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Abstract

Based on some geometrical considerations, we propose a two-step method

to do digital image inpainting. In the first step, we try to propagate the

isophote directions into the inpainting domain. An energy minimization

model combined with the zero divergence condition is used to get a non-

linear Stokes equation. Once the isophote directions are constructed, an

image is restored to fit the constructed directions. Both steps reduce to

the solving of some nonlinear partial differential equations. Details about

the discretization and implementation are explained. The algorithms have

been intensively tested on synthetic and real images. The advantages of

the proposed methods are demonstrated by these experiments.

1 Introduction

For a digital image, inpainting refers to the process of filling-in missing data. It
ranges from removing objects from an image to repairing damaged images and
photographs.

The term of ”digital inpainting” seems to have been introduced into image
processing by Bertalmio, Sapiro, Caselles and Ballester [2]. In the past few years,
several different approaches have been proposed to tackle this complicated image
processing task. The basic idea for most of the inpainting techniques is to do a
smooth propagation of the information in the region surrounding the inpainting
area and interpolating level curves in a proper way [2, 21, 6]. However, there
are different strategies to achieve these goals. In [2], the authors proposed
to minimize an energy to compute the restored image and this results in the
solving of coupled nonlinear differential equations. In a related work [4], this
idea was further extended to guarantee that the level curves are propagated into
the inpainting domain. In [3], a connection between the isophote direction of
the image and the Navier-Stokes equation was observed and they proposed to
solve transport equations to fill in the inpainting domain. This is related to our
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method. Another related work is [11] where a minimization of the divergence is
done to construct optical flow functions.

The work of [9, 7] minimizes the TV-norm of the reconstructed image to fill
in the missing data. In later work [8, 10], energy involving the curvature of the
level curves is used and this is in some sense trying to guarantee that the level
curves are connected in a smooth fashion. The equations obtained from such
models are highly nonlinear and of higher (fourth) order.

Recently, texture inpainting has attracted attention. In [5], the image in
the surrounding area is first decomposed into texture and structure and then
propagated into the inpainting domain in different ways. This idea to decompose
texture and structure is also used in [12]. Some statistical approaches are used
in [1] to do texture synthesis and structure propagation.

We may also mention some recent works which related the phase-field model
and Ginzburg-Landau equation to image processing, [15, 16, 13, 12]. These
ideas were used in [15, 16, 13] for image segmentation. In [12] they were used
for image inpainting.

The idea used in this work was motivated by [19, 20, 2, 3]. We still follow the
basic ideas of image inpainting, i.e. we are trying to propagate the information
into the inpainting domain along the isophote directions. However, we choose
a two-step method to carry out this task as in [20]. The first step involves
trying to reconstruct the isophote directions for the missing data. The second
step tries to construct an image fitting the restored directions. This is the same
idea used in [20] to remove noise from digital images. One new idea which is
essential to the present method is that we impose the zero divergence condition
on the constructed directions. This guarantees that there exists an image such
that its isophote directions are the restored vectors. This is important when the
inpainting region is relatively large. In contrast to [3], we obtain our TV-Stokes
equation from this consideration which implies that the obtained vectors have
the smallest TV-norm. The solution of the Stokes equation will generally not
have such a property. We also propose some novel ideas to modify the boundary
condition for the inpainting domain to select the information that is propagated
into the region. We have only tested our algorithms on propagated structure
information. It is possible to combine it with texture inpainting as in [5].

This work is organized as follows. In section 2, we explain the detailed
mathematical principles for our methods. First, some geometrical motivation
is presented. These geometrical observations are then combined with energy
minimization models to get the nonlinear equations which give our inpainting
methods. Discretization and implementation details are then supplied. When
solving the equations, it is rather easy to change the boundary conditions. Due
to this flexibility, we show that it is rather easy to block some information from
propagating into the inpainting region. Numerical experiments on real and
synthetic images are supplied in Section 3 and comparisons with other methods
are discussed.

2 The Mathematical principles

Suppose that an image u0 : R 7→ [a, b] is defined on a rectangle domain R.
We shall assume that Ω ⊂ R is the domain where the data is missing. We
want to fill in the information on Ω based in the geometrical and photometric
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information surrounding the region Ω. As in [2], we shall use information in a
band B around the domain Ω. We shall use Ω̃ = Ω ∪ B in the following.

2.1 Connection between digital images and flow fields

In [3], the connection between image inpainting and fluid dynamics is done by
observing that the isophote directions of an image correspond to an incom-
pressible velocity field. This same observation will be used here in our work.
However, the equation we shall use for the inpainting is different and is related
to the work of [20]. We give a brief outline of the idea of [20] in the following.

Given scalar functions u and v, denote:

∇u = (ux, uy), ∇⊥u = (−uy, ux), ∇× (u, v) = uy − vx, ∇ · (u, v) = ux + vy.

Given an image d0, the level curves:

Γ(c) = {x : d0(x) = c, ∀c ∈ (−∞,∞)}.

have normal vectors ~n(x) and tangential vectors ~τ(x) given by

~n(x) = ∇d0(x) ~τ (x) = ∇⊥d0(x).

The vector fields ~n and ~τ satisfy

∇× ~n(x) = 0, ∇ · ~τ(x) = 0. (1)

Suppose that the surface d0(x) is exposed to rain, then the rain will flow down
the surface along the directions −~n(x). One observation is that the surface d0

can be constructed from the vector fields ~n(x) or ~τ(x).
For image inpainting, the information of d0 in the surrounding band B is

known. Thus, we also know the normal and tangential vectors of d0 in B. The
main idea to fill in the information in Ω is to propagate the vector field ~n or ~τ
into the interior region Ω. Afterwards, we construct an image in region Ω to fit
the computed vectors in Ω.

Define ~τ0 = ∇⊥d0. There are many different ways to propagate the vectors
from B into Ω. In [3], incompressible, inviscid Euler equations are used. Here,
we shall use an energy minimization model to propagate the vector fields, i.e.
we shall solve

min
∇·~τ=0

∫

Ω̃

|∇~τ |dx +
1

ǫ

∫

B

|~τ − ~τ0|2dx (2)

Above,
∫

Ω̃
|∇~τ |dx is the total variation for vector field ~τ . We require ∇ · ~τ = 0

to guarantee that the reconstructed vector field ~τ is a tangential vector for the
level curves of a scalar function in the region Ω̃. The penalization parameter ǫ
is chosen to be very small to guarantee that ~τ ≈ ~τ0 in B. For most of the cases
we have tested, it is enough to take B to be just one pixel wide around Ω. For
such a case, we can take ǫ → 0 and thus the minimization problem reduces to
find a ~τ such that ~τ = ~τ0 on ∂Ω which solves:

min
∇·~τ=0

∫

Ω

|∇~τ |dx. (3)
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We use the total variation norm of ~τ (as usual in this subject) because the
boundary value ~τ0 may have discontinuities. In order to propagate such a dis-
continuity into the region Ω, we need to allow ~τ to have discontinuities and thus
the TV-norm is preferred to e.g., the H1-norm.

We use χB to denote the characteristic function over the domain B, i.e.
χB = 1 in B and χB = 0 elsewhere. If we use a Lagrange multiplier λ to deal
with the divergence constraint ∇ · ~τ = 0, the Euler-Lagrange equation of (2) is:















−∇ ·
( ∇~τ

|∇~τ |

)

+
χB

ǫ
(~τ − ~τ0) −∇λ = 0 in Ω̃,

∇ · ~τ = 0 in Ω̃,

∇~τ · ~ν = ~0 on ∂Ω̃.

(4)

Here, ~ν denotes the outer unit normal vector of ∂Ω̃. Similarly, the Euler-
Lagrange equation of (3) is:















−∇ ·
( ∇~τ

|∇~τ |

)

−∇λ = 0 in Ω,

∇ · ~τ = 0 in Ω,
~τ = ~τ0 on ∂Ω.

(5)

Once the tangential vector field ~τ is available in Ω̃, it is easy to obtain the
normal vector field ~n. Let u and v be the two components of the vector field ~τ ,
i.e. ~τ = (u, v). Then, we have

~n(x) = ~τ⊥(x) = (−v, u). (6)

From the vector field ~n(x), we use the same idea as in [20, 2] to construct
an image d whose normal vectors shall fit the computed vectors ~n(x). This is
achieved by solving the following minimization problem:

min

∫

Ω̃

|∇d| − ∇d · ~n

|~n|dx +
1

ǫ

∫

B

|d − d0|2dx. (7)

The penalization parameter ǫ can be chosen to be same as in (2). Or it can
be chosen to be different. In case that B is only one pixel wide around Ω, the
above minimization problem reduces to the following problem if we take ǫ → 0:

min
d

∫

Ω

|∇d| − ∇d · ~n

|~n|dx and d = d0 on ∂Ω. (8)

The Euler-Lagrange equation of (7) is:














−∇ ·
( ∇d

|∇d| −
~n

|~n|

)

+
χB

ǫ
(d − d0) = 0 in Ω̃,

(
∇~τ

|∇~τ | −
~n

|~n| ) · ~ν = ~0 on ∂Ω̃.
(9)

Similarly, the Euler-Lagrange equation of (8) is:






−∇ ·
( ∇d

|∇d| −
~n

|~n|

)

= 0 in Ω,

d = d0 on ∂Ω.
(10)
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2.2 Discretization

We now explain some of the details in discretizing the equations derived in the
last section for numerical simulations. For clarity, we shall only outline the
details for algorithms (5) and (10). The discretization for (4) and (9) can be
done in a similar way.

For simplicity, the gradient descent method will be used in our simulations.
The gradient flow equation for ~τ is:

∂~τ

∂t
−∇ · ( ∇~τ

‖∇~τ‖) −∇λ = 0 in Ω, (11)

∇ · ~τ = 0, in Ω, ~τ = ~τ0 on ∂Ω. (12)

where ‖∇~τ‖ =
√

|ux|2 + |uy|2 + |vx|2 + |vy |2. We have tried two algorithms to
solve (11)-(12). The first algorithm uses the following iterative procedure to
update ~τ and λ with the time step ∆t1 and initial values properly chosen:

~τn+1 = ~τn + ∆t1

[

∇ ·
( ∇~τn

‖∇~τn‖

)

+ ∇λn

]

, (13)

λn+1 = λn + ∆t1∇ · ~τn (14)

The second algorithm updates ~τ and λ by:

~τn+1 = ~τn + ∆t1

[

∇ ·
( ∇~τn

‖∇~τn‖

)

+ ∇λn

]

, (15)

− ∆λn+1 = ∇ ·
[

∇ ·
( ∇~τn

‖∇~τn‖

)]

. (16)

In (16), ∆ denotes the Laplace operator and we impose a zero Neumann bound-
ary condition for λn+1. If ∇ · τ0 = 0 and (16) is satisfied by all λn, then we see
from (15) that

∇ · τn+1 = 0, ∀n.

We use a staggered grid to approximate u, v and λ. Note that ~τ = (u, v) is
used to construct d. When we try to compute d from (9) or (10), we are trying
to enforce the following relation approximately: u = −dy, v = dx. Due to this
relation, the grid points used in the approximation for u are chosen to be the
points marked with ∗, see Figure 1. The approximation points for v are marked
with ◦. The centers of the rectangle elements marked with ⋆ are used as the
approximation points for λ. The vertices of the rectangular mesh are used as
the approximation points for d. The horizontal axis represents the x-variable
and the vertical axis represents the y-variable, c.f Figure 1.

For a given domain Ω, we use Uh(Ω) to denote all the approximation points
∗ for u inside Ω, Vh(Ω) to denote all the approximation points ◦ for v inside Ω,
Λh(Ω) to denote all the approximation points ⋆ for λ inside Ω and Dh(Ω) to
denote all the approximation points for d inside Ω. The updating formulae for
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Figure 1: The pixels and the approximation points for u, v, λ and d. The ap-
proximation points are: ∗ for u, ◦ for v, ⋆ for λ.

(u, v) and λ for (13)-(14) are:

un+1 = un + ∆t1

(

D−

x

(

D+
x un

T n
1

)

+ D−

y

(

D+
y un

T n
2

)

+ Ch/2
x λn

)

on Uh(Ω),

(17)

vn+1 = vn + ∆t1

(

D−

x

(

D+
x vn

T n
2

)

+ D−

y

(

D+
y vn

T n
1

)

+ Ch/2
y λn

)

on Vh(Ω),

(18)

λn+1 = λn + ∆t1(C
h/2
x un+1 + Ch/2

y vn+1) on Λh(Ω).

(19)

Above, D±
x , D±

y are the standard forward/backward finite difference operators

and C
h/2
x , C

h/2
x are the central finite difference operators with mesh size h/2. h

denotes the mesh size for the approximations and is taken to be one. The terms
T n

1 and T n
2 are evaluated as in the following:

T n
1 =

√

|D+
x u|2 + |Ch

y u|2 + |Ch
y v|2 + |D+

y v|2 + ǫ on Λh(Ω), (20)

T n
2 =

√

|Ch
xu|2 + |D+

y u|2 + |D+
y v|2 + |Ch

y v|2 + ǫ on Dh(Ω). (21)

If we use the second algorithm to compute (u, v) and λ from (15)-(16), the
solution of (16) is not unique due to the use of the Neumann boundary condition.
We fix the value of λ to be zero at one point on the boundary to overcome this
problem, which is standard for this kind of problem. Fast methods, like the
FFT (Fast Fourier Transformation), can be used to solve (16).

Once the iterations for u and v have converged to a steady state, we use them
to obtain d. Note that the relation between (u, v) and ~n is as in (6). Similar as
in [20], the following gradient flow scheme is used to update d of (10):

dn+1 = dn + ∆t2

((

D−

x

(

D+
x dn

Dn
1

+
v√

û2 + v2 + ǫ

)

+

(

D−

y

(

D+
y dn

Dn
2

− u√
u2 + v̂2 + ǫ

))

on Dh(Ω). (22)
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In the above, û, v̂ are the average values of the four nearest approximation points
and

Dn
1 =

√

|D+
x dn|2 + |Ch

y dn|2 + ǫ on Dh(Ω), (23)

Dn
2 =

√

|Ch
xdn|2 + |D+

y dn|2 + ǫ on Dh(Ω). (24)

This iteration is the standard gradient updating for d. We could use the AOS
scheme of [17, 18] to accelerate the convergence. The AOS scheme was first
proposed in [17, 18]. It was later rediscovered in [22, 14] and used for image
processing problems.

Up to now we have only explained the approximation details for (5) and
(10). It is easy to see that the discretization for (4) and (9) can be done in a
similar way. The Dirichlet or Neumann boundary conditions for the different
equations are implemented in the standard way and we will omit the details.

2.3 Other kind of boundary conditions

We have proposed two alternatives to deal with the information which is in the
surrounding area of Ω, i.e.

• Using information in a narrow band around the inpainting region Ω and
trying to propagate this information into the region Ω using equations (4)
and (9).

• Using information of the two nearest pixels around the inpainting region
Ω and using equations (5) and (10) to propagate the information into the
region Ω.

There is no strong evidence about which of these two alternatives is better. In
fact, numerical experiments show that this is image dependent. In most of the
tests given in this work, we have used the boundary conditions (5) and (10).

In the following, we shall even propose another boundary condition to treat
some special situations. For some images, we may want some of the information
from the surrounding area to be propagated into Ω, while some other information
from the surrounding area is not welcome to be so propagated, see Figures 9,
11, 12. In order to deal with this kind of situation, we propose the following
alternative:

• Decompose the boundary ∂Ω into two parts, i.e. ∂Ω = ∂ΩD ∪ ∂ΩN . For
equation (5), replace the boundary condition by

a) ~τ = ~τ0 on ∂ΩD, b) ~τ = ~0 on ∂ΩN , (25)

and replace the boundary condition of (10) by

a) d = d0 on ∂ΩD b)
∂d

∂~ν
= 0 on ∂ΩN . (26)

Condition (26.b) means that we do not want to propagate any information
through ∂ΩN . Due to the fact that ∇d⊥ ≈ ~τ , condition (26.b) implies that we
must have condition (25.b) for ~τ on ∂ΩN . A similar procedure can be performed
for equations (4) and (9).
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3 Numerical Experiments

First, we explain how to choose ε, ∆t1 and ∆t2 in numerical implementations.
We add ε to the denominator to avoid dividing by zero in (20)-(21) and (23)-
(24). If ǫ is chosen to be large, the computed image will be smoothed a bit. If
ǫ is chosen to be too small, it may slow down the convergence. We have chosen
ǫ to be the same in (20)-(21) and (23)-(24), but it will differ from example to
example.

With large ∆t1 and ∆t2, the iterations will converge faster, but if they are
too large, the scheme is unstable. For most experiments ∆t1 ≈ 0.03 will lead
to convergence of the normal vectors. A smaller ∆t1 will also work, but more
iterations might be necessary. If the normal vectors are smooth, ∆t2 is less
sensitive and can be chosen to be large. If the vector field is less smooth, ∆t2
must be smaller.

Example 1

In this example we test out our method on an image from a Norwegian news-
paper. The image shows a man jumping from Jin Mao Tower, a 421 meter tall
building in the city of Shanghai. We want to remove the man and restore the
city in the background.

The first part of the code computes the normal vectors in the missing region.
From Figure 3 we see that the vectors are propagating into the inpainting region
in a smooth fashion. When ∆t1 = 0.03 and ǫ = 10 are used, a steady state is
reached after 3000 iterations using (13)-(14). If we use (15)-(16), less than 1000
iterations are needed to reach a steady state, see Figure 3 e) and Figure 3 f).

The second part reconstructs the image using the computed normal vectors.
Figure 4 shows how the man is gradually disappearing during the iterations.
With ∆t2 = 0.15 it takes 30000 iterations before a steady state is reached. In
the resulting image the man has disappeared completely and the background
is restored in a natural way. There are no discontinuities in the sky, and the
skyline is almost a straight line. It is nearly impossible to detect that the sky
and the skyline contains the missing region.

Figure 2: The original image.
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Figure 3: The restored flow vector ~τ using (13)-(14) at different iterations. a)
at iteration 0; b) at iteration 1000; c) at iteration 2000; d) at iteration 3000;
e) The plot for ‖u‖ and ‖v‖ which shows that the equations (13)-(14) reach a
steady state, i.e. at iteration 3000. f) In this plot, we show the convergence for
‖u‖ and ‖v‖ using equations (15)-(16). They reach steady states quicker than
(13)-(14), i.e. at iteration 1000.

Example 2

We test our method on some well-know examples which have been tested by
others using different methods [2]. We use these results to show the quality of
the restored images compared with other methods.

In the example shown in Figure 5, red text is written over the picture. The
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a) b)

c) d)

e) f)

Figure 4: The restored image d using equation (10) at different iterations. a)
at iteration 0; b) at iteration 10000; c) at iteration 20000; d) at iteration 30000;
e) The restored image using the new method (15)-(16) to find ~τ . f) The plot
for ‖d − d0‖ which shows that the equation (5) reaches a steady state, i.e. at
iteration 30000.

text is the inpainting area, and we want to fill it with information from the
image. With ǫ = 1 and ∆t1 = 0.03 the normal vectors converge after 7000
iterations for (13)-(14). The second part of the code converged after only 3000
iterations with ∆t2 = 0.5.

In Figure 6, another image which has been tested in the literature, is used
here to compare our method with the others, [2, 1]. The image has the white
text ’Japanese animation’, and we want to remove this. An area around the
text is lighter than the background and has to be restored as well. Figure 6
b) shows the manually obtained inpainting region. Figure 6 c) shows restored
image. The values for ∆t1 and ∆t2 are chosen to be the same as in the previous
example, and the convergence is nearly the same.

Figure 7 a) shows an old photo which has been damaged. We mark the
inpainting region in white colour, as shown in Figure 7 b) and try to restore it.
The result is shown in Figure 7 c).
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a)

b)

c)

Figure 5: a) The original image. b) The restored image using equations (5) and
(10). c) The difference image.

The image in Figure 8 a) shows another situation where our algorithm can be
applied. The image has a piece of musical notes written on it. A large amount
of information is lost, but it is scattered on the image in narrow areas. The
first part converges after 2500 iterations and the second part converges after
1000 iterations when using our algorithm for this image. The restored image in
Figure 8 b) looks rather good.

Example 3

To test the code for the new boundary condition (25)-(26), we created a simple
image, see Figure 9. Information is missing in a rectangle in the middle of the
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a) b)

c)

Figure 6: a) The original image. b) The image with the inpainting region
obtained manually. c) The restored image using equations (5) and (10).

image which only has two intensity values. If we use Dirichlet boundary con-
ditions (5)-(10), all information from the surrounding area will be transported
into the inpainting region. If the Neumann boundary is used (25)-(26), it is
possible to choose which intensity value to be selected to propagate into the
inpainting region. The result is shown in Figure 9. The result using Dirichlet
boundary conditions is displayed in Figure 9 b). With ǫ=0.0001, ∆t1 = 0.01,
the normal vectors converged after 12000 iterations and with ∆t2 = 0.2 the
second part converged after 25000 iterations. With a larger ǫ, the corners and
the boundary close to the corners may be smeared.

Figure 9 c) shows a similar test with Dirichlet conditions on the upper half
and with Neumann boundary conditions on the lower half of the boundary of
the inpainting region. From Figure 9 c) we see that only one of the colours was
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a) b )

c)

Figure 7: a) The original image d0. b) The image with the inpainting region
white. c) The restored image d.
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selected and propagated to the interior.

Example 4

In this example, we process an image from the match between Norway and
Croatia in the XIX Men’s World Championship. We want to remove the Croa-
tian player in Figure 10. When a Dirichlet condition is used around the whole
boundary, Figure 11 a), colours from the Norwegian players propagate into the
background. To make it look natural, it is necessary to use Neumann boundary
conditions around the two Norwegian players. The inpainting region and the
Neumann boundary are marked in Figure 11 b). Figure 11 c) shows the restored
image using this new boundary condition. When Neumann boundary condition
is used, the colour on the Neumann boundary does not influence the interior.

Example 5

This example has more texture in the background. We want to remove the
snowboarder and fill in the missing region. It is not desirable that the yellow
object in the front propagates into the inpainting region. Figure 12 d) shows that
the best result is obtained with Neumann conditions on part of the boundary.

4 Conclusion

In this work, we have proposed a method which uses two second order equations
to do image inpainting. The equations used here are similar to the equations
used in [2] and [3]. By imposing the zero divergence condition which was not
imposed in [2], it seems that our methods are able to produce better results
when the inpainting region is rather large in diameter.

It is an interesting problem to study the existence and uniqueness for the
solution for the equations we used. We have observed numerically that the
gradient flow equations for (5) and (10) seem to have stable and unique solutions
under the condition that the initial values are fixed.

References

[1] Criminisi A., Perez P., and Toyama K. Region filling and object removal
by exemplar-based image inpainting. IEEE Trans. Image Process., 13(9),
2004.

[2] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera. Filling-
in by joint interpolation of vector fields and gray levels. IEEE Trans. Image

Processing, (10):1200–1211, 2000.

[3] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. Navier-Stokes, fluid dynamics
and image and video inpainting. In Proc. Conf. Comp. Vision Pattern Rec.,
pages 355–362, 2001.

[4] M. Bertalmio, G. Sapiro, C. Ballester, and V. Caselles. Image inpainting.
Computer Graphics, SIGGRAPH, 2000.

14



[5] M. Bertalmio, L. Vese, G. Sapiro, and O. Osher. Simultaneous texture and
structure image inpainting. IEEE Trans. Image Process., 10(8), 2003.

[6] Vicent Caselles, Simon Masnou, Jean-Michel Morel, and Catalina Sbert.
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Figure 8: a) The image with the inpainting region white. b) The restored image
using equations (5) and (10).
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Figure 9: a) The image with the inpainting region marked. b) The image
obtained with Dirichlet boundary. c) The image obtained using Dirichlet and
Neumann boundary conditions.

Figure 10: An image from the match between Norway and Croatia in the XIX
Men’s World Championship.
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a)

b)

c)

Figure 11: a) The restored image using Dirichlet boundary conditions. b) The
image with the inpainting region violet. c) The restored image using Dirichlet
and Neumann boundary conditions.
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a) b)

c) d)

Figure 12: a) A photo taken by Espen Lystad, a well-known snowboard pho-
tographer in Norway. b) The image with the inpainting region marked. The
Neumann boundary is black. c) The restored image only using Dirichlet bound-
ary condition. d) The restored image using Dirichlet and Neumann boundary
conditions.
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