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Abstract. Traditional transmission travel-time tomography hinges on ray tracing techniques.
We propose a PDE-based Eulerian approach to travel-time tomography so that we can avoid using
the cumbersome ray-tracing technique. We start from the eikonal equation, define a mismatching
functional and derive the gradient of the nonlinear functional by an adjoint state method. The re-
sulting forward and adjoint problems can be efficiently solved by using the fast sweeping method; a
limited memory BFGS method is used to drive the mismatching functional to zero with quadratic
convergence. 2-D and 3-D numerical results as well as Marmousi synthetic velocity model demon-
strate the robustness and the accuracy of the method.
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1. Introduction
Estimation of wave-speed distribution from acoustic, seismic or electromagnetic

first-arrival travel-time data is the goal of transmission travel-time tomography. In
seismics velocity analysis is often an important step in prospect evaluation in ar-
eas where lithology and structure undergo significant lateral change. In this work
we propose a new, robust and efficient tomography method which is aimed at such
applications.

All the traditional methods of travel-time tomography are directly based on Fer-
mat’s least travel-time principle and bear a close link to the X-ray computerized
tomography (CT) used in medical diagnosis. In medical CT the measured data are
assumed to be modeled by line integrals of wave amplitude attenuation for straight
ray-paths passing through the body, and the Radon transform provides the founda-
tion for medical CT. However, in seismics the ray-path curvature has to be taken into
account in that lithology and structure usually have strong inhomogeneity, and the re-
sulting ray-paths can depend strongly on the unknown wave speeds. To achieve such a
purpose, ray-tracing based travel-time tomography methods require very complicated
data structure to trace curved rays through each pixel [4]; see [25] for 3-D examples.
In addition, such ray-tracing based methods inevitably produce irregular ray cover-
age of the computational domain, and the resulting system of equations may not be
well-conditioned [1, 2, 3]. In this paper we propose a PDE-based Eulerian approach
to travel-time tomography so that we can avoid using the cumbersome ray-tracing
technique.

Recall that a necessary condition for Fermat’s least travel-time principle to hold
is characterized by the eikonal equation for travel-time [11], and the viscosity solution
for the eikonal equation with a point-source condition is the least travel-time from
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2 ADJOINT STATE METHOD FOR TRAVELTIME TOMOGRAPHY

the source to an arbitrary point connected by a shortest ray-path, as observed by
[13, 16]. Because of its continuous dependence on the wave-speed distribution and
source locations, the viscosity solution can be computed by various numerical schemes
stably. In this work, we model travel-times from a single source to multiple receivers
by using the eikonal equation and propose a fast sweeping based adjoint state method
for transmission travel-time tomography. The new approach not only overcomes some
shortcomings inherited in the traditional ray-tracing based travel-time tomography
but also enjoys quadratic convergence, thus it is very fast and robust.

However, first-arrival based transmission travel-time tomography usually has very
limited resolution. Since the output from travel-time tomography is mainly used
for building a macro velocity model in seismic velocity analysis, it is important to
have very fast, efficient tomography tools, even though we may have to use only
first-arrivals. On the other hand, since multi-valued travel-times and resulting mul-
tipathings are common in complex velocity structures, it is necessary to take into
account all the arrivals systematically. As is well known, ray-tracing methods can
yield all arrivals, and the works presented in [8, 7] have used multivalued travel-times
from ray tracing methods, but those works are on reflection travel-time tomography
which is different from transmission tomography in that rays start at the surface,
reflect off interfaces whose depths are to be determined, and return to the surface. To
use all arrivals in transmission tomography in an Eulerian framework, we proposed
to formulate transmission tomography by using the Liouville equation based PDE
framework in phase space [15, 14].

In this work, we will only concentrate on first-arrival based traveltime tomography.
We start from a mismatching functional between measured and simulated data and
drive the functional to zero by a well designed limited memory BFGS (L-BFGS)
optimization method. Although our approach shares some similarities with that in
Sei-Symes [21, 22], that work was based on the paraxial formulation of the eikonal
equation and only illustrated the feasibility of computing the travel-time gradient by
using the adjoint state method. Instead of the paraxial formulation of the eikonal
equation, we derive the gradient of the mismatching functional directly from the
steady eikonal equation by using the adjoint state method; furthermore, we apply the
fast sweeping method [26, 24, 12] to solve the eikonal equation directly (the forward
problem) and design a new fast sweeping method to solve the adjoint equation of the
linearized eikonal equation (the adjoint problem) so that the required gradient can be
computed efficiently; finally a limited memory BFGS optimization method drives the
mismatching functional to zero with quadratic convergence.

In Section 2, we first explain the variational method for inverting the velocity
model using measurements on the boundary of a specified computational domain.
To minimize the energy in the variational formulation, we derive the gradient of the
nonlinear functional. To efficiently compute the gradient direction, in Section 3 we
apply the fast sweeping method to the eikonal equation and design a new fast sweeping
method for the adjoint equation of the linearized eikonal equation. Sections 4, 5 and
6 show various numerical examples to demonstrate the feasibility and the robustness
of the new formulation. Section 7 will then conclude the paper.

2. Governing Equations

We start from the eikonal equation with a point source condition in an isotropic
medium which occupies an open, bounded rectangular domain Ωp ⊂ R3. By isotropy
here we mean the wave velocity has no directional dependence. The equation is as
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follows,

|∇T | =
1

c
(2.1)

with the point source condition

T (xs) = 0 ,(2.2)

where T (x) is the travel-time of wave from the source xs to the point x, and c ∈
C1(Ωp) is a positive velocity function.

For a given velocity model c, the viscosity solution of this equation can be com-
puted efficiently by fast sweeping methods, and such solutions correspond to the least
travel-time or the first-arrival travel-time according to [16].

In this work we are interested in the related inverse problem, the so-called trans-
mission travel-time tomography problem: given both the first-arrival travel-time mea-
surements on the boundary ∂Ωp and the location of the point source xs ∈ Ωp, invert
for the velocity field c(x) inside the domain Ωp.

To achieve this we propose to invert for the velocity model by minimizing the
following mismatching functional (energy),

E(c) =
1

2

∫

∂Ωp

|T − T ∗|2 ,(2.3)

where T ∗|∂Ωp
is the measurement and T |∂Ωp

is computed by solving (2.1) with a point
source condition (2.2). In other words, this energy measures the L2-difference between
the experimental measurement, T ∗, and the solution from the eikonal equation, T , on
the boundary of the computational domain.

To minimize this energy, we use the method of gradient descent. We first perturb
the velocity field c by εc̃, which causes a corresponding change in T by εT̃ . The change
in the energy is then given by

δE = ε

∫

∂Ωp

T̃ (T − T ∗) + O(ε2) .(2.4)

From the state equation (2.1), the perturbations in c and T are related by

TxT̃x + TyT̃y + TzT̃z = −
c̃

c3
.(2.5)

We need to determine the perturbation in c, c̃, so as to decrease the energy E(c).
The main difficulty is that the perturbation in E, δE, depends on c̃ implicitly through
T̃ and the partial differential equation (2.5). To efficiently compute c̃ which minimizes
E, we apply the adjoint state method.

Multiplying (2.5) by ελ, integrating it over Ωp, applying integration by parts, and
adding the resulting expression to (2.4), we have

δE

ε
=

∫

∂Ωp

T̃ (T − T ∗) +

∫

y

∫

z

λTxT̃ |xmax

xmin
+

∫

x

∫

z

λTyT̃ |ymax

ymin
+

∫

x

∫

y

λTzT̃ |zmax

zmin

−

∫

Ωp

T̃ [(λTx)x + (λTy)y + (λTz)z ] +

∫

Ωp

c̃λ

c3
+ O(ε) .(2.6)
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Next, we choose λ satisfying

[(−Tx)λ]x + [(−Ty)λ]y + [(−Tz)λ]z = 0 ,(2.7)

with the boundary condition,

(n · ∇T )λ = T ∗ − T,(2.8)

on the boundary ∂Ωp, where n is the unit outward normal of the boundary. By

introducing this adjoint state equation, one can eliminate the dependence of T̃ when
determining the gradient of E with respect to c.

Ignoring the higher than linear order terms in the energy perturbation we have

δE

ε
=

∫

Ωp

c̃λ

c3
.(2.9)

To minimize the energy using the method of gradient descent one could choose
the perturbation c̃ = −λ/c3. This implies

δE = −ε

∫

Ωp

c̃2 ≤ 0(2.10)

and the equality holds when ||c̃||H0(Ωp) = 0. However, it is not straight-forward how
one can guarantee the following two properties,

1. c̃k|∂Ωp
= 0;

2. ck+1 = ck + εc̃k smooth.
The first condition assumes that we can measure c on the boundary ∂Ωp, denoted

by c∗|∂Ωp
, which is a reasonable assumption. This means that the variations of the

velocity function on the boundary should be zero.
The second condition is a regularity condition on ck. This regularity seems to

be too restrictive in practice. In general, one only needs ck ∈ C1 to guarantee well-
posedness of the state equation (2.1). However, assuming that one uses c̃k = −λ/c3

directly, it is not clear whether this function would give us the desired regularity. Even
if this perturbation is in C1, the numerical solution may have jumps or spikes. These
irregularities will force one to pick a very small step-size, εk, in the minimization
process. Therefore, to have faster convergence, we impose the above regularity in
each iteration.

One way to satisfy the above two properties is to use the descent direction

c̃ = −(I − ν∆)−1

(

λ

c3

)

,(2.11)

where I is the identity operator, ∆ is the Laplacian operator and ν ≥ 0 controls
the amount of regularity that one wants. The homogeneous boundary condition is
imposed in inverting the operator (I − ν∆). With this particular c̃, we have

δE = −ε

∫

Ωp

(c̃2 + ν|∇c̃|2) ≤ 0 .(2.12)

We notice that this process amounts to seeking updates in some weighted Sobolev
space in the case ν > 0. Then the above equality holds when ‖c̃‖H1

ν
(Ωp) = 0.

In the above calculation, we use the first-arrivals at different receivers associated
with a single point source. If we perform multiple such experiments, namely, we
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have many such data sets, then those can be easily incorporated into the formulation.
For example, we can assume that there are N point sources located at xi

s, for i =
1, · · · , N, and N sets of first-arrival travel-time measurements T ∗

i associated with these
N sources are available. Then we can simply define a new energy

EN (c) =
1

2

N
∑

i=1

∫

∂Ωp

|Ti − T ∗

i |
2 ,(2.13)

where Ti is the solution from the eikonal equation with the corresponding point source
condition T (xi

s) = 0. Utilizing the same approach as above, we have the following
perturbation in the energy

δEN

ε
=

∫

Ωp

c̃

c3

N
∑

i=1

λi ,(2.14)

where λi is the adjoint variable of Ti satisfying

{[−(Ti)x]λi}x + {[−(Ti)y]λi}y + {[−(Ti)z]λi}z = 0 ,(2.15)

with the boundary condition,

(n · ∇Ti)λi = T ∗

i − Ti ,(2.16)

for i = 1, · · · , N.
Consequently, we can choose the following gradient direction to minimize the

energy EN (c),

c̃ = −(I − ν∆)−1

(

1

c3

N
∑

i=1

λi

)

.(2.17)

We remark that the above updating procedure is similar to the so-called simulta-
neous iterative reconstruction technique frequently used in medical imaging; it is also
possible to adopt the algebraic reconstruction type technique as used in [9] to update
the velocity.

3. Algorithm and Numerical Implementations

3.1. Tomography algorithm Here we give an algorithm for this tomography
problem.

Tomography Algorithm:
1. Initialize ck for k = 0 by solving

(I − ν∆)c0 = 0 ,(3.1)

with the boundary condition c0|∂Ω = cexact|∂Ω.
2. Obtain T (x, z) by solving (2.1) with the point source condition (2.2) using c = ck.
3. Obtain λ(x, z) by solving (2.7) with the boundary condition (2.8).
4. Obtain c̃k using (2.11).
5. Determine εk using, for example, the Armijo-Goldstein rule or simply εk = ε.
6. Update

ck+1 = ck + εk c̃k .
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7. Go back to Step 2 until ||c̃k(x, z)||2 ≤ δ or k ≥ kmax, where δ and kmax are
given convergence parameters.

To start the iteration, we need to initialize c0. Here in the algorithm we assume
that we can measure the velocity at receivers, giving c0|∂Ω = cexact|∂Ω. This con-
dition can be replaced by other assumptions. In practice, due to the nonlinearity of
the problem, different initial guesses will generally lead to different energy minimiz-
ers. This non-uniqueness can be overcome by some a priori knowledge of the model.
For example, the above assumption can be relaxed by replacing the Dirichlet condi-
tions on both the left and right boundaries with the Neumann boundary conditions
∂c0/∂x|x=xmin

= ∂c0/∂x|x=xmax
= 0.

The convergence could be sped up by replacing the gradient descent method with
BFGS-type iterations. To solve the elliptic equation in Step 4, we use the FFT. In Step
2 and Step 3, both the equations (2.1) and (2.7) can be solved by the Fast Sweeping
Method [26, 24, 12], which we detail next.

3.2. Fast Sweeping Method for Equation (2.1)
The fast sweeping method was originated in Boue and Dupis [5], its first PDE

formulation was for implicit and non-parametric shape reconstruction from unorga-
nized points using a variational level set method [27]; Zhao [26] proved the O(N)
convergence of the method for the eikonal equation based on the Godunov Hamilto-
nian on Cartesian meshes; later on, the fast sweeping method was extended to treat
Hamilton-Jacobi equations with convex Hamiltonians based on the Godunov Hamilto-
nian [24] and handle Hamilton-Jacobi equations with non-convex Hamiltonians based
on the Lax-Friedrichs Hamiltonian [12]; see [24, 12] and references therein for the
fast sweeping method on Cartesian meshes and [20] for the method on triangulated
meshes. Certainly, one may also use other methods such as the fast marching method
[23].

To be self-contained, we give a short summary of the fast sweeping method for
eikonal equations. To avoid cluttered notations we present the algorithm for the 2-D
case only; see [26] for more details.

First we discretize the rectangular domain Ω ⊂ R2 into a uniform mesh with
mesh points xi,j and mesh sizes ∆x = ∆z = h, and we denote the numerical solution
at xi,j by Ti,j . Applying the Godunov numerical Hamiltonian to the eikonal equation,
for i = 2, · · · , I − 1, j = 2, · · · , J − 1, we have

[(Ti,j − Txmin)+]2 + [(Ti,j − Tzmin)+]2 =
h2

c2
i,j

,(3.2)

where

Txmin = min(Ti−1,j , Ti+1,j), Tzmin = min(Ti,j−1, Ti,j+1),

and (x)+ denotes the positive part of x. At the boundary of the computational domain
one sided difference is used.

Fast Sweeping Algorithm:
1. Initialize the point source condition T (xs) = 0 by assigning the exact value if

xs is a mesh point, or assigning to grid points near xs exact values which are
computed by using the constant velocity at the point source. These values are
fixed in later iterations. Assign larger positive values at all other grid points, and
these values will be updated later.
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2. Update the solution by Gauss-Seidel iterations with alternating sweeping. At
each grid point xi,j whose value was not fixed during the initialization, compute
the candidate solution, denoted by T̄ of (3.2) from the current values of its
neighbors Ti±1,j , Ti,j±1 and then update Ti,j to be the smaller one between T̄
and its current value; i.e., T new

i,j = min(T old
i,j , T̄ ). We sweep the whole domain

with four alternate ordering repeatedly: i = 1 : I, j = 1 : J ; i = 1 : I, j = J : 1;
i = I : 1, j = 1 : J ; i = I : 1, j = J : 1. Here i and j are the running indices
along x and y directions.

3. Test the convergence: given convergence criterion ε > 0, check whether ‖T n+1−
T n‖L1 ≤ ε.

We remark that the sweeping strategy can be used for more general Hamilton-
Jacobi equations as long as an efficient local solver is available at each grid point,
so that an iterative procedure is well defined at each local grid point. On the other
hand, we may apply the sweeping strategy to solve equation (2.7), which reduces to
a symmetrical Gauss-Seidel-type iterative method .

3.3. Fast Sweeping Method for Equation (2.7) Next we design a fast
sweeping method for equation (2.7). Once again to simplify the notation, we give a
2-D formulation only; the extension to a 3-D formulation is straightforward.

The adjoint state equation (2.7) can be written in the following form

(aλ)x + (bλ)z = 0 ,(3.3)

where a and b are given functions of (x, z).
Considering a computational cell centered at (xi, zj) and discretizing the equation

in conservation form, we have

1

∆x

(

ai+1/2,jλi+1/2,j − ai−1/2,jλi−1/2,j

)

+
1

∆z

(

bi,j+1/2λi,j+1/2 − bi,j−1/2λi,j−1/2

)

= 0 .(3.4)

The values of λ on the interfaces, λi±1/2,j and λi,j±1/2, are determined according to
the propagation of characteristics. In the case when ai+1/2,j > 0, the characteristic
for determining λ goes from the left hand side of the interface to the right hand side,
and this suggests that we use the value λi,j to define λi+1/2,j ; otherwise, we have
λi+1/2,j = λi+1,j . The terms λi,j±1/2 can be defined in a similar way.

Introducing the following notations

a±

i+1/2,j =
ai+1/2,j ± |ai+1/2,j |

2
, a±

i−1/2,j =
ai−1/2,j ± |ai−1/2,j |

2
,

b±i,j+1/2 =
bi,j+1/2 ± |bi,j+1/2|

2
andb±i,j−1/2 =

bi,j−1/2 ± |bi,j−1/2|

2
,

we have

1

∆x

(

(a+
i+1/2,jλi,j + a−

i+1/2,jλi+1,j) − (a+
i−1/2,jλi−1,j + a−

i−1/2,jλi,j)
)

+

1

∆z

(

(b+
i,j+1/2λi,j − b−i,j+1/2λi,j+1) − (b+

i,j+1/2λi,j−1 − b−i,j+1/2λi,j)
)

= 0 ,(3.5)

which can be rewritten as
(

a+
i+1/2,j − a−

i−1/2,j

∆x
+

b+
i,j+1/2 − b−i,j−1/2

∆z

)

λi,j =
a+

i−1/2,jλi−1,j − a−

i+1/2,jλi+1,j

∆x
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+
b+
i,j−1/2λi,j−1 − b−i,j+1/2λi,j+1

∆z
.(3.6)

This gives an expression to build up a fast sweeping-type iterative method.
To apply this iterative scheme to equation (2.7), we need to specify the function

values of a and b not at the cell centers (xi, zj), but on the cell interfaces (xi±1/2, zj)
and (xi, zj±1/2). This can be done easily using central differences. For example, we
have ai+1/2,j = −(Ti+1,j − Ti,j)/∆x and ai−1/2,j = −(Ti,j − Ti−1,j)/∆x. In addition,
we have to incorporate the boundary condition (2.8) into the above linear system
for λ as well. Then we can show that the coefficient matrix of the resulting linear
system for λ is irreducibly diagonally dominant; therefore the alternating symmetrical
Gauss-Seidel iteration converges.

Fast Sweeping Algorithm for equations (2.7) and (2.8):
1. On the boundary, compute (n ·∇T ) from the solution of the eikonal solver using

one side difference. Next, compute the boundary condition for λ according to
(8). These values will be fixed in the following computations.

2. Update λi,j at the interior points according to (22). As in the Fast Sweeping
method for (1), we sweep the whole domain with four alternate orderings.

3. For some given convergence criterion ε > 0, repeat 2 until ||λn+1 − λn||L1 ≤ ε.
We point out that the above fast sweeping method is different from the fast

marching method used in [10], in that our method is iterative and theirs is constructive
based on upwinding properties.

3.4. L-BFGS method In the Tomography Algorithm, we update the approx-
imation to the velocity by a typical gradient descent method, where

ck+1 = ck − εk c̃k .(3.7)

Although it is simple to implement, the method is not efficient because it takes a large
number of iterations to converge to a steady state solution.

To speed up the convergence, we can apply the quasi-Newton method defined by

ck+1 = ck + εksk ,(3.8)

where sk = −A−1
k E′(ck) and Ak is a positive definite operator satisfying the secant

condition

Ak+1(c
k+1 − ck) = E′(ck+1) − E′(ck) .(3.9)

In this iteration, the operator Ak+1 is updated by modifying the previous operator
Ak.

One possible way to modify this operator is defined by the Broydon-Fletcher-
Goldfarb-Shanno (BFGS) procedure,

Akv = Ak−1v + α < p, v > p + β < q, v > q ,(3.10)

where

p = y/||y|| , q = Ak−1s/||Ak−1s|| ,

α = ||y||2/ < y, s > , β = −||Ak−1s||
2/ < s, Ak−1s >(3.11)

with s = ck − ck−1, y = E′(ck) − E′(ck−1) and A0 = I .
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However, in practice, the condition number of Ak can be increased significantly
throughout the iteration, which makes the computation inaccurate. To alleviate this,
one can modify the iteration using the limited memory BFGS (L-BFGS) given by

Akv = v +

k
∑

j=k−L+1

(αj < pj , v > pj + βj < qj , v > qj) .(3.12)

In this paper, we adapt the L-BFGS-B code from [6]. This code requires user to
provide only subroutines to compute both the energy to be minimized and the gradient
of this energy. The step size εk is automatically determined.

4. Two-Dimensional Numerical Examples
In the following examples, we use 129×129 grid points in the x-z space. Using the

above formulation, we need measurements, denoted by φ∗ and T ∗, on the boundary
∂Ωp. If the point source is located inside Ωp, the characteristics of the eikonal equation
always flow out of the domain. Therefore, in synthetic experiment the boundary
measurements can be obtained by solving the equation (2.1) directly using the Fast
Sweeping Method together with the exact velocity c.

For each velocity model below, we have implemented the following two cases -
one source and ten sources. For the one source case, we use the boundary measure-
ments from the only point source located at (x, z) = (0, 0.1). In the cases with ten
point sources, we use nine more sets of boundary measurements, and these corre-
spond to source locations at (x, z) = (±0.25, 0.1), (±0.5, 0.1), (0, 1.9), (±0.25, 1.9) and
(±0.5, 1.9), respectively. However, to save some space we only present the results
corresponding to the case of ten sources.

To start the algorithm, we initialize the velocity c0 by solving the above elliptic
equation (3.1) with ν = 1.

4.1. Example 1. Constant Model.
The exact velocity model is given by c ≡ 1.
We use the BFGS method to invert for the velocity. The results are shown in

Figure 4.1. As we can see, the recovered velocity is almost exact, the relative error is
almost negligible, and we observe the typical quadratic convergence of the algorithm
due to the L-BFGS method.

4.2. Example 2. Waveguide Model. The exact velocity model is given by

c(x, z) = 3− 2.5 exp

(

−
x2

2

)

.(4.1)

We apply the BFGS method to invert for the velocity. Figure 4.2 shows the
relative error at convergence and the convergence history. In Figure 4.3, we show
slices of the solution along z = 1 and x = 0. As we can see, we are able to recover
the velocity very well.

4.3. Example 3. Gaussian Model.
The exact velocity model is given by

c(x, z) = 3 −
1

2
exp

(

−
x2 + (z − 0.5)2

0.52

)

− exp

(

−
x2 + (z − 1.25)2

0.52

)

.(4.2)

Next we apply the BFGS method to invert for the velocity. In Figure 4.4, we show
the convergent velocity and the convergence history of the algorithm; once again, we
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Fig. 4.1. (Example 1. Ten Sources) BFGS. (a): the initial guess; (b): the final approximated
c; (c): the relative error in the solution; (d): the convergence history of energy.
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Fig. 4.2. (Example 2. Ten Sources) (a): the relative error in the solution and (b): the
convergence history of energy.

observe quadratic convergence. In Figure 4.5, we show slices of the final converged
velocity; as we can see, they fit well with the exact velocity.

To further test the algorithm, we repeat the experiment but perturb the synthetic
data T ∗ with some noise. Using the same velocity model, we first compute the travel-
time on the boundary of the domain. These measurements are added 5% Gaussian
noise with zero mean. Figures 4.6 and 4.7 show that we have robust convergence as
well. As shown in Figure 4.6(b), we are not able to drive the energy to zero. This is
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Fig. 4.3. (Example 2. Ten Sources) Cross-sections of the solutions. (a): z = 1 and (b): x = 0.

expected because the boundary measurements are highly oscillatory, and in general
we cannot find a smooth velocity c which produces exactly the same travel-times as
those noisy data.
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Fig. 4.4. (Example 3. Ten Sources) BFGS. (a): the final approximated c and (b): the conver-
gence history of energy.

5. Three-Dimensional Numerical Examples

In the following examples, we use 65×65×65 grid points in the three-dimensional
space. Using the above formulation, we need measurements, denoted by T ∗, on the
boundary ∂Ωp.

For each velocity model shown below, we have implemented the following case,
49 sources on the levels z = 0.1 and z = 1.9, and we have 98 sets of measurements in
total.

To start the algorithm, we initialize the velocity c0 by solving the elliptic equation
(3.1) with ν = 1.

5.1. Example 1. Constant Model.

The exact velocity model is given by c ≡ 1.

We use the BFGS method to invert for the velocity. The results are shown in
Figure 5.1; we observe the quadratic convergence once again.
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Fig. 4.5. (Example 3. Ten Sources) BFGS. Cross-sections of the solutions. (a): z = 1 and
(b): x = 0.
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Fig. 4.6. (Example 3 with added noise. Ten Sources) BFGS. (a): the final approximated c;
(b): the convergence history of energy.

5.2. Example 2. Gaussian Model.
The exact velocity model is given by

c(x, y, z) = 3 −
1

2
exp

(

−
x2 + y2 + (z − 0.5)2

0.52

)

− exp

(

−
x2 + y2 + (z − 1.25)2

0.52

)

.(5.1)

We use the gradient descent method to invert for the velocity. The results are
shown in Figure 5.2.

6. Synthetic Marmousi model The Marmousi model from the 1996 INRIA
Workshop on Multi-arrival Travel-times is a synthetic model which will challenge the
adjoint state method used here.

The original Marmousi model is sampled on a 24m by 24m grid, consisting of 384
samples in the x-direction and 122 samples in the z-direction; therefore the model
dimension is 9.192km long in the x-direction and 2.904km deep in the z-direction.

In the computational results presented here, we use 20 sources and their (x, z)-
coordinates are (200, 2800), (1000:1000:9000, 2800), (200, 100) and (1000:1000:9000,
100), respectively, where we have used by now the standard Matlab colon notation.

The true Marmousi velocity model is illustrated in Figure 6.1(a). As we can
see, this velocity model has high contrast with variations of different scales. On the
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Fig. 5.1. (Example 1. 98 Sources) 3-D case. (a): the relative error in the solution on the
cross-section z = 1 and (b): the convergence history of energy.

one hand, since the fast sweeping method used here is unconditionally stable, the
forward eikonal solver will not have difficulty in computing traveltime to first-order
accuracy. On the other hand, viscosity-solution based first-arrival traveltimes will not
be able to give us too much information about variations of small scales occurring in
the velocity model; to retain the information related to small scales, we have to use
multiple arrivals, which in turn call for multiple-arrival based traveltime tomography.
In this regard, for computing multiple arrivals of the Marmousi model in the Eulerian
framework, see [17, 18] for more.

To start the algorithm, we initialize the velocity c0 by solving the Laplace equation
−∆c0 = 0 with c0|∂Ω = cexact|∂Ω. The solution is plotted in Figure 6.1(b).

We use the BFGS method to invert for the velocity. Figure 6.2 presents the
inversion results for different cases in terms of the sampling size ∆x and the parameter
ν.

Comparing Figure 6.2(a) with the true model, Figure 6.1(a), we have succeeded
in imaging the macro scale variations of the velocity model and we were not able to
image finer scale variations of the velocity model which does exist in the true velocity
model. However, transmission tomography usually has very limited resolution, and
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Fig. 6.1. (Marmousi model) (a): the true velocity distribution and (b): the initial profile c
0.

we believe that this result is near optimal using the current approach.
To confirm this, we refine the velocity model by doubling the number of grid points

in each direction while keeping the regularization parameter ν fixed; the corresponding
solution is shown in Figure 6.2(d). We also check the following residual in the solution
defined by

R =
ΣN

i=1

∫

∂Ω
|Ti − T ∗

i |/T ∗
i ds

N
∫

∂Ω ds
(6.1)

where N is the number of sources defined above. This quantity essentially is the
average relative error in the first-arrival time per source per receiver. If the above
residual is not changing too much, we will accept the inversion result since there is
not much model misfit left to drive improvement. Indeed, as shown in Figure 6.3,
even if we refine the velocity model, the residuals are almost the same after 15 BFGS
steps. In fact, the solutions from the coarse and fine resolution are similar, as shown
in Figures 6.2(a) and 6.2(d) .

Using a relative small ν = 102, the BFGS iteration has difficulty in converging
to a smooth solution. This is clearly seen in Figure 6.2(b). The BFGS iteration
stops at the fourth iteration with E(m4) ' 1700, where m = log c; see Figure 6.3.
This difficulty comes from the sharp spikes in the solution near the source locations,
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Fig. 6.2. (Marmousi model) Converged solutions. (a): ν = 104 and ∆x = 24; (b): ν = 102

and ∆x = 24; (c): ν = 106 and ∆x = 24; (d): ν = 104 and ∆x = 12.
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Fig. 6.3. (Marmousi model) The change in (I): the energy and (II): the residual. Legend: (a):
ν = 104 and ∆x = 24; (b): ν = 102 and ∆x = 24; (c): ν = 106 and ∆x = 24; (d): ν = 104 and
∆x = 12.

where the traveltime field is not differentiable [19]. These sudden changes will degrade
accuracy in the computed gradient and make it hard for BFGS to search for a descent
direction.

Increasing the magnitude of ν (from 104 to 106), on the other hand, we have
better convergent results. As seen in the energy plot, the energy which uses the larger
ν (the dashed line) reaches a lower state than that using ν = 104 (the solid line).
Theoretically we penalize the gradient of c̃ so that it is small in a weighted Sobolev
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∆x Eikonal equation Adjoint equation
24 20 (6.68× 10−10) 17 (1.62× 10−9)
12 28 (9.60× 10−11) 25 (3.38×−8)

Table 6.1. Iteration count for the fast sweeping methods. The numbers in the brackets are the
errors in the corresponding iteration, ||T n+1 − T n|| or ||λn+1 − λn||.

space as illustrated in equation (2.12).
Concerning the speed, the computational time for the cases with ν = 104 using

∆x = 24 and 12 are 53 minutes and 387 minutes, respectively. We also list in Table 1
the number of iterations required to solve both the eikonal equation and the adjoint
equation for each given velocity field. These numbers are obtained for the case ν =
104 with only one point source located at (5000,−2800) in the first BFGS iteration.
The first row shows the number of iterations with ∆x = 24, while the second row
corresponds to the case with ∆x = 12.

7. Conclusion We have proposed a PDE-based Eulerian approach to travel-
time tomography so that we can avoid using the cumbersome ray-tracing technique
in inversion. We started from the eikonal equation, defined a mismatching functional
and derived the gradient of the nonlinear functional by an adjoint state method. The
resulting forward and adjoint problems can be efficiently solved by using the fast
sweeping method. In addition, we have used a limited memory BFGS method to
drive the functional to zero with quadratic convergence. Numerical results for 2-D,
3-D, and Marmousi synthetic velocity models demonstrated the robustness and the
accuracy of the method.

The methodology proposed here is quite general and can be extended to many
other situations without any major difficulty. For example, instead of point sources
we can easily modify the formulation to accommodate plane waves as the source con-
dition, which can be achieved by using the boundary condition resulting from the
plane wave condition in equation (2.2). If the domain to be imaged is irregular or
non-rectangular, then we can use the fast sweeping method designed in [20] to solve
the eikonal equation efficiently; although we cannot directly apply the standard FFT
technique when regularizing the gradient direction (2.11), we may still use other fast
solvers like multi-grid methods to solve the Possion equation. To further improve the
resolution of inverted velocity models, one can also incorporate the amplitude informa-
tion into the formulation; this generalization is the so-called diffraction tomography,
which consists of an ongoing project.
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