A LEVEL SET FORMULATION FOR VISIBILITY AND ITS DISCRETIZATI ON
CHIU-YEN KAO AND RICHARD TSAI

ABSTRACT. We study an implicit visibility formulation and show thdie corresponding
closed form formula satisfies a dynamic programming priecipnd is the viscosity solu-
tion of a Hamilton-Jacobi equation involving jump discaniities in the Hamiltonian. We
derive the corresponding discretization in multi-dimensi and prove convergence in the
one dimensional case. Finally, we introduce a generatizatf the original Hamilton-Jacobi
equation and the corresponding efficient numerical algoritso that visibility of an observer
in non-constant media can be computed. We also introduceciadization of the algorithms
for environments in which occluders are described by thplyad a function.

1. INTRODUCTION

We are interested in constructing a representation of whabaerver can see in a bounded
domain under the presence of opaque obstacles that obiteutines-of-sight” of the ob-
server. Alternatively, this problem can be interpreted adifig the shadowed region for
given point light source. We assume that the obstacles ach hatger than the wavelength
of visible lights and that no reflection takes place. In tresspective, we are interested in
a simplified high frequency wave propagation problem of isgjthe wave equation in the
frequency domain

A+ (%fw: 0,

with Dirichlet boundary condition at the light soureg (observing location), absorbing
boundary condition on the surface of obstacle, and a simgtgiency solution in the form
w(Xx) = A(x) exp(iwS(x)). In this settingg(x) is the wave speed and is assumed to be 0 inside
the obstaclesw denotes the frequency of light and is assumed to be very kBrdgbhat the
geometrical optics theory [14] gives good approximatiamthe theory of geometrical op-
tics, to leading order as 1 — 0, the shadowed region is bounded by the family of rays that
tangent the non-reflecting obstacles and the obstacles#teas. Outside of the shadowed
region the eikonal equation for the phase is derived:

(1) ¢(x)|0S =1, Sho =0,

The rays emanating fromy travel along the gradient of the phase) := +0S/|09. If ¢(x)
is constant outside of the obstacle, the ray that passesghmpoinix is simply the straight
half line that starts out fromg and reaches.

We are interested in solving the wave propagation problem simplified setting com-
pared to the context described in the previous paragrapharéd/eoncerned with efficient
ways of approximating the shadowed region accurately ote€ian grids. In [22], the au-
thors proposed a level set algorithm to do so, assumingtkats constant and the obstacles
are implicitly represented by a continuous function. Tlagorithm can be interpreted as
solving a Hamilton-Jacobi equation that has discontinut®ppendence on its solution. The
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zero level set of the solution would then correspond to tlaelstv boundary. In this paper,

we show that this algorithm constructs the viscosity solutif the non-standard Hamilton-

Jacobi equation involved, discuss the corresponding nicaienethods, and generalizations
in several contexts that include the case of variable wagedp

2. COMPUTING VISIBILITY

Computing visibility has been an important task in many sitiie problems. Examples
include high frequency scattering problems, computingjuirey waves that propagate along
the scattering surfaces, and deposition problems thaeappenaterials science. In many of
these problems, more general and complex numerical ahgasiaare implemented to solve
equations that are more closedly related to the underlyiygips. For example, Maxwell's
equations can be solved, in principle, with high frequenutial data over a domain with
complicated geometry. But in practice, it might not be cotapianally economical to do so.
Some of these problems ay becomes easier to manage if thevatthdegions are precom-
puted. It is possible to design much simpler and robust dlguos for this simpler objective
of finding the visible region, without other information $uas the amount of illumination.
this is what we mean by computing visibility in this paper.

Another class of prominent applications requiring vistpicomputtion lies in scientific
visualization. In this context, the basic form of visibjltomputation is believed to be mostly
solved, and selected algorithms have been implementedrdwaee . Nevertheless, as the
demand for more detailed rendering increases, the chaléepgsed by large datasets and
near real-time computation necessitate the developmeme¢wftechniques. A number of
authors have addressed these challenges [7], a detailed/refwhich can be found in [10].
Almost all of these methods use explicit representationsh(ss triangles) and a variety of
computational geometry techniques such as hierarchicdéred data structures and related
algorithms to reduce the number of primitives consideregl, €, 2, 16][20][11][19].

Under most of the algorithms referenced above, light ragssamaight lines emanating
from the observing position, and a point is either visiblaraisible to a given observer.
This makes it difficult to represent and manipulate the abeturegion on computers. In
particular, this type of representation is inadequate & needs to compute numerically the
sensitivity of visibility under certain changes in the sejt(e.g. observer positions). Sensi-
tivity of visibility information can be crucial to applicains of vision based surveillance and
robotic planning. In [6], the authors considered a classpbintzation problems involving
certain functionals of the visibility information. Themgptimality conditions are derived and
solved numerically on the grid; the optimality equationstain “derivatives of the visibil-
ity” with respect to the observer location. It is not hard ok of situations in which rays
bend due to inhomogeneity in the velocity field. Therefadres desirable to have a notion of
visibility that is smooth enough so it can be differentiagasily by robust numerical meth-
ods, and that it can be generalized to the case of non-stnagb. This is the motivation
of our current work. We will see that by considering the \igi§pproblem under a suitable
PDE approach, we can obtain several generalizations figtaral derive the corresponding
numerical methods based on some new robust methods fongd#amilton-Jacobi equa-
tions.

Visibility in an implicit setting. Throughout this paper, the obstacles are implicitly defined
by the negative part of a functiap i,e, the location of the obstacles corresponds to the set
{@ < 0}. @will be taken as the signed distance function in most apfiina.
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A natural approach is to define visibility by the differendettte so-called geodesic dis-
tance functioruy, which solves (1.1) witke(x) = 0 on{@ < 0} (where obstacles situate) and
c(x) =1 on{@> 0}, and the Euclidean distance functionthat solves the eikonal equation
(1.1) withc(x) = 1 on the whole domain. A pointis occluded from the vantage poixg
isu1(y) > ux(y), and visible ifui(y) = ux(y). This was the approach adopted in [1]. The
shadow boundary corresponds to the boundary of thfuget u,} which is hard to locate to
high numerical accuracy sineg — u; is not differentiable there. Furthermore, numerically
solving eikonal equations to a desired quality on a grid \wifmite index of refractiong ™1,
is a delicate problem.

In [22], the authors propose to allow rays to propagate indbe entire domain as if there
was no obstacle. The visibility information is instead ehe® by a continuous functiaf
defined by

(2.1) W(X; Xo) ::tg&q}cp(onrt(x—xo)).

This formula prescribeg(x;Xo) to be the minimum value ap along the line segment con-
nectingx andx,. A point is occluded if this function is negative there, amckwersa. This
function is obviously Lipschitz continuous and hence itnso®th almost everywhere, in-
cluding, in particular, over the shadow boundaries. Thélermo of handling discontinuities
and singularities in solving eikonal equations on the gsidircumvented. We can thereby
differentiate and integrate visibility with suitable acaay by robust numerical methods de-
veloped for the Level Set Method [18, 17]. For instance, tiseadce function to the shadow
boundaries can easily be constructed by an applicationeofaitt sweeping method [23] as
a useful byproduct. In fact, in the following, we propose arnileon-Jacobi equation and
show thatp defined in (2.1) is the corresponding viscosity solutiorhaf propsed equation;
we show thatp can be constructed by a fast sweeping method.

In this paper, we discuss some properties of the notion dbility defined in (2.1) and
the corresponding numerical schemes. We show ghsatisfies a dynamic programming
principle, and is the unique solution to an integral equmatie well as the viscosity solution
to a Hamilton-Jacobi equation with discontinuous depeod®m the solution. This equation
involves a Heaviside functioH that is dependent on the solutidd() =1ifu>0,H =0
otherwise), and therefore, established analysis for atiweal Hamilton-Jacobi equations
does not applied directly. We derive an upwind discretoratbf the nonlinear Hamilton-
Jacobi equation (4.2). We shall see tHabeing upper semi-continuous plays a crucial factor
in both the analytical properties of the solution and the etoal discretization. Comparing
with the eikonal approach mentioned above, which has tolkatidcontinuity along some
surfaces over the numerical grid, we treat the disconigsiin the evaluations of parts of
the equations and thus avoid the possible lost of accuraeyalgrid resolution. We show
convergence of the resulting numerical solutions in the dineensional case. Finally, we
consider some generalizations that include visibility pomation under curved ray paths and
a new efficient visibility algorithm for environments in vafi occluders can be described by
the graph of a function. The corresponding differential atns and discretizations are
derived. Numerical examples in one and two dimensionsudict numerical convergence
tests both these new algorithms are presented.
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3. PROPERTIES ORJ)

We assume that the wave speed is constant in the whole doméhatsrays are straight
lines. We first prove thap defined in (2.1) satisfies a dynamic programming principhel, a
is the solution to an integral equation as well as a Hamitmebi equation.

We begin be some necessary lemmas and definitions. We dé&edefttand right partial
derivatives of a differentiable functien RY — R by

V(X X X, Xg) — V(X
a)j(:jv(x):h“rgi (1 ]+ ;1-5-1 Xd) (),

wherex = (x1,%o, - -- ,Xq) is a vector inRY. Correspondingly, we define the upwind gradient
of a functionv related to the unit vectar= (rq,rp,--- ,rq) as

sgn(—r1)05, v+ sgn(ry)d; v

Ty SgN(—r2)05,V+Sgn(r2)dy,v

SON(—rd)0x,V+Sgn(rg)oy,v
Also, we define one-sided directional derivativesaf the directiorr as
v(x+hr) —v(x)

09 = g, =
. V(X)=Vv(x—hr

Of course wherv is differentiable in the direction af, each respective one-sided notion
above is equivalent to its counter part; i.e.

Vi (X) = Vi (%),
and we will usev, andllv to denote, respectively, the directional derivative aredgtadient
of v.
Lemma 3.1. Let v be a function in &§RY). Givenr = (ry,---,rq) € RY.

v(x) —v(x —hr) <0 = O'v-r<o.

Proof. By manipulation,
V(x) =v(x—=hr) = v(x) —v(xy —hrg, %, Xq)

V(X1 —hry,Xg, -+, Xq) —V(xa —hry, % —hra, -, Xq)
+V(Xl_hrl7X2_hr27"' 7Xd) -
+V(X1_hr17”' 7Xd> _V(Xl_hrlv'” , Xd _hrd>

By continuity, takingh — 0+, we have the inequality. O

The following theorems show that the solution has a dynamugramming principle.
Theorem 3.2. For any pointy bounded betweexy andx,

(3.1) P(X;Xo) = min(w<><:><o>,tg(gq}cp(y+t(><—y>)>~
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Proof. Sinced(x;Xo) = Minc[g 1] @(Xo +t(X —Xp)), we have
W(xixa) =min ( min @(c0-+tx-0)), min @0+ tx-%0)

for anyt* in [0,1]. Note that when* = 0 or 1, we have the original definition df, (2.1).
Denotey = Xg+1t*(X — Xp), t1 = t/tx, andty = (t —t*) /(1 —tx). We have

(cixa) =min (| min g00-+t(y o)), min @(y+tx-y) ).
Thus
Y(X;X0) = Min(W(y;Xo), Min @(y +t(x ~y))).
t€[0,1]

O

Lemma 3.3. Let ¢: RY — R be a bounded and Lipschitz continuous function, gnbe
defined as in (2.1). Latbe the vector field defined iy — Xo)/|X — Xol. If Y(X) = @(x) at
some poink # Xo then

l'IJr* Z (pf*7
Wry <@+,
Proof. By definition of §i(y) < @(y) for ally € RY. So

P(x) = P(x—hr) = @(x) —P(x—hr) > g(x) — e(x —hr).
Similarly,
W(x+hr) —W(x) = W(x+hr) —e(x) < e(x+hr) —@(x).
Taking the limith — O+, we obtain the stated inequalities. O

Lemma 3.4. The following are true:

(1) If @4 (x) > 0theny,;(x) =0;

(2) If @¢—(x) >0 theny,_(x) =0;

(3) if W(X) < @(x), thenPr. (x) = Yr—(x) = 0.
Proof. We prove 1 and 2 together. . (x) > 0, then for sufficiently small O< h <
ho,=@(x £ hr) > £@(x), and consequently, by definition 2.4y(x) = Y(x £ hr). Hence
l.IJrj:(X) — O

For the casa&)(x) < @(x), let Y(x) < @(x) — & for somed > 0. By continuity of, there

existshy > 0 such that@(x +hr) —@(x)| < & for all 0 < |h| < hs. l.e(x) < @(x+ hr) for
all 0 < |h| < hs. By (3.2), W(x+hr) = @(x) andyy+ (X) = 0. O

Lemma 3.5. If @ (X) < 0, andP(x) = @(x), thenPr; (X) = @+ (X).

Proof. If @1 (X) < 0O, then there exist a real numb&y s.t. @(x + hr) < @(x) for 0 < h < h.
SO Mifye o hor) @Y) = GX -+ hor ). By (3.2),p(x +hr) = Y(x) = ¢(x), and

B (x) = fim YEFID =000 _ ) @x+hr) — ¢x)

h—0t+ h h—0t h

= @r(X).
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Lemma 3.6. Let ve C*(R) and u be a Lipschitz continuous function &n If x be a local
maximum of u-v, then

Ur+(X) <V (X) < Up—(X).
Conversely, ik is a local minimum of u-v,

Ur—(X) < Vr(X) < Upg(X).

Proof. Sinceu is Lipschitz continuous, is differentiable almost everywhere angd. exist.
Assumex is a local maximum ofl — v, then3hg such that forth| < ho,

U+ (X) — Vv (X) <0,

(U=V)|xthr = (U=V)[x<0 = {ur_(x) —Vr(x) > 0.

Henceu, 4 (X) < vy (X) < ur—(X). The inequalities at a local minimum of- v can be obtained
in a similar fashion. O
3.1. Integral Formulation. We useH (x) to denote the upper semi-continuous Heaviside
function:
1, x>0
Hx)=<" ~— 7
0 x<0.

For simplicity of exposition, we shall use to denote mifz,0).

Theorem 3.7. Giveng e C1(RY) such thatp has finite number of extrema in any bounded
interval, P(X; Xo) = Mine(o,1) @(Xo +t(X — X)) satisfies the integral equation

(3.2) Uu(X;Xo) = @(Xo;Xo) + /01 H (u(xt) — @(xt)) (@ (Xt))  [X —Xoldt,
wherex; = Xg +t(X — Xo).

Proof. Denote Sincep(x;) — (%) is Lipschitz int, we can construd0, 1] = UM, Ik, where
lx = (tk,tr1),0 =19 <ty < --- <ty = 1 such thatp — @is strictly negative ij and zero in
lj+1 (sincey < @by definition). By continuitylp —@= 0 inlj+1. Without loss of generality,
we assume thap — @= 0 in lp. (In this casep € C impliesy € Ct in lp.) Otherwise, we
can always choose an empty sei@3Ve then evaluate the integral in (3.2) figr<t <t,,
sincep— Y = 0 in lg, andy is always non-increasingdf; (x;) < 0),

[ R W00~ 000) @ () Ix—xaldt = [ (@ 0x0) ol
:/otmin((p((xr),O)\xt—xo|dT _ /Otmin(qu(xT),O)|xt—xo|dT:qJ(xt)—Lp(xo).

Therefore,

t
W(Xt) = @(Xo) +/O H (W(Xc) — @(%0)) (@ (X))~ [Xc —Xo[dT, X € lo.
Fort; <t <ts, p— Y > 0,

t ty t
L HW06) = 000) (@ 060) e —xoldt = [+ [7H (Wixe) = @) (@1 (x0)) e =l
ty

) — o) + [ 0- (@ (xc)) ™ [xc — ol
) — 9%0)
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Now we want to provej(x;) = P(Xt, ) for x; € 11. Due to the continuity of, Y(x;) = @(Xt,)
for somet, € [t1,t]. Suppose thdt > t;. By definition,W(x¢) < W(xt,). ButW(x;) = @(x,) >
P(xt, ), thereforet, must bet; by contradiction. Them(xt) = @(Xt,) = W(Xy,).

Thusy satisfies (3.2) imy JI2. We may continue this calculation inductively, usip@,, )
as new initial value, and the claim is proved. O

Lemma 3.8. Assume thap € C! is strictly decreasing in the interva k= [xo,x4]. If u satis-
fies Equation (3.2) and(dp) = @(Xo), then ux) = @(x) for all x € lo.

Proof. If u satisfies (3.2), then is continuous and monotonically decreasinggnSince
u(Xo) = @(Xo) , @ (Xo) < 0, andH(u— ) < 1, we have

o) = 000)+ [ 190ty —xo)ly - xol

< U+ [ H(u— @) min(@, 0)y —xoldt = u(y).

Assume thau(y) > @(y) for somey € lo. Definet, = inf{t € [0,1] : u(Xo+t(X1 —Xo)) >
@(Xo+1t(X1—Xo))}. This impliesu(xo+t(X1—Xo)) = @(Xo+1t.(X1 —Xp)) for 0 <t <t,. Let
Y| = Xo -+t (X1 —Xo), andy = xo+t/(x1 —Xp). Since@ < 0inlg,min(¢,0) = ¢, and

o) = o)+ [ 1oty —x0)ly ~ xol

!

— uiy)+ [ H(u—@)min(@r,0)ly —xoldt

t

t, t
— oxo)+ [+ [ H(u=g)min(e,0)ly — xoldt = u(y).
We have a contradiction. Together with the previous inagual = @in lo. U

Theorem 3.9. Given@ € CY(RY) such thatg is finite number of extrema in any bounded
interval. If y and wp be two solutions of Equation (3.2), thep(xy +t(X — Xg)) = U2(Xo +
t(X—Xp)) for0<t<1.

Proof. Definex; = Xo +t(X — Xo). We partition[0, 1] = Uﬁk:(ﬂk, wherelg = (tk, tx+1), such
that@(x;) is strictly decreasing fdre I and strictly increasing fare Ij+1,j =0,1,2,---.
Without loss of generality, we assume tlgais strictly decreasing ihg. Lemma 3.8 shows
thatu; = up = @ in lp. Since@ s strictly increasing irl1, if ui(x) = uz(x), then for (3.2)
implies thatu; (X) = up(x) all x € I1.

Now, consideiu; anduy at xg,. If @(xt;) < @(Xt;) = U1(Xt,) = U2(X,), then by continuity,
the hypothesis on the extrema, the monotone decreagedp, there is a unique poing, ,
such thatx,, < x < xt; and@(Xt,) = @(Xt,). Moreover,@(x;) < @(x,) fort; <t <t,. So by
(3.2), ur(xt) = u1(xy,) for to <t <t,, anduy(x;) = @(xt) for t, <t < t,. Clearly, for this
casels =uj in lo.

If @(Xt3) > @(Xt,) = ur(Xt,) = Uz(Xt,), then the right hand side of (3.2) is 0 ang= uy in
P
Proceed iteratively, using similar arguments, we showuhat us. O

This integral equation implies thatdecreases by the rade(x) /dr, r = (X —Xo)/|X—Xo
if it is negative andi < @.
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3.2. Differential formulation. The corresponding differential equation®{ is as follow-

ing

(3.3) Oxu(X; Xo) - 1 (X) = H (u(x; X0) — @(x)) min(Ce-r,0).

This equation described how the directional derivativeutthohange so thatis decreasing

in the ray direction wheneveyg is decreasing in that direction and the value of u is no less
thane.

We note that the usual viscosity solution theory[15, 9, Gp8First order nonlinear equa-
tions, because of the discontinuous dependence on theosolutThe Viscosity solution
theory of Hamilton-Jacobi equations with discontinuousficients was developed by H.
Ishii [12], and can also be found in for [4, 5]. We repeat thémdon here for our exposi-
tion.

Definition 3.10. Let @ be a Lipschitz continuous function &Y andg(xg) > 0. We consider
the Dirichlet boundary value problem

F(x,u,0u) =0 inRY\ {xp},
(3.4) {u(Xo) = @(Xo),

where
F(x,u,p) =p-r(x)— H(u(x)—e@) min(Ce-r,0)
is piecewise continuous i andr (x) is smooth inR%\ {xo}. Letv e C* be a test function.
(1) uis a viscosity super-solution F*(x, u(x), dv(x)) > 0 at local minima ofi—v;

(2) uis a viscosity sub-solution . (x,u(x), 0v(x)) < 0 at local maxima ofi—v;
(3) uis aviscosity solution if it is both a viscosity sub-solutiand super-solution.

Here,F. andF* are respectively the lower and upper semi-continuous epeebfF with
respect to its second argument; i.e.

Fu(X,U,p) = Iimyinqu(x,y, p)

and
F*(x,u,p) = limsupF (x,y,p).

y—u

We shall prove that in the one dimensional setting), defined in (2.1), is the viscosity
sup- and sub-solution of (3.2).

Theorem 3.11.Consider the problem:
F(x,u,0u) =0Ou-r —H(u—@ min(d-r,0)=0 R\ {xo}
U(Xo) = @(xo)

W(X;Xo) = Minke[g 1) @(Xo +t(X —X0)) is the viscosity sup- and sub-solution of (3.2) under
Definition 3.10. Herea (x) = (X —Xp) /|X — Xo|-

(3.5)

Proof. Let v be an arbitrary function ii€*(RR). Let x be a local extremum of —v. By
definition, < @for all x € RY. We break the evaluation & down to the caseg(x) = @(x)
andy(x) < @(x).

(1) w(x) = @(x): We first observe thafy (x) = O@(X) - r(x) < 0, otherwise, for suffi-
ciently smallh > 0, @(x —hr(x)) < @(x). Sincey(x —hr(x)) < @(x—hr(x)), we have
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Y(x—hr(x)) < w(x) which contradicts the definition af. If P —v reaches a local minimum
atx, F*(x,W(x),Ov(x)) = vr(X) — @ (X). By Lemma 3.6, (X) > Wr_(X), while by Lemma
3.3,yr-(x) = & (x). So

F (X W), VX)) = e (X) — @ (X) = Wr—(X) — @—(X) = O.

If ¢ —vreaches a local maximum atthen by Lemma 3.3,

Wr(X) < Ve (X) <WPr(x) <0,

we haveF, (x, P, 0(x)) = v (X) < 0.
(2) P(x) < @(x): F(X,P(x),vr (X)) = V¢ (x). From Lemma 3.6, we have

mMin(Wr (X), Pr— (X)) < Vi (X) < max(Wr(X), Pr—(x)).

However, Lemma 3.4 implieg, . (X) = 0 and consequently (x, Y(X), V(X)) = v (X) =0
at extremum. Thereford) is automatically both a sub- and super-solution. O

4. GENERALIZATIONS AND DISCRETIZATIONS

4.1. Visibility of a single observer in inhomogeneous ray fieldsFormula (2.1) can be
generalized to visibility in nonhomogeneous ray fields, imck rays are not straight lines
anymore. Consider a medium with a smooth nonconstant infleefractionn(x). In the
setting of geometrical optics [14], the solution of the @ilabequation

|08/ =n(x), S(xo) =
determines the velocity of rays emanating frggn Thus, a ray passing through a poynis
the integral curve of the field(x) = 0S(x)/|0S(x)| connectingk, to y. Denote the segment
of this ray between, andy by L(xo,Y). We define the visibility ok, as
(4.2) W(y;Xo) = min @(2).
z€ L(Xo,Y)
This is a generalization of Formula (2.1) and defines théwitsi function as the minimum
value of@along each ray_(Xo,y).
For generah dimensions, we have

4.2) O0u-r = H(u— @) min(g,0)

wherer (x) = 0S/|0S]. We may factor oui]S from both sides of the equation without
effecting he solution. So in the following, we shall ug&) = 0S(x) instead.

4.2. Numerical algorithms. We discretize (4.2) with the standard upwinding finite dife
encing:

d d
(4.3) > 1D u+ry Dyu=H(u—@min(y ryDy @+r,D;9.0).
v=1 v=1

We first show that this discretization is equivalent to trgoathm proposed in [22]. We then
prove the convergence of this algorithm in one dimensionsiél use the integral formula
of the analytical solution (3.2).

It suffices to show the equivalence in two space dimensiotis w4 (ry > 0,r2 > 0).
Formula (4.3) reduces to

Uij—Ui-1j  Uij—Uij-1

(4.4) r
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and
(4.5)
G —G-1j G —@j-1.—
Ui7j:r1+l’2 raUi—1j+rouij—1+hH(U j—@ j)(rs J - ]-I-I’z i - j >)

In solving the above equation (4.5) farj, we may assume that_1 j andu; j_1 are identical
to the analytical solution, and therefore we haye, ; < @_1; andu; j_1 < @ j_1.

Apparently, the solution ofl j depends on the possible evaluationddts j — @ ;). If
H(ui,j—@,j) =0,i.e.q@ > uj, we have

(4.6) Ui j= e
which is identical to the solution of the upwind discretimatof Cu-r = 0. If (4.6) yields
Uij < @, it is a solution to (4.5). However, if the valug; computed above does not
satisfy the hypothesis thaf ; > u; j, then we conclude that the cadéu; j — @ j) = 0 is not
possible, and we should solve (4.5) under the hypothedisitha ; — ¢ j) = 1. In this case,
@,j < Ui j, we have

(reUi—g,j+rauij—1),

(n7] _(ﬂ_17] (ﬂvj _(ﬂvj_l —
4.7) U FqUi—1.j+roUij—1+h(r r .
(4.7) uj r1—|—r2<1'1"+2"‘1+(1 h +r2 h )
Consequently,
u:, < MuU_—1i-+raui— r i— @1 r i— @ i—
ij = r1+r2( aUi—1,j +Tr2Ui j—1-+ 1((971 G 1,J)+ 2((971 @ 1))
S @

and the only possibility is; j = @ j. Thus, we see that the solution of (4.5) can be constructed
by performing the two steps as proposed in [22]:

(1) SolveOu-r = 0 atx; ; by upwinding, and set the solution téf?p. In the settings

above,
1
4.8 tmp _ L )
( ) u|7] r1+r2 (rlul l,j +r2ul,j 1)
(2) Update:
(4.9) Ui j = min(uit:-‘p,(nyj).

This discretization can be easily generalized all posdilections,r € St. Algorithm 1
suggest one possible numerical algorithm solving the tizee system. it is based on a
sweeping algorithm which can be interpreted as a versioreok&-Seidel method combined
with a predefined set of grid node ordering so that charatiesiare better approximated.
For more discussion on fast sweeping algorithms, we refergéhders to[13, 23, 25]. Itis
also straighforward to apply a fast marching algorithm [24] for this discretization. We
remark that further extension to higher dimensions is rattraight forward.

Theorem 4.1. The discretization is monotone and consistent.

Proof. The discretization if also clearly consistent, since a#l tierivatives in (4.4) are ap-
proximated by standard one sided finite differences. By){#®), uij = u; j(a,b) is a
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function ofa = U_signr,),j andb = U; j_signr,):

Ui, j (& b) = min( (Irca+rzfb), @),

Ira]+1r2|
and clearly, it is a non-decreasing functionacdndb. O

The monotonicity together with (4.9) implies that we alseda decreasing sequence of
approximations when we refine the grid dyadically:

Corollary 4.2. Consider the one dimensional domalL] in whichxp = 0 andr(x) = 1.
Let U denote the solution of Algorithm 1 on the megh=xjh. If u3" > uf , then §" > uj,
forj=1212,---

Proof. Under the given hypotheses, Steps (4.8)-(4.9) yield thsftismiugj = min(ugjfl, ®j)-
By induction,
h

up; = min(u};_ 1,(p2,) min(min(ul; 2, G2j—1), @2j) = Min(U; . @2j—1,¢)) =
— min(u}, {@JE )
= mln(uo,{(pzl}. o,{(Pzwl}. -0 Y
< min(min(ud" {(Pzi}. o) {0241} 5h
< (U {(PZIH} )

U

Theorem 4.3. Consider the one-dimensional case witl)r= (x—Xp)/|X—Xo| = 1 in the
domaln[xo Xo+L]. Let Lf‘ denote the numerical solution constructed by (4.4) at Xo+ ih,

i =0,---,N, and let |x) denote the analytical solution defined in 2.1. Assume that u
u(Xo)- We have

N

(4.10) 0<Epi= Z}(ui“— u(x))h < Cih,
i=

and

(4.12) 0<Ew = Orggﬁ ul —u(x) < Cyh,

Where G is a Lipschitz constant afin [Xo, Xo + L].
Proof. In one dimension,

h < oh il o __sh . _ ;
uj+1 = m|n<uj7(p]+l) - mln(uj—17(pj7(p]+l) - = m|n<u07(pl7(p27 T 7(~pj+1) - 0§r|p§IP+l
u(X; = min(u(X; min X)) =---= min min X)).
(xj42) = min(u(), min - @()) == min (@, min o(x)

SouH1 > U(Xj+1). Since|@(X) — @Xr1)| < Cp|X—Xkr1| < Chforall X € [X¢, Xi+1]-
min (p(x) > @(Xkr1) — C1h.

Xie XX+

= U(XJ+1>—Or<nkng(cpo,Xk Srpglgmcp(x» o<rlp<|?+l((p(xl> Cih) =uf,; —Cih.

= 0< u?H— U(Xj+1) < Cah.
The two inequalities follow. U
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Algorithm 1 Sweeping Algorithm for solving Equation (4.2)

Sweeping Algorithmip ; is given on the domain. We initialize the unknown to bec
exceptu; j = @ j at the observer.

Do the following steps whiléu™Y —u(| > &:(5 > 0 is the given tolerance)
Sweeping process: A compact way of writing this sweepingitens in C/C++ is:

for (sl =-1; s1<=1; s1+=2)

for (s2 = -1; s2<=1; s2+=2)

for (i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)

for (j=(s2<07?ny:0);(s2<0?j>=0:j<=nx);j+=S2)

calculater; andrs

tmp _ 1 . . R
Ui = KR (|r1|ul—5|gn(r1)7j + |r2|ul71—5|gn(r2))

Lt
uj = min(u’", @ ;)

4.3. Visibility in a graph environment. Assume that we are given a functibnQ c R9 —
R. The graph off overQ describes the occluder. Assume further that the obseredwes/s
on or above the graph; i.e. in the full spaRex R, the observer location is alwaygo, fo)
andfp > f(Xo).

With these assumptions, we construct a functjo — R such that a poinx, z) in space
is occluded from the observerzi< g(x). Furthermoreg(x) = f(x) where the graph of is
visible from the observer.

We want to generalize our previous visibility algorithm sattit constructs such a func-
tion. Starting from the vantage point locatigf following each ray to the boundary 6f,
we need to determine hogvchanges according th

This can be done by definingx, z) = z— g(x) andg=z— f(x) in (3.3). We have

(=0g,1)-r =H(f—g)((-0Of,1)-r)"

%) = (g(xxgi(ofo)'

0g- (X—xg) = —H(f —g) (—=0f - (x—x0) +9(x) — fo) ~ +9(x) — fo.
LetT denote the directiofx — Xg). The equation becomes
(4.12) Og-f =—H(f—g)(—0Of-T+9(x) — fo)” +9(x) — fo.
This gives

where

Thus

Og.F — g(x)—fp, —0Of-F+g(X)—fo>0o0rg(x) > f(x)
gr= af -f, otherwise

with the boundary conditiog(xo) = f(Xo).

We now derive an upwind discretization of Equation (4.12pr Bimplicity of deriva-
tion, we only consider the discretization fdr= 2 with ¥ = (r1 > O,r2 > 0). The upwind
discretization thus takes the form:
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(4.13)

-G j—0i-1j - Gi,j—0Gij1
L, S =—H(fij—
We first consider the different possible evaluations of tiuslinear equation and then sum-

marize to get a compact algorithm. We shall use the supptstripl’ and 'tmp2’ in gfr?pl

andgtmpzto denote that the tentative values obtained by the posstlection of the nonlin-
ear dlscretization.

In the first case~0Of - + g(x) — fo > 0 org(x) > f(x), the equation is discretized by
upwind differencing, leading to

. ,)mln(D f(xij) - T+0ij— f0,0)+0j— fo.

(ri+rz2—nh) gf,n;pl =1r10i—1,j +r20i,j—1— foh.

If r1+r2 # h, we then have

tmp1
g =
The degenerate case @f+ro —h = 0 corresponds t®; j beingh distance fromxo, and it
means that the first case cannot happen on these grid pditiie.domputed value cgtmpl
does not satisfy-0f - T +g(x) — fo > 0 org(x) > f(x), we then abandon the first case and
consider the second caggX: 35 4, $i=Jit — (T (x; ;) - F. Thus

(rlgl 1,j+r20ij—1— foh)/<r1+r2_h)-

gf"?pz (I’]_g| 1,j 20— 1+hD f'J Fi ])/(r1+r2>.

Here the gradient)” fi,j is approximated by the corresponding upwind differencingpar-
ticular, ifry +r = h at he grid poin; j, then the vantage point is located at eitke# j, or
Xi.j—1 (assuming that the vantage point always lies on the gricdrame > 0). Let's assume
thatxo = Xi—1,j and fo = fi_1 j, thenf; j = (h,0) and the upwind discretization af f; j - f; |
corresponds to

£ fg
R r— hl Sy = - i,

Sinceg(xo) = fo, i.e. gi,j—1= fo, g}?;m =0gi-1j+(fij—fiiej) = fi.
In the discretization fod = 2 with = (r1,r2),r1 > 0,r2 > 0, we have the algorithm.
If ri+ra2#h,

(1) Solve
01" = (ragi-1,j +r2gij-1— foh) / (r1+r2—h).
gltn;p (rlg. 1,j+r20 - 1+ hof fij- rlj)/(r1+r2_h)‘
(2) Set
g 900 A" > fijor — 07 (x—x0) + g7~ fo > 0;
= g%, otherwise

Ifri+ro=hgj="fij
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Algorithm 2 Sweeping Algorithm for graph environment.

Sweeping Algorithm-f; j is given on the domain. We initialize the unknogn to bec
excepty; ; = fi ; at the observer.

Do the following steps whilég™Y —g(| > &:(5 > 0 is the given tolerance)
Sweeping process: A compact way of writing this sweepingitens in C/C++ is:
for (sl =-1; s1<=1; s1+=2)

for (s2 = -1; s2<=1; s2+=2)

for (i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)

for (j=(s2<07?ny:0);(s2<0?j>=0:j<=nx);j+=S2)

signx= sign(x; — Xo)

signy= sign(y; — Yo)

=X —Xp
r=Yj—Yo
If ri—+rp 75 h,
git?;plz (|rl|gi—signxj + |r2 Oi,j—signy— th) /(|rl| + |I’2| - h).
gitl:?pZZ (‘rl‘gifsignxj + ‘rZ‘gi,ijigny— hof fi,j 'Fi,j) /(ral+r2]).
If g}f‘;pl > fijor -0 f- (x—xo)+gm‘pl— fo>0
g, =a7"
Else
Jij ng,n;m
Else
gi,j = fij

4.4. Numerical results. In Table 1, we present a numerical convergence study of tee al
rithm. A disc of radius 0.5 is placed at the origin and the obseis placed at—1,—1). In
this example, the light speed is constant outside of theaclest

Table 2 shows a numerical convergence study of the variable wpeed case. For sim-
plicity, we work on the complex plane and denote a pdiy) € R? by its equivalent in
z=Xx+1y in the complex plane. We set up the ray fie{d) = (i/a—1/b)z,a=1.5b=0.75,
and place a circular obstacz) = [z— (1+1i)/4|> — 0.25% in the computational domain
{Z:€C: -1<Re(z) <1land—1<Im(z) <1}. Hence, the analytical solution is

W(zo) = min g(el /P27,
te[0,00)

Next, we test the numerical convergence of the visibilityoaithm for a graph environ-

ment that is introduced in Section 4.3. In our test case, tiskuders/terrain is described by

the graph of a radial symmetric functidiir), r = /x2+y2 for x,y € [—8,8:
7 127 243 1639

L a3 2

) ="100" *56" ~200' " 200 " 1600

with vantage point locatiorg = (0,1.6). We tabulate the absolute errors for thdsinand
l»-norms in Table 3. Notice that the domain for this computaif64 times larger than the
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TABLE 1. Numerical convergence study for the cade) = (x — Xo).

[h=1/50 |

1/100 |

1/200 |

1/400 |

1/800 |

IRIE

0.0165330

0.0079895

0.0039365

0.0019556

0.0009744

|- [les

0.0202971,

0.0100736

0.0050185

0.0025065

0.0012512

TABLE 2. Numerical convergence study for the caée) = (i/a— 1/b)z,

with a= 1.5 andb = 0.75.

[h=1/50

1/100 |

1/200 |

1/400 |

IRIE!

1.1327e-4

4.2022e-5

1.8178e-5

8.6035e-4

-l

2.1822e-3

1.0826e-3

5.3991e-4

2.7083e-4

TABLE 3. Numerical convergence study for the cage) = (X — Xo).

[h=1/10]

1/20 |

1/40 |

1/80 |

9.2951e-1

4.4469e-1

2.1080e-1

1.0426e-1,

1.8051e-2

8.1644e-3

4.7167e-3

2.4812e-3
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previous numerical examples, and the effect of accumja&tiror over this larger domain is
reflected in the computdd errors in the table.

In Figure 4.1, we show the contour for a visibility functionthvfive-circle occluder in
two dimensions. The observer is located @t0). The origin and radius of the circles are
(0.6,1.0), (2.0,1.7),(—0.6,—-0.6),(1.5,—-0.5),(2.5,—0.7) and 03,0.7, 0.15, 03,0.2 respec-
tively. We can see that if a circle is totally invisible to @pger, it does not affect the visibility
function.

Figure 4.2 shows the contour for a visibility function withvd different material with
reflecting index is 2. The observer is located at (-0.5,-0.7%e origin and radius of the
circles are (0.5,0.5), (0,-0.35) and 0.3, 0.25 respedtivel

Figure 4.3 shows the zero level set of the visibility funotishich indicates the boundary
of invisible region. in the figure, the shadow boundariessti@vn by the blue surfaces. The
velocity field is

(X_y7 X+Y, \/EZ)

which gives the curved rays. The occluders consist of thpberes(x — 1)2 + (y — 1)% +
(z—1)?=(0.3)%, (x—1.8)°+ (y—1.8)2+ (z— 1.8)> = (0.8)2 and(x + 0.2)2 + (y+ 0.2)% +
(z+0.,2)? = (0.15)%. The observer is located at (0,0,0). It takes five iteratfonsweeping
scheme to reduce the difference of two successive itesgtjf — u”*lHI1 to be less than
10712,

Figures 4.4,4.5, and 4.6 are three examples of the algofithithe graph environment.
The shadow boundaries are shown as the bue surfaces (curves)
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FIGURE 4.1. Contour plot of visibility function with five-circle @tuder.
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FIGURE 4.2. Contour plot of visibility function with refraction dex 2.

FIGURE 4.3. The observer is located(@& 0,0).¢is the signed distance func-
tion to the three spherég — 1)° + (y— 1)? + (z— 1)2 = (0.3)%, (x— 1.8)° +
(y—1.8)%+ (z—1.8)? = (0.8)2 and (x + 0.2)% + (y + 0.2)% + (z+0.,2)? =
(0.15)2. The velocity field is(x—y,x+Y, v/22)
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FIGURE 4.5. f = cog5/X2+ y2T) —4(x2+y2)% +5, domain [0 1]x[0 1],
dx = 0.01,x = (0.02,0.02)

FIGURE 4.6. Shadow boundaries (blue surface) of the visibilityrfra van-
tage point (green dot) over a region of the Grand Canyon.
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5. CONCLUSION

In this paper, we discuss some properties of the visibilityction (2.1) and the corre-
sponding discretization (1) that is introduced in the secaathors earlier work [22]. We
show that this notion of visibility, i.e. formula (2.1), ssftes a dynamic programming prin-
ciple, is the unique solution to an integral equation andvtbeosity solution to a Hamilton-
Jacobi equation with discontinuous dependence on thei@oluive show further that Al-
gorithm 2.1 can be derived directly by the upwind discreitraof the nonlinear equation
(4.2). Finally, we consider some generalizations thatuidelvisibility computation under
curved ray paths and a new efficient visibility algorithm é&mvironments in which that oc-
cluders can be described by the graph of a function. Futueetiin includes the extension
of Algorithm 2 to the case of non-constant wave speed, andldping and analyzing multi-
resolution algorithms.
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