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Abstract. We apply the Piecewise Constant Level Set Method (PCLSM) to
interface problems, especially for elliptic inverse and multiphase motion prob-
lems. PCLSM allows using one level set function to represent multiple phases,
and the interfaces are represented implicitly by the discontinuity of a piece-
wise constant level set function. The inverse problem is solved using a vari-
ational penalization method with total variation regularization of the coeffi-
cient, while the multiphase motion problem is solved by an Additive Operator-
Splitting (AOS) scheme.

1. Introduction

The traditional level set method of Osher and Sethian[12] plays a great role in
dealing with interface problems. By level set method, one doesn’t evolve the in-
terfaces, instead one just evolves the level set function. The main advantage of
level set approach is that the interfaces are implicitly represented by a level set
function, and so complicated topological changes can be dealt naturally and easily.
In [7, 6, 5], some variants to the traditional level set method have been proposed.
In this work, we are trying to show the applications of the Piecewise Constant
Level Set Method (PCLSM) of [7, 5] for some interface problems. For traditional
level set methods, one needs to reinitialize the level set function to be a signed
distance function during the iterations, and cautions must be taken with respect
to the discretization of Heaviside and Dirac functions. The piecewise constant level
set method doesn’t need to care about these issues [7]. We would like to mention
that some related ideas have already been used in the following publications, see
[13, 3, 4, 2, 17, §].

Received by the editors January 16, 2006.

1991 Mathematics Subject Classification. Primary 99Z99; Secondary 00A00.

Key words and phrases. level set, piecewise constant, inverse problem, multiphase motion, TV
regularization.



2 Hongwei Li and Xue-Cheng Tai

2. Piecewise Constant Level Set Method Formulations

The essential idea of the PCLSM of [7] is to use a piecewise constant level set
function to identify the interfaces separating the subdomains. Assume that we
need to partition the domain 2 into subdomains €;,7 = 1,2, ...,n and the number
of subdomains is a priori known. In order to identify the subdomains, we try to
identify a piecewise constant level set function ¢ such that

(2.1) p=1i, inQ, i=12,...,n

Thus, for any given partition {€2;} ; of the domain €, it corresponds to a unique
PCLS function ¢ which takes the values 1,2,--- ,n. Associated with such a level
set function ¢, the characteristic functions of the subdomains are given as

(2.2) vi=o I @ a= I G-h,

j=1,j#i k=1k#i

If ¢ is given as in (2.1), then we have ¢;(x) = 1 for z € €;, and ¥;(z) = 0 elsewhere.
We can use the characteristic functions to extract geometrical information for the
subdomains and the interfaces between the subdomains. For example,

(2.3) Length(0Q;) = / [Vipildz, Area(;) = [ de.
Q Q
Define
(24) K(9)=(6=1)(¢=2)(¢=n) = [(6 - 3.

At every point in €, the level set function ¢ should satisfy
(2.5) K(¢) =0.

This level set idea has been used for image segmentation in [7, 14, 15] and inverse
problems involving shape identification in [16]. Fast algorithms have been also
developed for this method for image segmentation in [14, 15].

When one really wants to numerically compute the length or area terms in
(2.3), caution must be taken. Because 1); is not continuous along the interfaces,
the commonly used forward and backward difference scheme may not approximate
those terms consistently. However it is still possible to find a way to discretize the
length and area terms. In our numerical implementations, for example, we found
that the central finite difference scheme can approximate the length term well.
However, the central finite difference scheme may suffer some stability problems
and produce oscillations in the numerical solution. In our simulation, we have used
some special treatments for the nodes close to the boundary.
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3. PCLSM for elliptic inverse problem
We try to use PCLSM for an inverse problem. Consider the partial differential

equation:
(3.1) ~V - (q(x)Vu)=f, 2 € QC R* wu(x)=0, z €N

Suppose we have some observations of the solution u, and we want to recover
the coeflicient ¢(z) by using the observations. In [1], the standard level set method
has been applied to elliptic inverse problems.

Due to the ill-posedness of the problem, output-least-squares method is often
used for recovering g(x). Assume that ug € L*(Q) is an observation for u, and let
K be the set of admissible coefficients

32) K ={qx)|qx) e L=*(Q)NTV(Q), 0<q(x)<q(r)<q(z) < oo}

with ¢(x) and ¢(z) known a priori, and T'V(£2) denotes the space of function
of bounded total variation. We solve the following minimization problem for the
output-least-squares method to find the parameter ¢(z).

(33 min Fla). F = [ 3lu(a) — uifde -+ BR(o)

above R(q) = [, |Vq|dz is the total variation norm of ¢, § is the regularization
parameter and u(q) is the solution of (3.1) with a given g. We assume that ¢(x) is
piecewise constant and represent ¢(z) by piecewise constant level set function

n

(3.4) a@) = Y ciu(a).

i=1

Incorporating it into (3.3), and letting G(c;, q) = F(q(ci, ¢)), we then need to solve

(35)  min Gled), Glend) = [ Flulalesd) ~ ual® + BR(o).
K($)=0 “

To deal with the constraint, we use the common penalization method

1 1 1
36) minL, L=G+4+ —W= [ =|u—uq/*+BR(q —i——/Kqudx.
(3.6) o | gl + 8R@ + 5 | K29)

Ci,

The following algorithm is used to solve (3.6).

Algorithm 1. Choose initial values for ¢° and &. For k =1,2,..., do
1. Find &' = {M11 7 such that

7 =1

(3.7 " = argmin L(e", ¢%).

2. Find ¢**! such that

(3.8) P = arg m(;n L&, o).
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3. Check convergence, if converged, stop; else goto 1.

Above argmin L(-) denotes the minimizer of L(-). In order to find a minimizer of
L(-) with respect to ¢;, i = 1,2,...,n, we use a gradient based method with line
search. Usually, we update ¢; after each 5 - 10 outer iterations. The most difficult
part of the above algorithm for our model problem is the second step — minimizing
¢, so we concentrate on the minimizing of ¢. At the minimizer, we should have

oL oG 1, .

To solve (3.9), we can instead solve the following evolution differential equation to

(3.9)

L
steady state ¢ + — = 0. According to the operator splitting scheme [9, 10], we

o¢
can solve this equation in the following way: For [ = 1,2, ..., until convergence, do
H1/2 _ gl 9@
(3.10) O 08 gy g,
T oo}
I+1 _ 4l4+1/2 1
(3.11) P L Lty =

T 2u

where 7 is a pseudo time-step. Notice that (3.11) is trying to solve
(3.12) 0= ¢t SK (K (9) =0

where 7/u is a parameter that should be chosen properly. Notice that (3.12) is a
polynomial of ¢ and it has 2n — 1 roots. We will use Newton method to solve it.
We apply one technique to guarantee that (3.12) only has one real root and all the
other roots are complex. Choosing 7/u such that

7/u(K(x)K"(z) + (K'(x))?) + 1 > 0 Va,

then we can guarantee that (3.12) only has one real root. Notice that K(¢) is a
polynomial, It’s easy to compute the bounds for 7/u from the above inequality.
For example, we need 7/u < 2 for 2-phase problems and 7/u < 0.71 for 3-phase
problems in order to satisfy the above inequality.

The two minimization problems in Algorithm 1 are never solved exactly.
A fixed number of gradient iterations is used for solving (3.7). A fixed number
of iterations of (3.10)-(3.11) is used for solving (3.8) for each outer iteration in
Algorithm 1.

3.1. Numerical experiments for elliptic inverse problem

We take the examples in [1] to testify the efficiency of our Algorithm 1. Let Q@ =
(0,1) x (0,1), f = 2072 sin(7z) sin(7y). Let u* be the exact finite element solution
for the exact ¢ and o be the noise level. We get the observed solution ugy =
u* +ol||lu*||p2/||Ral| L2 Ra- Where Ry is a finite element function with nodal values
being uniform random numbers between [—1, 1] with zero mean.

The domain {2 consists of a rectangular mesh with uniform mesh size h = 1/64
for both  and y directions. In all the figures, the dotted lines in the background
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show the true level set curves and the dashed lines are the computed level set
curves.

In this example, the exact coefficient g(x) is given in Fig.1, ie. g(z) = 2
inside the two closed curves and g(x) = 1 outside the curves. See Fig. 2 for the
numerical results. We see that only 300 iterations are needed to recover g(z) rather
accurately.

Exact level-set curve of ¢

Exact q(x)

] o1 02 03 04 05 08 07 08 09 1

(a) exact level set curve (b) exact q(x)

FIGURE 1. The exact g(x) and the location of the discontinuity

4. PCLSM for multiphase motion problem

Usually, the multiphase motion problem involves curves meeting at a point with
prescribed angles. Each interface I';;, separates regions 2; and 2; and moves with
a normal velocity

(4.1) vij = fijri; + (ei — e;).

where r;; is the local curvature, f;; is the constant surface tension of I';;, and e;
corresponds to the bulk energy. This model problem can be obtained by associating
an energy functional F to the motion, which involves the length of each interface
and the area of each subregion, i.e.

E = FE +E
(4.2) B = Y [fijLength(T))
1<i<jsn
Ey, = Z e;Area(£);).
1<ign

By minimizing this energy functional, the internal interfaces are driven to
equilibrium. Our method is especially inspired by [11] and [19].
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FIGURE 2. The computed solution at different iterations , with
o = 1%. Initial ¢; = [1.2, 1.8], Initial level set function ¢ = 1.5

In the following, the PCLSM will be used to solve the motion by mean cur-
vature problem. For simplicity, let us consider problem (4.2) with

ei:O,

fij =1
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We want to emphasize that we can apply the PCLSM for general setting for (4.2).
Under condition (4.3), the problem (4.2) reduces to the model problem:

(4.4) min Z Length(L';j).

Y1gi<ig<n

There are different ways to find the curves that minimize the above energy func-
tional. Under the condition that I';; is the interface between €2; and Q; and {Q;}7—,
are represented by (2.1), we see that

Z/\Vz/)l\dx—Z Z Length(T;;).

1<i<j<n

Thus, If we use our PCLSM for (4.4), then we need to find a function ¢ that solves
the following constrained minimization problem:

(4.5)  minF, F= Z/ |Vipi|dz, subject to K(¢) =0 and ¢|s0 = g.
i Q

Usually, Neumann boundary condition is supposed. However, in this paper, we
would like to try Dirichlet boundary conditions, which should produce a con-
strained motion. By using the same penalization technique and gradient method,
we found that the equation we need to solve is

oF 1
4.6 —W/ =0.
(46) bt G+ W @)
Applying the operator-splitting scheme again, we need to solve the following two
equations alternatively

oF 1
4.7 —(¢) =0, —W'(¢) = 0.
(47) b+ 550 -+ 5 W)
The first equation is trying to minimize the energy functional and the second
equation is trying to enforce that the minimizer is taking the values 1,2,--- , n.

We have tried to solve the first equation by the Additive version of Operator
Splitting (AOS) scheme of [9, 10, 18]. Note that

(4.8) Vi = ¥i($) V.

and

OF ! Vi, ) < v¢> )
4.9 — =— V- P = V- | sign(y .
w9 Gg =2 (Wzm Z anl) g ) Vi
For two dimensional problems, we have

(4.10) 2= Zw (Swn |V¢|) Zw (Swn %)
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If we apply the AOS [9, 10] and do some standard linearization, we need to solve

¢k+1/4 ~1;+1/4
(4.11) Zw (6%) | sign(¥i(6") == | =0,
Vo )
¢k+1/2 k+1/2
(4.12) Zw (0*) | sign(¥i(¢") 75| =0
Vi )
Then, set
(413) G = LR JP2)

When the value of ¢*+1/2 is obtained, we solve (3.11) to get ¢**1. The two equa-
tions (4.11)—(4.12) can be solved efficiently on lines parallel to the z and y-axes.

4.1. Numerical experiments for multiphase motion problem

We take = (0,1) x (0,1) and use Dirichlet boundary conditions. And the domain
Q is divided into square elements with uniform mesh size h = hx = hy = 1/64.

In this example, we test our algorithm on the well-known triple-junction
problem which involves three phases. The boundary and initial values are: ¢°|q =
1.0, g(ov [07 1/2]) = g([ov 1]7 O) =1, 9(07 [1/2v 1]) = g([ov 1]7 1) =3, g(]-v [0’ 1]) =2

For this test problem, the real triple junction point should be at (1—1/2v/3,1/2)
which is approximately (0.7118,0.5). The three interface curves should be straight
lines and the three angles around the triple junction point should satisfy the classi-
cal angle condition, i.e. (%’T, %’T, %’r) The simulated results are presented in Fig.3.
The computed triple junction point is at (0.69,0.5). The algorithm needs only
about 2100 iterations to get to a steady state. Due to the use of the AOS scheme,
the cost for the computation is rather cheap.
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