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Abstract

Digital image restoration has drawn much attention in the recent years and a lot of research has
been done on effective variational partial differential equation models and their theoretical studies.
However there remains an urgent need to develop fast and robust iterative solvers, as the underlying
problem sizes are large. This paper proposes a fast multigrid method using primal relaxations. The
basic primal relaxation is known to get stuck at a ‘local’ non-stationary minimum of the solution,
which is usually believed to be ‘non-smooth’. Our idea is to utilize coarse level corrections, overcoming
the deadlock of a basic primal relaxation scheme. A further refinement is to allow non-regular coarse
levels to correct the solution, which helps to improve the multilevel method. Numerical experiments
on both 1D and 2D images are presented.
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1 Introduction

Image restoration is usually modelled by a minimisation formulation in a variational setting [2, 4, 15,
36, 1, 42]. The ill-posed nature of the inverse problem is dealt with by regularization techniques. The
most effective regularization technique is the so called total variation (TV) minimisation due to [36]. The
resulting nonlinear partial differential equation (PDE), via the Euler-Lagrange solution, has an interesting
coefficient (not defined near flat regions of the solution) which leads to convergence problems of many
iterative solvers. This paper is concerned with the basic TV model [36]; other models are reviewed in the
next section.

As far as solving the nonlinear PDE is concerned, the existing work on the topic falls into three
categories: (i). Fixed point iteration [1, 40, 43, 44, 41, 42, 35]. Once the coefficients are fixed, various
iterative solver techniques including multigrid methods have been considered [43, 44, 12, 13, 11, 29, 6, 20].
The robustness of a linear multigrid can be enhanced by algebraic multigrid methods (AMGs) [16, 5] but
AMGs are known to be expensive. Further improvements are still useful. (ii). Explicit time marching
scheme [36, 31] that turns the nonlinear PDE into a parabolic equation before using an explicit Euler
method to march in time to (slow) convergence. (iii). Primal-dual method [15, 14, 4] that solves for both
the primal and dual variables together in order to achieve faster convergence with the Newton method
(and a constrained optimisation with the dual variable). One observes that all these methods require a
small positive parameter β to avoid singularities in the PDE coefficient associated with flat regions of
the solution and consequently are sensitive to the parameter. In a recent work, recognizing that primal
relaxation alone does not work, Carter [7] tried the dual formulation that does not involve this parameter
and achieved some initial success with the so-called barrier (interior point) dual relaxation method.
Nonlinear multilevel methods for such problems only exist for a smoothed version of the underlying PDE
[21, 38] or a smoothed version of the underlying merit functional [30].

This paper proposes an alternative method to solve directly the image minimisation problem to the
PDE approach. The problems to overcome include the treatment of the non-differentiable functional
in the minimisation problem, by using local minimisation (and hence dimension reduction), and the
stagnation problem with the primal relaxation, by using coarse levels in a multilevel scheme. In Section
2, we introduce the image problem and the associated nonlinear equations before discussing some solution
methods. In Section 3, we present the primal relaxation method and the algorithmic development details
in a multilevel setting. In Section 4, we present some supporting numerical results for the denoising case.

2 Total variation regularization and solution

Denote by u = u(x, y) the true image and z = z(x, y) the observed image, both defined in the bounded
square domain Ω = [0, 1] × [0, 1] ⊂ R2. In practice, only z is only available in a discrete (matrix) form
[3, 19, 37]. The observed image z has been contaminated in data collection stage. The purpose of image
restoration is to recover u as much as we can using a degradation model

u− z = η, (1)

where η is a Gaussian white noise (unknown).
Image restoration is thus an inverse problem that may not have a unique solution. Some regularity

condition has to be imposed on the solution space in order to turn the underlying problem to a well
posed one [42]. We shall use the well known TV regularization to ensure that sharp features of an image
are preserved [36]. However we note that there are many other regularization functionals (beyond the
variational framework) that might be used; see [2, 28] and the references therein.
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Below we briefly review the common methodology to set out the context of our algorithm in next
sections. Following early work [15], we choose the Tikhonov direct regularization technique to solve the
inverse problem (1)

min
u

J(u), J(u) = αR(u) +
1
2
‖u− z‖22, (2)

where the regularization functional R(u) is selected as the TV-norm [36, 15]

R(u) =
∫

Ω

|∇u|dxdy =
∫

Ω

√
u2

x + u2
ydxdy. (3)

Here the parameter α represents a tradeoff between the quality of the solution and the fit to the observed
data. Thus the overall image restoration problem is the following

min
u

J(u), J(u) =
∫

Ω

[
α
√

u2
x + u2

y +
1
2
(u− z)2

]
dxdy (4)

or
min

u
α
∥∥∥|∇u|

∥∥∥
L1

+
1
2

∥∥∥u− z
∥∥∥

2

L2

. (5)

The theoretical solution to problem (4) is given by the Euler-Lagrange equation (assuming homoge-
neous Neumann boundary conditions and |∇u| 6= 0)

α∇ ·
( ∇u

|∇u|
)
− u = −z. (6)

For 1D problems Ω = [0, 1] with |du
dx | 6= 0, the above equation reduces to

α
d

dx

(∣∣∣du

dx

∣∣∣
−1 du

dx

)
− u = −z. (7)

Notice that the nonlinear coefficient may have a zero denominator in general i.e. the equation is not
defined at points where |∇u| = 0 (corresponding to flat regions of the solution).

A commonly adopted idea to overcome this apparent difficulty was to introduce (yet) another param-
eter β to (4) and (6) so the new Euler-Lagrange equation (regardless |∇u| = 0 or not) becomes

α∇ ·
( ∇u√

|∇u|2 + β

)
− u = −z, (8)

where corresponds to minimising, instead of (4),

min
u

Jβ(u), Jβ(u) =
∫

Ω

[
α
√

u2
x + u2

y + β +
1
2
(u− z)2

]
dxdy (9)

and in theory u = uβ(x, y) differs from u in (6). Observe that when β = 0 equation (8) reduces to (6);
moreover as β → 0, uβ → u as shown in [1].

As mentioned in the introduction, there are three main solution methods for solving equation (8) —
differing in how to deal with nonlinearities

• Fixed point iteration [1, 40, 43, 44, 41, 42]:
Solve a lagged diffusion problem until uk+1 − uk is small

α∇ ·
( ∇uk+1

√
|∇uk|2 + β

)
− uk+1 = −z. (10)

There exist a large literature on this topic, mainly due to wide interest in developing fast iterative
solvers for the above linear equations (once discretized). Further improvements on robustness of
these solvers are still needed.
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• Explicit time marching scheme [36, 31]:
The original idea in [36] was refined in [31] as solving the following parabolic PDE until a steady
state has been reached

ut = |∇u|
[
α∇ ·

( ∇u√
|∇u|2 + β

)
− u + z

]
. (11)

As remarked in [33], for linear problems, this type of ideas represents a kind of relaxation schemes.
The drawback may be the artificial time step ∆t must be small due to stability requirement.

• Primal-dual method [15, 14, 4]:
As discussed in [4], Newton method for equation (8) leads to very slow or no convergence because
z is often not a sufficiently close initial guess for u. Introducing the dual variable (vector) ω =
∇u/

√
|∇u|2 + β appears to have made the combined system

{ α∇ · ω − u = −z,

ω
√
|∇u|2 + β −∇u = 0.

in two variables (u, ω) more amenable to Newton iterations as the new system is nearly “linear”
in the two variables (as observed in [15]). Note that ω is constrained in each iteration step so the
overall algorithm needs some care in any implementation.

Remark 1 If one is contented with the system (8) with parameter β, the recommended approach is
the CGM although there is scope to realize the implementation more efficiently. A simple observation
of equation (6) reveals that there is nothing wrong with it in the sense that the equation is still “non-
singular” (though towards undefined) when nonzero |∇u| gets small as ω = ∇u/|∇u| is always bounded.
This suggests that it may not be an appropriate action to take in introducing the parameter β dependent
on the size of |∇u| which is a free gradient otherwise. For fixed point iterations, this point is more
pronounced since the ‘linearized’ PDE (10) has large coefficients near points where the solution is flat
(or less interesting!), creating somewhat “unnecessary” jumps in coefficients. See [26, 34] for theoretical
arguments on problems with including β.

Remark 2 Image denoising is related to the deblurring problem: z = Ku + η modelled by

min
u

J(u), J(u) = αR(u) +
1
2
‖Ku− z‖22, (12)

(compare to (2)) where K is a blurring (integral) operator. When K is a convolution operator, the
challenge is to solve resulting linear system without forming the discretized matrix of K∗K (mimicking
the capability of the fast multipole method) [43, 44, 12, 13, 11, 29]. Generalization of our multigrid work
to the deblurring problem and other imaging problems is currently in progress.

Before we proceed, we remark on related work towards efficient solution of the denoising model (2)
without introducing β. There exist at least six approaches worth pursuing:

• The dual formulation of (2). The primal variable u as solution of (2) can be replaced [9, 22]
by its dual variable p which is sought in a new optimization problem with a differentiable merit
function; here u = z − α∇p. Further time-marching schemes may be used efficiently [9].

• The dual formulation of an approximate form of (2). When the TV norm is approximated,
a Fenchel dual formulation [23] can be derived and further non-smooth Newton methods are appli-
cable.
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• The combined method with a smooth functional to compensate for ‘flat’ regions. If
|∇u| 6= 0 in (2), the model is easy to solve. For the general case, one can modify [10, 27, 34] the
TV-norm to exclude all sets where |∇u| = 0. As compensation, regularization over these sets is
done with smooth norms such as with |∇u|2.

• The active set method. This is a discrete approach [25, 8, 26] solving the Euler-Lagrange
equation which implements a related idea to the above combined method i.e. treat active sets
(|∇u| = 0) differently from inactive sets.

• The tube method. The discrete solution of (2) lies in a tube-like domain. The work of [24] based
on the Taut-string algorithm proposes a constrained optimization method as another primal-dual
approach. Different from [15], no β is required. However a fixed-point algorithm (outer-loop) is
required in solving the nonlinear optimization.

• The second-order cone programming method. This is a direct method to solve (2) numer-
ically. As shown in [18], the idea is to convert the discretized version of (2) to a constrained
optimization problem which is in turn solved by the interior point algorithm that allows non-
differentiable cone constraints (with the TV terms turned into cone conditions). Here we have 3
times more unknowns and the overall complexity is O(N

√
N) with N = n2 for an n× n image.

Although ideas from this paper may be generalized to the above new or reformulated models in a multilevel
setting, such generalization work remains to be done.

In what follows we shall solve the original primal and optimization formulation (4) which has no
additional parameters such as β, by a multilevel method. As a multilevel method is more optimal than
unilevel methods, its complexity is only O(N log N) with N = n2 for an n× n image.

3 Piecewise constant primal relaxation and multilevel schemes

Instead of pursuing fast solvers for solving (6) (involving β) as previously done in [11, 40, 43, 41, 42, 16, 38],
we consider how to design fast algorithms for solving the minimisation problem (4) without β. To this
end, consider the discretized form of (4) respectively in 1D and 2D:

min
u∈Rn

J(u) = min
u∈Rn

α

n−1∑

j=1

|uj − uj+1|+ 1
2

n∑

j=1

(uj − zj)2 (13)

and

min
u∈Rn×n

J(u) = min
u∈Rn

α

n−1∑

i=1

n−1∑

j=1

√
(uij − ui,j+1)2 + (uij − ui+1,j)2 +

1
2

n∑

i=1

n∑

j=1

(uij − zij)2, (14)

with α = α/h and h = 1/(n− 1).
Our objective is to solve (4) via (13) and (14), not (9), using a multilevel method. Our result as

intended shows that the solution in some cases is sharper than that from (9) for problems where features
such as edges and corners are important to preserve. Below we shall first expose what the known problems
with optimization methods are before proposing our computational algorithms.

3.1 Smoothing and local minimisations

Consider first the solution of (13) ie. (4) in the 1D case. An important issue to address is how to make
use of an approximate solution ũ for further solution or how to measure the “residual” for improved
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smoothing (or relaxation) in the minimisation problem . That is to say, here, there is no obvious way
to define a residual correction functional (which is easily done for an operator equation [17]). A local
minimisation problem at a typical node j is the following

min
uj∈R

Jj(uj) = min
uj

α|ũj−1 − uj |+ α|uj − ũj+1|+ 1
2
(uj − zj)2 (15)

which can be solved analytically because the local solution uj is taken from the set {zj − 2α, zj +
2α, ũj−1, ũj+1, zj}. The 2D case is similar but the solution involves iterations (as shown later). If we
solve for all uj , j = 1, 2, . . . , n, in (15) for several steps, then the resulting solution u is smooth in some
sense but, unfortunately, the method of smoothing will converge (quickly) to the wrong solution as the
number of steps increases. This is known as the ‘local minimiser’ getting ‘stuck’; see [7]. Here by a ‘local
minimiser’ (in quotes), we mean the minimizer obtained from local coordinate direction minimisations
which is different from the local minimiser (which is also the global minimizer). Figure 1 shows a typical
example where zj ’s are shown as dots (‘·’), the wrong solution u is shown as the solid line while the
dash-dotted line denotes the true global minimiser. Clearly the ‘local’ minimisers get stuck.

Figure 1: An example showing that local minimisations get stuck at the incorrect solution (solid line).
Here n = 128, α = 4, z is shown as • and the dash-dotted line is the true solution.
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To see the problem more clearly, we use a small datum set with n = 8 and show the result in Figure 2.
There one observes that the incorrect solution (‘O’) only has the wrong ‘heights’, when compared to the
true solution (‘¤’). This motivates us the following multilevel method to correct such ‘wrong’ heights.

3.2 A piecewise constant based multilevel method

Assume that ũ ∈ Rn is our current approximation to (4). We wish to find the best piecewise constant
function c ∈ Rn so that the following holds

min
c

J(ũ + c). (16)

Such a problem is as ‘difficult’ as the original problem (4). Therefore we solve the correction problem

min
c

J(ũ + c), c = Pkc(k) ∈ Rn, c(k) ∈ Rτk (17)
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Figure 2: A second example showing that local minimisations get stuck at the incorrect solution (O).
Here n = 8, α = 4, z is shown as • and the true solution as ¤.
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where τk = n/2k−1 for k = 1, 2, . . . , L + 1 and Pk : Rτk → Rn is the interpolation operator for piecewise
constants. Normally we may take n = 2L so L = log2 n and the coarsest level has τL+1 = 1, corresponding
to a single constant. Thus on the finest level τ1 = n, the smoothed solution of (17) can be obtained as in
the previous subsection.

We now formulate the above problem (17) on a general level k so that the previous smoothing method
can be applied. Let

c(k) = [c1 c2 · · · cτk
]T .

Then
c = Pkc(k) = [c1 · · · c1︸ ︷︷ ︸

block 1

c2 · · · c2︸ ︷︷ ︸
block 2

· · · · · · cτk
· · · cτk︸ ︷︷ ︸

block τk

]T (18)

and, on substituting into (17) and defining b = n/τk = 2k−1, we can reformulate the functional as the
following

J(ũ + c)

= α
[
|ũ1 + c1 − (ũ2 + c1)|+ · · ·+ |ũb + c1 − (ũb+1 + c2)|+
|ũb+1 + c2 − (ũb+2 + c2)| + · · ·+ |ũ2b + c2 − (ũ2b+1 + c3)| +

· · · +

|ũn−b+1 + cτk
− (ũn−b+2 + cτk

)|+ · · ·+ |ũn−1 + cτk
− (ũn + cτk

)|
]

+
1
2

τk∑

`=1

`b∑

j=(`−1)b+1

(ũj + cj − zj)2

= α

τk−1∑

j=1

∣∣∣ũjb − ũjb+1 + cj − cj+1

∣∣∣ +
1
2

τk∑

`=1

`b∑

j=(`−1)b+1

(ũj + c` − zj)2 + J0(ũ)

= α

τk−1∑

j=1

∣∣∣d̃j+1 + cj − cj+1

∣∣∣ +
1
2

τk∑

`=1

`b∑

j=(`−1)b+1

(c` − z̃j)2 + J0(ũ)
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= α

τk−1∑

j=1

∣∣∣cj − cj+1

∣∣∣ +
b

2

τk∑

`=1

(c` − w̃`)2 + J0(ũ) + J1(ũ) (19)

= α

τk−1∑

j=1

∣∣∣cj − cj+1

∣∣∣ +
b

2

τk∑

j=1

(cj − zj)2 + J0(ũ) + J1(ũ)

= b
{ α

b

τk−1∑

j=1

∣∣∣cj − cj+1

∣∣∣ +
1
2

τk∑

j=1

(cj − zj)2

︸ ︷︷ ︸
Coarse level equation with a different “α”

+J0(ũ)/b + J1(ũ)/b
}

(20)

where we have isolated the terms associated with c from the others not involving c. In particular, J0(ũ)
and J1(ũ) denote those remaining terms not depending on c, d̃j+1 = ũjb − ũjb+1 (with d̃1 = 0) denotes
the jth jump between two adjacent blocks and, with

dj =
j∑

`=1

d̃`, for j = 1, 2, . . . , τk,

the new quantities are (for j = 1, 2, . . . , τk)

cj = cj − dj , zj = w̃j − dj . (21)

Here with z̃j = zj − ũj for j = 1, 2, . . . , n, the mean ‘z’ value for each block is

w̃` =
`b∑

j=(`−1)b+1

z̃j/b (22)

and the equation in (19) is obtained from using the simple equality of the type

b∑

j=1

(v − zj)2 = bv2 − 2(
b∑

j=1

zj)v +
b∑

j=1

z2
j = b

(
v − z

)2

+
b∑

j=1

z2
j − bz2,

where z =
∑b

j=1 zj/b.
Thus from (20), we see that minimizing the finest level correction problem associated with level k is

equivalent to solving the following level k correction problem

min
c∈Rτk

α

b

τk−1∑

j=1

∣∣∣cj − cj+1

∣∣∣ +
1
2

τk∑

j=1

(cj − zj)2 (23)

whose solution defines the correction vector c = c + d (note b = 2k−1). As with most multilevel methods,
we shall not solve (23) exactly. Instead we apply the smoothing method of the previous subsection §3.1
and then apply the idea repeatedly with coarser levels until the coarsest level.

We now summarize the overall multilevel algorithm as follows.

Algorithm 1 Given z and an initial guess ũ = z, with L + 1 levels,

(1) Let u0 = ũ.

(2) Smooth the approximation on the finest level 1, i.e. solve (15) for j = 1, 2, . . . , n.
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(3) On coarse levels k = 2, 3, . . . , L + 1:
— compute z̃ = z − ũ via (22)
— compute the local mean w̃` = mean(z̃

(
(`− 1)b + 1 : `b)

)
via (22)

— compute d̃j , dj , cj , zj via (21)
— solve (23) by solving local minimisation as in (15) if k ≤ L or
— on the coarsest level k = L + 1, the correction constant is simply

c = mean(z) = c = mean(z − ũ).
— Add the correction, ũ = ũ + Pkc via (17).

(4) If ‖ũ− u0‖2 is small enough, stop or return to Step (1).

3.3 The variable patch coarse level correction

The above Algorithm 1 works well for many examples. However there exist difficult cases where the
standard coarsening proves to be inadequate as illustrated by Figure 3, where for n = 8 and the initial ũ

after relaxations on level 1, the next block size b = 2 = 22−1 on level k = 2 is not suitable (or rather a
mixture of b = 2, 3 blocks is better).

Without using an algebraic multigrid method for ‘automatic’ coarsening (as in [16, 39]), we propose
a flat patch based coarsening idea to supplement the use of a standard coarsening. Our idea is consisted
of two parts. Firstly we divide the current approximation ũ into a union of m flat patches of respective
lengths b1, b2, . . . , bm (with bj ≥ 1). Secondly we take an extra coarse level with m piecewise constants,
as before, in (17) and (18). Let

c<m> = [c1 c2 · · · cm]T

and
c = Pmc<m> = [c1 · · · c1︸ ︷︷ ︸

block b1

c2 · · · c2︸ ︷︷ ︸
block b2

· · · · · · cm · · · cm︸ ︷︷ ︸
block bm

]T (24)

For solving minc J(ũ + c), one can derive an equation for c precisely as before with the only change of
computing the local mean using bj instead of b.

With this extra coarse level, Algorithm 1 can solve the problem in Figure 3 accurately as shown in
Figure 4.

3.4 The 2D multilevel algorithm

The above ideas are applicable to higher dimensions. Most (single level) solution and algorithmic details
for solving (14) or (4) in two dimensions can be found in Carter [7]:

min
u∈Rn

J(u) = min
u

α

n∑

i,j=1

√
(uij − ui+1,j)2 + (uij − ui,j+1)2 +

1
2

n∑

i,j=1

(uij − zij)2, (25)

where, due to Neumann’s boundary condition for the continuous formulation, those terms involving
indices larger than n (representing first derivatives in the first sum) are zero e.g. when i = 2, j = n,

√
(u2n − u3,n)2 + (u2n − u2,n+1)2 = |u2n − u3,n|.

Our emphasis below will be on a multilevel formulation.
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Figure 3: An example showing that the standard coarsening can be inadequate. Here n = 8, α = 4, z
is shown as • and the true solution as ¤ while the standard coarsened multilevel solution M does not
improve much from the initial ‘stuck’ solution O.
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Figure 4: The example showing that the additional coarse level idea can add robustness to Alg. 1
(compare to Figure 3). Here n = 8, α = 4, z is shown as • and the true solution as ¤ while the new
multilevel solution M does improve on the initial ‘stuck’ solution O.
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Point-wise Gauss-Seidel smoothing. Given an approximation ũ, the smoothing idea of §3.1 can
be used here to compute the minimizer for a local minimization problem [7]

min
uij

Jij(uij) = min
uij

α
[√

(uij − ũi+1,j)2 + (uij − ũi,j+1)2+√
(uij − ũi−1,j)2 + (ũi−1,j − ũi−1,j+1)2+√
(uij − ũi,j−1)2 + (ũi,j−1 − ũi+1,j−1)2

]
+

1
2
(uij − zij)2.

(26)

Different from the 1D case, the above problem does not have a convenient and analytical solution. For
this type of equations, the Newton method is known to converge slowly [4] when α is relatively large.

We use the Richardson iteration to solve (26) from repeating ũ → u → ũ

α
[ 2uij − ũi+1,j − ũi,j+1√

(uij − ũi+1,j)2 + (uij − ũi,j+1)2 + γ
+

uij − ũi−1,j√
(uij − ũi−1,j)2 + (ũi−1,j − ũi−1,j+1)2 + γ

+

uij − ũi,j−1√
(uij − ũi,j−1)2 + (ũi,j−1 − ũi+1,j−1)2 + γ

]
+ (uij − zij) = 0,

where γ > 0 is a regularizing parameter which is much taken smaller than β above (e.g. γ = 10−30 which
is far too small for β in (8)). Then our Richardson iterations for solving (26) take the form

unew
ij = Rold

/
Lold (27)

where

Lold = 2α
/√

(uold
ij − ũi+1,j)2 + (uold

ij − ũi,j+1)2 + γ +

+α
/√

(uold
ij − ũi−1,j)2 + (ũi−1,j − ũi−1,j+1)2 + γ +

+α
/√

(uold
ij − ũi,j−1)2 + (ũi,j−1 − ũi+1,j−1)2 + γ

]
+ 1,

Rold = α(ũi+1,j + ũi,j+1)
/√

(uold
ij − ũi+1,j)2 + (uold

ij − ũi,j+1)2 + γ +

+αũi−1,j

/√
(uold

ij − ũi−1,j)2 + (ũi−1,j − ũi−1,j+1)2 + γ +

+αũi,j−1

/√
(uold

ij − ũi,j−1)2 + (ũi,j−1 − ũi+1,j−1)2 + γ
]

+ zij .

An alternative to the Richardson iterations is the Newton method, which we found to perform similarly.
As an iterative method, the above iterations still converge to some non-stationary minimizer as in

the 1D case (§3.1, as noted in [7]). And we shall use the multilevel method to rectify and improve the
minimizer.

The local minimisation on a general level k. Similar to the 1D case, let n = 2L for z ∈ Rn×n

and the standard coarsening be used giving rise to L + 1 levels k = 1(finest), 2, . . . , L, L + 1(coarsest).
Denote the dimension of level k by τk × τk with τk = n/2k−1. The generalization of Algorithm 1 to the
2D prompts us to consider

min
C=Pk ĉ∈Rn×n

,ĉ∈Rτk×τk ,c∈R
J(ũ + C), (28)

where Pk : Rτk×τk → Rn×n is the interpolation operator. Let c = (cij). Then the computational
stencil involving cij on level k can be shown as follows (set b = 2k−1, k1 = (i − 1)b + 1, k2 = ib, `1 =
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(j − 1)b + 1, `2 = jb)

...
... · · · ...

...
ũk1−1,`2+1 + ci−1,j+1 ũk1,`2+1 + ci,j+1 · · · ũk2,`2+1 + ci,j+1 ũk2+1,`2+1 + ci+1,j+1

ũk1−1,`2 + ci−1,j ũk1,`2 + cij · · · ũk2,`2 + cij ũk2+1,`2 + ci+1,j

· · · ... · · · ... · · ·
ũk1−1,`1 + ci−1,j ũk1,`1 + cij · · · ũk2,`1 + cij ũk2+1,`1 + ci+1,j

ũk1−1,`1−1 + ci−1,j−1 ũk1,`1−1 + ci,j−1 · · · ũk2,`1−1 + ci,j−1 ũk2+1,`1−1 + ci+1,j−1

...
... · · · ...

...

(29)

Then, the local block (i, j) minimization for cij is equivalent to minimizing the following (resulting
from the four sides of the above stencil - see (25))

F (cij) = α

`2∑

`=`1

√
[cij − (ũk1−1,` − ũk1,`)]2 + (ũk1−1,` − ũk1−1,`+1)2 +

α

k2−1∑

k=k1

√
[cij − (ũk,`2+1 − ũk,`2)]2 + (ũk,`2 − ũk+1,`2)2 +

α
√

[cij − (ũk2,`2+1 − ũk2,`2)]2 + [cij − (ũk2+1,`2 − ũk2,`2)]2 +

α

`2−1∑

`=`1

√
[cij − (ũk2+1,` − ũk2,`)]2 + (ũk2,` − ũk2,`+1)2 +

(30)

α

k2∑

k=k1

√
[cij − (ũk,`1−1 − ũk,`1)]2 + (ũk,`1−1 − ũk+1,`1−1)2 +

1
2

k2∑

k=k1

`2∑

`=`1

[
ck` − (zk` − ũk`)

]2

.

To simplify the formulation, we define

z̃k,` = zk,` − ũk,`, w̃ij = mean
(
z̃(k1 : k2, `1 : `2)

)
=

1
b2

k2∑

k=k1

`2∑

`=`1

z̃(k, `),

ṽk,` = ũk,`+1 − ũk,`, h̃k,` = ũk+1,` − ũk,`.

(31)

To also simplify the third term in (30), we may use the simple equality

√
(c− a)2 + (c− b)2 =

√
2

√(
c− a + b

2

)2

+
(a− b

2

)2

.

Therefore we can rewrite (30) as

F (cij) = α

`2∑

`=`1

√
(cij − hk1−1,`)2 + v2

k1−1,` + α

k2−1∑

k=k1

√
(cij − vk,`2)2 + h2

k,`2
+

α

`2−1∑

`=`1

√
(cij − hk2,`)2 + v2

k2,` + α

k2∑

k=k1

√
(cij − vk,`1−1)2 + v2

k,`1−1 +

α
√

2
√

(cij − vk2,`2)2 + h
2

k2,`2 +
1
2

k2∑

k=k1

`2∑

`=`1

(
ck` − z̃k`

)2

= α

`2∑

`=`1

√
(cij − hk1−1,`)2 + v2

k1−1,` + α

k2−1∑

k=k1

√
(cij − vk,`2)2 + h2

k,`2
+

α

`2−1∑

`=`1

√
(cij − hk2,`)2 + v2

k2,` + α

k2∑

k=k1

√
(cij − vk,`1−1)2 + v2

k,`1−1 +

α
√

2
√

(cij − vk2,`2)2 + h
2

k2,`2 +
b2

2
(cij − w̃ij)2 + F0(ũ),

(32)
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where F0 is not dependant on cij and

vk2,`2 =
vk2,`2 + hk2,`2

2
, hk2,`2 =

vk2,`2 − hk2,`2

2
. (33)

Further we conclude that the local minimization problem for block (i, j) on level k is to minimize the
functional

F (cij) = α
[ `2∑

`=`1

√
(cij − hk1−1,`)2 + v2

k1−1,` +
k2−1∑

k=k1

√
(cij − vk,`2)2 + h2

k,`2
+

`2−1∑

`=`1

√
(cij − hk2,`)2 + v2

k2,` +
k2∑

k=k1

√
(cij − vk,`1−1)2 + v2

k,`1−1 +

√
2
√

(cij − vk2,`2)2 + h
2

k2,`2

]
+

b2

2
(cij − w̃ij)2.

(34)

The solution of (34) can be sought using the Richardson iterations as in (27).
As in 1D §3.3, it is equally feasible to formulate a varying patch coarse level as in the 2D case. The

detection of a local patch (constant) can be done like in 1D by checking the relative differences. Let
the general box (with general indices k1, k2, `1, `2) as depicted in (29). Then the local (varying) patch
minimisation proceeds similarly to (32) and (34), with the only essential change in replacing b2 (the old
patch size) by b1b2 (the new patch size); here b1 = k2− k1 + 1 and b2 = `2− `1 + 1. Here the patches are
somewhat related to the active sets in other modified TV formulations [25, 8, 26].

The 2D multilevel algorithm. We are ready to state our proposed piecewise constants based
method.

Algorithm 2 Given z and an initial guess ũ = z, with L + 1 levels,

(1) Let u0 = ũ.

(2) Smooth the approximation on the finest level 1, i.e. solve (26) for j, ` = 1, 2, . . . , n.

(3) On coarse levels k = 2, 3, . . . , L + 1:
— compute z̃ = z − ũ via (31)
— compute the local mean w̃ij = mean

(
z̃
(
(k − 1)b + 1 : kb, (`− 1)b + 1 : `b

))
via (31)

— compute ṽk,`, h̃k,` via (33)
— solve (34) by solving local minimisation as in (27) if k ≤ L or
— on the coarsest level k = L + 1, the correction constant is simply

c = mean(w̃) = mean(z − ũ).
— Add the correction, ũ = ũ + Pkc via (28).

(4) On level k = 1, check the possible patch size for each position (i, j). Implement the piecewise
constant update as with Step (3).

(5) If ‖ũ− u0‖2 is small enough, stop or return to Step (1).

We remark that although Algorithms 1 and 2 use the V-cycling like pattern in a multilevel setting,
the precise manner of information transfers is different as illustrated by Figure 5. It is also feasible to
develop other cycling patterns e.g. the W-cycling as described in [17]. In fact, some (though small)
improvements have been observed with W-cycling.

13



Figure 5: V-cycling comparison. Top: the normal MG V-cycling and Bottom: the new V-cycling.
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4 Numerical experiments

In this section, we shall test several aspects of the proposed multilevel methods. Firstly we demonstrate
the convergence of the methods for several test cases and show that the proposed method gives fast and
quality solutions in both 1D and 2D. Secondly we engage in the challenging task of comparing it to the
well-known method of Chan-Golub-Mulet (CGM) [15] to show possible advantages of our parameter-free
approaches. No methods could give better results than CGM as far as we know. It is thus particularly
pleasing to present some test cases where we have achieved this.

Fast convergence. We first consider four 1D denoising problems with the signal-to-noise ratio (SNR)
of 10 as shown in Figure 6. The processed solutions by our multilevel algorithm are shown in Figure 7,
where one observes that the method is extremely fast (as expected of a multilevel method), converging to
the tolerance of tol = 10−4 in only 4 multilevel steps; here α takes the value of 7.68×10−5, 19.2, 160, 25.6
respectively for the 4 examples. We then test further four examples of 2D denoising problems as shown
in Figure 8, where SNR= 5. The computed solutions by our multilevel algorithm are shown in Figure 9.
Again one observes that the method is extremely fast to obtain solutions which are comparable to from
other methods. We next consider details of one comparison.

Comparison with CGM. As remarked, the method CGM [15] has been known to produce the most
reliable solutions (in comparison to the fixed point and the time-marching methods). However CGM
does depend on the parameter β; in particular if β = 0 (or nearly 0), CGM does not converge. We shall
compare our MG algorithm to CGM with suitable β. Future comparisons should be made to a multilevel
version of one of those recent methods that do not involve β (Section 2).

As an exact solution is not available, any comparison is attempting but difficult. What we propose to
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Figure 6: Four 1D test examples
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Figure 7: Primal multilevel method for the four 1D test examples

1 20 40 64

1

2

3

4

MG : α=5.0, steps=4 and P1

1 20 40 64

2

3

4

5

6

7

8

9

MG : α=10.0, steps=4 and P2

1 20 40 64

−5

0

5

MG : α=1.0, steps=4 and P3

1 20 60 100 140 192

−5

0

5

10

15

20

25

MG : α=1.0, steps=4 and P4

15



Figure 8: Four 2D test examples
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Table 1: Comparison in merit function of our MGM with CGM [15] in 1D
Method Problem Convergence Steps J(u)
CGM β = 10−1 1 8 82.5160

2 7 207.648
3 6 34.1475
4 6 135.143

CGM β = 10−5 1 11 70.6723
2 17 185.745
3 11 32.8829
4 11 131.433

CGM β = 10−10 1 15 70.4687
2 22 185.413
3 13 32.8668
4 11 131.389

CGM β = 10−14 1 16 70.4680
2 22 185.409
3 13 32.8668
4 11 131.390

MG (new) 1 2 70.4680
2 4 185.407
3 4 32.8664
4 4 131.385

compare is CPU plus the value of the minimizing merit function J(u) as in (13) for 1D. From the Table
1, one can see that our method is quite competitive to CGM in terms of reduction of J(u) and CGM
depends heavily on the choice of β as expected. For the 2D examples, we take the parameter γ = β as
we intend to compare the MG solutions with the CGM. For the image size 128 × 128 (for all the above
4 problems), we observe the results in Table 2. Clearly the parameter γ is less sensitive with the MG
method than β with the CGM and of course it may be possible to replace the 2D local minimization by
some parameter free methods e.g. [32] and then we expect the MG approach improves more.

Next we illustrate what the improvements over CGM solutions look like in terms of image sharpness.
We shall take problem 2 (1D) as an example. With β = 10−10, we have seen that J(uCGM ) = 185.413
while JMG = 185.407 with the data size n = 64 (refer to the second plot of Figure 6). However, if we
zoom in two locations of the solutions, we can see an interesting (but expected) difference between CGM
and MG i.e. the MG solution is sharper (more like a staircase function) than the CGM. This is visible
from Figure 10 near node 30 and Figure 11 near node 55 where we compare our MG solution (denoted by
◦) with 3 CGM solutions (denoted by •) with respectively β = β1 = 10−4, β2 = 10−5, β3 = 10−6. Clearly
the CGM solutions are smoother as expected (though almost piecewise constants).

Finally in Table 3, we display a brief comparison of CPU of our method with CGM. Although the
problem sizes are small for a MG method, we can see that our method has shown the expected fast
convergence.

5 Conclusions

This paper proposed a new and effective multilevel method based on piecewise constant refinements
of the minimisation problem modelling the image denoising problem in the TV-norm. Our method is
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Table 2: Comparison in merit function of our MGM with CGM [15] in 2D
Method Problem Convergence Steps J(u)
CGM β = 10−1 1 2 1.23384E-5

2 7 6.59000E5
3 10 2.55551E6
4 10 4.31471E6

MG (new) 1 1 4.60572E-6
2 3 6.59045E5
3 5 2.67872E6
4 5 4.31899E6

CGM β = 10−5 1 3 1.17532E-5
2 10 6.58996E5
3 22 2.55007E6
4 16 4.31415E6

MG (new) β = 10−5 1 1 4.58596E-6
2 5 6.59045E5
3 11 2.70140E6
4 8 4.31898E6

CGM β = 10−10 1 7 4.50816E-6
2 15 6.58996E5
3 40 2.55002E6
4 21 4.31414E6

MG (new) β = 10−10 1 3 4.24560E-6
2 7 6.59045E5
3 20 2.68725E6
4 10 4.31898E6

Table 3: Comparison in CPU of our MGM with CGM [15] in 2D (Problem 4 with TOL = 10−6)
Size N ×N MG (new) CGM

64 × 64 11.2 11.9
128 × 128 44.7 48.9
256 × 256 207.3 2574.1
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Figure 10: Detailed comparison of CGM and MG solutions near node 30 (Problem 2)
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Figure 11: Detailed comparison of CGM and MG solutions near node 55 (Problem 2)
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different from those multigrid methods applied to the PDEs and also from others which assume the
minimising functional is differentiable. The apparently non-smooth solutions from primal relaxations of
local minimisation are corrected using multilevels and varying size coarse level elements.

As our method is parameter free, as a by-product (when compared to the well-known CGM method),
there is strong evidence to suggest that sharper solutions are obtained in many cases in the true spirit of
TV norms. On the other hand, our method also works with variational models with a parameter ie. a
smooth object functional. Of course, the main advantage of a multilevel method is its fast speed.
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