresponding to the stopping cri-
teria from Section 2.4. In order to differentiate
between the local and global minima of ‖u−g‖2
we denote the local minimum by t′

Lloc
2

. For this
specific application, we observe that the stop-
ping times satisfy t′

Lloc
2

< t′D < t′L2
< t′η, which

is investigated in more detail in Figure 4. We
immediately see that criteria t′D, t′L2

and t′η as
shown in Figure 2(b)-(d) respectively give sim-
ilar results, with only minute differences. Fur-
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ther, we find all the regularized images u(t′D),
u(t′L2

) and u(t′η) visually appealing.
The above discussion can be seen clearer

from Figure 3, where we have shown a profile of
the true image, together with the corresponding
profiles from Figure 2. In Figure 2(a) the tran-
sect shown in Figure 3 is indicated with a bright
vertical line. The difference between u(t′D) and
u(t′η) is also clearer in this image. In this specific
application the stopping time t′η seems better
than t′D.

To see the relationship between the differ-
ent stopping times depicted in Figure 4 we show
the energies of the system, together with vari-
ous stopping times. As expected, the energy e
of the system is always decreasing. Further, we
see that both ‖u− g‖2 and ‖u− f‖2 have local
minima, which is to be expected from the dis-
cussion surrounding Hypothesis 2.7. This local
minimum is the reason that the first L2 stopping
time is significantly earlier than those obtained
by considering the Bregman distance, i.e the im-
age is over-regularized.

The relationship between the optimal stop-
ping times and the approximate stopping times
is more clearly understood from Table 1. Here
we have given the ratio of approximate to opti-
mal stopping times [t]. As expected from Corol-
lary 2.3 and Lemma 2.4, we see that [t] is strictly
less than 1. From the exponential nature of the
solution revealed by Equation (29), we expect
that capturing the correct magnitude of t∗, will
produce good results. Therefore, it is encourag-
ing that for the example considered herein, t∗

is never more than two times t′, and indeed, as
discussed above, we see from figures 1 and 3 that
the solution changes little between the different
stopping times u(t′D) and u(t′η). This leads us
to conclude that the stopping criteria derived
herein have merit in practical applications.

4 Conclusion

In this work we have proved that the relaxed in-
verse flow given in Eq. (4) from [4, 5] is conver-
gent for convex regularization functionals, using
Bregman distances and the energy of the sys-
tem. Thus the flow comprises an inverse scale
space flow. The proposed energy e of Equation
(4) is decreasing for all u 6= f . Further, we
derive stopping criteria based on estimates of
the time derivatives ∂t‖u − g‖2 and ∂tD(g, u).
This makes it possible to stop the flow when u is

close to the true image, even if only an estimate
of the noise level is provided. Our numerical
experiments indicate that relaxed inverse scale
space methods are well suited for image regu-
larization purposes, and that the stopping crite-
ria derived herein, are applicable to real images.
For the images we have considered, the proposed
stopping criteria based on estimates of the min-
imum value of D(g, u) together with the stan-
dard Discrepancy Principle stopping criterium
have given the best results. However, a more
detailed analysis of optimal stopping times is a
topic for future research.
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(a) (b)

(c) (d)

Figure 2: A 2D slice of a noisy MR image (a) is denoised using the relaxed inverse flow. (b)-(d)
depicts u at stopping times t′D, t′L2

and t′η respectively. The bright vertical line in (a) indicates
the profile used in Figure 3.

Criterium t∗ t′ [t] = t′/t∗

D(g, u) 85 63.2 0.74
‖u− g‖loc

2 19,1 15,50 0.81
‖u− g‖2 110 61.2 0.56
‖η‖2 83.5

Table 1: Stopping times t′ estimated from the stopping criteria of Section 2.4 are compared with
the times t∗ corresponding to the true minima of the functionals involved.
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