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Abstract—In this paper, we study cooperative control algo- also been reported in Refs.[9], [10], [11]. More recently,
rithms using pairwise interactions, for the purpose of control-  for aggregates of similarly interacting, self-propelled agents,
ling flocks of unmanned vehicles. An important issue is the  giapilization or collapse with respect to particle number has
role the potential plays in the stability and possible collapse . . .
of the group as agent number increases. We model a set of been predicted _[8]. In o_ther studies, thual_leaders [6] an_d
interacting Dubins vehicles with fixed turning angle and speed. Structural potential functions [12] have been introduced to di-
We perform simulations for a large number of agents and we rect and stabilize vehicles into desired formations or to avoid
show experimental realizations of the model on a testbed with a gbstacles. Furthermore, the robustness of various algorithms
small number of vehicles. In both cases, critical thresholds exist i, ine presence of noise, communication delays and other
between coherent, stable, and scalable flocking and dispersed . " ’
or collapsing motion of the group. non-!deahtles, havg bet_an tested on several testbe.d§,. both

for single and multi-vehicular systems [13], [14]. Activities
. INTRODUCTION such as spatial dispersion, gradient navigation, and cluster
A. Motivation formation have also been reported [15] as well as single-

Social tion | kabl  of animal beh .vehicle path following, stationary obstacle avoidance, and
ocial aggregation is a remarkable aspect of animal behavi operative searching [16].

Large numbers of individual agents interacting with each In section Il we present a general theory applicable to

other are able to self-organize into complex yet coordmateﬁjrst order dynamical systems subject to pairwise potential

patterns such as insect swarms, fish schools and bird ﬂoqlﬁ?eractions and we find local conditions for flock cohesion.

[1]. These SySte”?S have recen_tly become of grgat interqﬁt section 1ll we adapt our model to a group of Dubins
for the mathematical [2], physical [3], [4] and biological .. oo [17], [18] with specific attractive and repulsive

sciences [5] with promising applications for the developme I‘lteractions. We discuss stability and scalability of the system

and control of autonomous, multi-vehicular ensembles [6_ br certain parameter ranges, and we also investigate the

[7]. One main goals of this nascent field of research '3ffects of virtual leaders. Finally, in section |V, results from

tc%llpe r;%:rgelr?;?/irgfs“;?ii eangor;?ia'lndzg:?f rslgwtg\?érds;:e%merical simulations and experimental realizations of the
- >P P ' ' odel for small vehicle numbers are shown.

dramatically affected even by small parameter changes, not
only in the interactions, but also in constituent number or Il. THEORY

speed [8]. In this paper, we formulate criteria, valid foye consider a general potential flow for a particle at position
generalpairwise interactions, to ensure local group cohesmp, at distance,; = |7;| from the origin, subject to dissipation

of a first order model. When interactions are controlled b){ and to pairwise interactions’

a Morse potential, we investigate stability and scalability
through numerical simulations and practical testbed applica-

tions, demonstrating the existence of thresholds and cutoffs ==V Yy Ulrij). (1)
for different regimes of aggregation. G
B. Related work and outline Herer; ; = |r; — 7| denotes the distance between agents

. . Z,tj For simplicity in the remainder of this paper we will set
Swarming vehicular systems are often modeled as poin . . .

. ; . . . = 1. The potentiallU' has an attractive and repulsive part
particles in which members may interact with one anothe noted byl U, respectively. Then”’ = U — U, with
through pairwise interactions; these are perhaps the m Ef o on P Y- L. ¢ T
important features in determining what, and if, patterns wil[ ¢’

U! > 0. The center of masg = Y1, 7 is stationary for
form. A class of attractive and repulsive pairwise potentialany interaction potential that depends solely on the distance
has been studied in Ref.[4] where self-propelled particle

Between agents. Without loss of generality wedet 0. The
S . : f?lrst order, ‘kinematic’ model of Eqn.1 has been intensely
were shown to self-organize into coherent two dimensional =~ .~ . : . .
) . Studied in the literature from both biological [2] and control
patterns. The existence of cohesive and bound swarms has . : i .
points of view [9]. In Ref.[9], Gazi and Passino define a
IDept. of Mathematics, University of California Los [f€€ agento be one whose distance to all other members of
ﬁngeles,_ L}o& Anﬁelels, OICA 90095 {chuang, dorsogna, the swarm is greater than the repulsive length scale of the
ertozzi math.ucla.edu 7 H 7 _ g
2Dept. of Physics, Duke University, Durham, NC 27708 .poten.tlal. Free agepts mtergctmg through an ad-hoc pptentlal,
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Los Angeles, CA 90095uanh@seas.ucla.edu has a parabolic, spring-like shape centered about zero, are



proven to converge to an absorbing ball around the center ofLemma 1: Weak maximum principleDefine the flock
mass. The convergence time is finite. A crucial point in theadius asR = sup,r;. For a flock in the diffused state,
proof is the parabolic shape of the potential, and its strond < 0.

attractive, yet unphysical, nature at infinite distances. One Proof : Let R = r; and define?; ; = 7 ;/r; ;. Then:
important feature of this result is that all agents collapse

inside the absorbing region, regardless of constituent number N

N and initial condition. The radius of the absorbing ball is in I _ R —_ Zﬁi,jU’(rw) 3)
fact independent oV so that asV — oo, the density of the 2 j#i

final resting state diverges as well. The dynamics of Eqn. 1 N (7 - 7 — 12)

is a gradient flow for the total enerdy,o: = >, U (r: ;). = Z U )<0 (4)
We are concerned with finding general conditionsiorior i Vg

which this result can be provddcally, that is if all agents
start inside a fixed set. Related to this system, is one th
involves second order dynamics:

%ipcerf > 7;-7; andU’ > 0 in the diffused state. Thus’,
andr;, are decreasing functions ati< 0. O

A corollary to the above Lemma 1 is that the swarm size
decreases even if only the outermost agents are in a diffused
state. This is due to the fact that the proof only uses an
estimate for the farthest agents of the swarm. We now prove
a local stability limit for general interaction§ and find

This Newtonian description has been used in several modé]gnditi_ons for particles_initially constrained to a local reg_ion
[4], [8], [12], [20]. Self propulsion and drag of an individual of radius R, to evolve into a more compact baII_ of radluo
are introduced througlf, and the potential/ is as above. " < R. The proof uses a Lyapunov function discussed in
The system is conservative ff= 0, Vv and oftenf is chosen [9], [10]. ] . )

so that there exists a special valuiefor which f(v*) = 0. Theorem 1: Consider N partlcles located ai”; with

In fact, as pumping and dissipation occur throughit is 7 < B Vi, 1 <4 < N. If a finite constant valug< > 0
reasonable to expect that the steady state configurations®¥Sts such thatnax ro<r<ary [Kr — U'(r)| < KR, then
Eqn. 2 are minimizers of the energy.; and zeroes off. asymptoticallyr; < R*, with R* < R. .

In Ref.[8], Eqn. 2 is studied in the context of how potential Proof: We choose the Lyapunov functioi = r?/2. Its

=0, U :f(vi)ﬁi_ﬁiZU(ri,j)~ (2)
J#i

parameter choices affect swarming patterns. time derivative obeys the following
Drawing on analogies with statistical ensembles [19], an
important indlic':ator of the expocted morphology is fouod to Vi = —7-V; Z U(ri;) (5)
be theH-stability of the interaction potentidl. A system is oy
said to be H-stable if the energy per particle is bounded _ . O
from below as the number of particles goes to infinity. = 'ZTWU (rij) ©)
Non H-stable potentials are called ‘catastrophic’ as they ”;l
typically result in systems that collapse as the number of < —KNri+7ri(N = 1), ()

particles increases. While such systems are of lesser interest

in classical statistical physics, they largely dominate th\?vheren = max( racocr<ory | KT — U'(r)]. In going from

literature on swarming as they more often give rise t%qn 6 to Eqn. 7 we have added and subtradted ; where
. . 2J

cohesive r_‘not|on Of- a group, as In _the case st.ud|ed by Gafzfl > 0 is an arbitrary constant. We also used the fact that
and Passino. Their global cohesion result is due to the N 2 .
> j»iTi,j = Nri. Also note thatr; ; < 2R since by

unphysical parabolic potential at infinity which gives each® L o] . -
agent unbounded velocity at large distances. In this paper, ve\}gsumpnom < R. Asymptotically then:

prove that the results of Ref. [9] for first order systems can be

extended to a much broader class of potentials, provided we r < N—-1n < _ R*, (8)
consider local stability in which agents are initially confined - N KT K

to a bounded region of space. In this paper we also malkd we require) < K R for this bound to be more stringent
analogies between first and second order models of the ty@ign the initial radiusi. 0

shown in Egns. 1 and 2 and study how their stable equilibria Corollary 1: If Theorem 1 holds for all?’ < R then as

scale with particle number. We make the following definitiont — oo the system will collapse with all particles converging
Definition 1: Diffused stateA flock is in adiffused state at Ry = 0.

if 7,; > 0Vi # j, whered is the repulsive range such that Proof: This follows from the fact that for; > n/K, the

U'(r) > 0 for all r > 6. Lyapunov functionV < —Kr? = —2KV;. The limit R* is
Note that in order to be in a diffused state, the potentidhus reached in a time:

must yield only attraction outside of a certain radius. The

following Lemma shows that, regardless of the specific form B n?

of the potential, a diffused state always shrinks. bmae = max |:2[( In (2[(44(0))] ; ©)



where V;(0) is the Lyapunov function at time = 0. After Testbed
tmas 1S reached, Theorem 1 can be applied again, and the
iteration process can be repeated until the liRjt = 0 is
reached. Theorem 1, applied to the parabolic potential of
Ref.[9] is the global convergence theorem there shown. Our
control algorithm adopts a generalized Morse potential that
decays at infinite distances, as would be expected for systems
of vehicles with a limited communication range:

vehicle j

U(rij) = —Cue m3/fe 4 Cremmialbr, (10) .

Here,C,, C.,. represent the strength of the attractive and re- L ) o o
1. Definition of variables for vehiclé: The heading is denoted by

ulsive potentials, and,, ¢, their length scales, respectivel Fig.
p p g p Y. 0;, the angle between its direction of motion and thexis of the testbed.

Define? = ¢,./¢,, C = C,/C,. A sufficient condition for £ is the interaction force it experiences due to all other vehicles. This
Theorem 1 is direction defines an angle; with the heading direction. Vehiclgis at a
distancer; ; from vehiclej and the angle®; and¢; here shown are used
Ca —2R Cr Cq _2r Cy in the collision avoidance scheme described in the text. The origin of the
<2KR <2 ) (11) reference coordinate system is fixed at the left-lower corner of the testbed.
All vehicular angles;y;, 0;, ¢;, are defined iffr, —m).

which can be satisfied only if > C so that R can be
chosen a2R < /,In(¢/C). Also note that Corollary 1 i is its heading angle with respect to a fixed orientation we
holds here, since the latter condition holds for Bll < R.  define asf;. The Dubins vehicles interact with each other
The above condition is a sufficient but not necessary onby means of the Morse potential of Eqn.10 with variable
and other combinations d@f C' could give rise to acceptable parameters’,, C,., 44, £,. Due to the fixed turning radii, the
R, K values without resulting in a state where all agentiteractions cannot directly contr@; and an appropriate
collapse to a point. It is interesting to compare these resultentrol algorithm must be devised. For each vehicle then,
with the stability phase diagram of Ref.[8] for the samave measure the anglg between vehicle heading and the
potential in the second order model of Eqn.2. The regiototal force F; it experiences, as given by the right hand side
¢ > C with ¢ < 1 is classified as catastrophic in Ref.[8],of Eqn.1 and as shown in Fig. 1. Vehiclethen changes
with particles converging towards their center of mass andirection only if |;| > T, whereT is an angular threshold
becoming denser a8 — oo. This is consistent with the 0 < T < «. The equations of motion are as follows:
results proven here that particles initially in a ball of radius
R get ‘squeezed’ into a tighter one. On the other hand, the
region? > C, with £ > 1 is classified as stable in Ref.[8],
\1/_vri]th no possibég squeezing eﬁicts ir(I:j the Io(;lg tiTeu Iimit.I R% if v >T (left turn),

e apparent discrepancy can be understood as follows. In ;o w .
the region/ > C, ¢ > 1, the pairwise potential has a b = _QRT? i <__F (right turn),  (13)
positive, local minimum for-; ; = 0 and a barrier at; ; = rs  Otherwise
Tmaz > Lo In(¢/C'), before decaying to zero as; — oo.
The first order system (1) is purely dissipative and there afdere, a is the speed of the vehicle, anfil,, R are the
no fluctuations in the total energy, which can only decreadeft and right turning radii, respectivelyzs is the deviation
in time. For second order systems of the type described fadius. In the ideal cas&; = Rp and Rs = oo, SO
Eqn. 2 however, even if the local energy minimum is reachedhat vehicle direction is unaffected far;| < I'. Because
with all particles simultaneously at; ; = 0, fluctuations ©f alignment asymmetries in generBll, # Rp and Rs is
due to exchange with the environment as imposedfby @ large but finite number. Vehicular motion proceeds along
can eventually drive the system away, towards the dispersdfie direction specified by the heading paraméteuntil the
global energy minimum at; ; — oco. For other, specific turning commands); are given.
choices of the potential parameters, numeric estimates can® crucial point is that the interaction potential in Eqn. 10

determine whetheR, K values exist that satisfy Theorem 1.is soft-core and does not prevent vehicles from colliding. In
fact, even hard-core potentials cannot avoid collisions due to

lIl. TESTBED ADAPTATION communication delays, errors in position information, and
The models described in Egns. 1 and 2 cannot be directly afite finite turning radius of the vehicles. The repulsive range
plied to a platform of autonomous vehicles due to mechanicatay be increased to initiate turning at larger inter-vehicle
constraints. The platform of real vehicles we use is describetistances. This however, would significantly affect pattern
in Ref.[14]. The vehicles consist of Dubins micro-cars withformation and the emergence of cooperative aggregates
fixed speed and fixed left and right turning radii. The firstvould be unlikely. Instead, we add an additional collision
constraint implies our dynamical system must be described/oidance algorithm to address short range interactions. We
as first order. The only independent variable denoting agense a ‘wait and go’ scheme for vehicles closer than a

T; = «acosb; 1; = asiné;, (12)



Testbed

vehicle i

noo

vehicle j

210 140 70 [} 210 140 70 0
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Fig. 2. Collision avoidance failure: The anglgsand¢; are too small and .

vehicles: and j collide even if one of them should pause. An additional
algorithm is required to steer the vehicles away from each other and is
described in the text. It relies on the angle ; here depicted.

cutoff distancer.. For vehicles;, j at distance; ; such that 210 e 0
ri; < re, we define the angleg;, ¢; between their main
axis andr; ;, as shown in Fig. 1. It); < ¢; vehiclei will  Fig. 3. vehicular motion: These panels show fragments of the vehicle’s

pause while vehiclg‘ veers away, untit; j > e The cutoff trajectory when it tries to follow a virtual leader along an elliptical path.
; ; ; ’ ; The vehicle is unstable whedy is decreased below., = 20.2cm. Top

distancer, in the control algorithm acts as an e_ffectlv_e hardlen: ds = 20.5 cm: Top right:dy — 20.2 cm: Bottom:d, — 20.0.cm.

core potential. If¢; = ¢; any one of the vehicles (in our

simulations the one with a higher labeling index) will pause

and let the other proceed. When, ¢; ~ 0 the 'wait and _ i _ _
go' scheme cannot avoid collision as shown in Fig. 2 anW'th the vehicles according to the same Morse potential used

an alternate algorithm is invoked. For vehicleand j we for vehicle-vehicle interaction. When leading more than one
define the anglé); ; between; ; and the segment joining vehicle, the leader’s contribution to the potential is increased
2y 2,3

their opposite front edges measured fromx{¢;,d;} as 1.1 _times and 2.1 times the vehicul_ar potential for_the two-
shown in Fig. 2. lfmax{¢;, ¢,} < Q, whereQ is an angular vehicle and the three-vehicle experiments, respectively.
threshold0 < Q < /2, then the vehicle closer to the center 1) One vehicle follows a leaderThe parameters men-
of the testbed is veered towards the center and the othertigined above provide short-range repulsion and long-range
the opposite direction. attraction resulting in an equilibrium separation. Fig. 3 shows
results ford; near the equilibrium,, calculated to be., =

IV. EXPERIMENTAL RESULTS 20.2cm. Running tests withl;, = 20.5cm, d; = 20.2cm,
In this section we study the behavior and performance scalirgd d, = 20.0cm, we note that leader-following becomes
of a set of Dubins vehicles controlled by the first order lawsneffective ford, below ..

1 s X s e e other and they form a rather flat triangle with the leader
many virtual vehicles in practical testbed applications ang, glides around the ellipse as shown in Fig. 4-bottom.
study the effects of larger vehicle nhumbers on the actual

ones 3) Three vehicles follow a leaderThe vehicles still

alternate between competing and gliding behaviors as in
A. Testbed Simulations the two-vehicle case as shown in Fig.5-top. When stable
The testbed has three working vehicles. A virtual leadgnotion emerges, the vehicles and the leader form a stretched
moves around an ellipse with semimajor axis approximate§uadrilateral that glides around the ellipse as shown in
15 times the vehicle length. There is some variability ifFigs. 5>-middle and bottom. We note that fragmentation can
vehicle speed. To address this issue, the position of the leag@metimes occur due to the stretched formation, as the
is checked against the distance to the closest vehicle. If tRéraction between the two slower vehicles overwhelms the
distance becomes larger than a certain threstiglthe leader long-range attraction from the leader.
will pause; otherwise, it will move at its intrinsic speed, We To reduce such occurrences, we can enhance the leader
select our parameters as follows:= 5.7cm, ¢, = 95.2cm,  attraction by increasing its weight. Also, both group cohesion
C, = 10* erg andC, = 6-10° erg. so that” = 1.67 and¢ = and stabilization of the above examples can be realized by
0.06. Note that these parameters correspond to a potentialimposing rigid formations for the vehicle group as in Ref. [6].
the ‘catastrophic regime’ of Ref. [8]. For potential parameterblote, however, that in the absence of a rigid structure, even
in the H-stable regime we have not been able to realizbough the vehicles shift position with respect to each other,
stable configurations of vehicular aggregation due, in parthey are able to maintain a coherent group as they follow the
to the constant speed of the vehicles. The leader interadémder around the track.
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Fig. 4. Two vehicles try to follow a virtual leader along an elliptical path.Fig. 5. Three vehicles try to follow a virtual leader along an elliptical path.
Top: Two vehicles exhibit snake-like motion as they compete for the optimalop: Vehicles exhibit snake-like motion when they level with each other;
spot behind the virtual leader; middle and bottom: The vehicles’ motioMiddle: The formation becomes stable when one trails another. Bottom:
becomes stable when one trails the other, and they form a flat triangle wilthe vehicles and the leader form a stretched quadrilateral that glides along
the leader, which glides along the path. the path.

in the H-stable regime, where aggregation is extensive in
large number limit, the flock size expands with increasing
Computer simulations provide a powerful tool to studwehicle number. Repulsion is more accentuated in the the
scalability and statistical issues for large numbers of vehicleBl-stable regime: for parameters that are close to the stable-
Fig. 6 shows two distinct formations observed in computegatastrophic threshold flocking is still possible, but as the
simulations of 100 vehicles. Aggregates similar to the vortegarameters are chosen further and further away into the H-
shown in the left-hand panel of Fig.6 are seen for weak ®&table regime, cooperative flocks no longer occur and vehicle
non-existent leaders. For strong, effective leaders, vehiclgsoups loose coherence. Fig.8 shows that the critigal
align and follow, as shown in the right hand panel. Fobeyond which the flock disintegrates is located deeper into
the second-order model of Eqn. 2 as specified in Ref.[8] the H-stable regime as the number of vehicles increases.

is shown that as the number of agents increase, collapse,

stability or dispersion of the agents depend on the param- V. CONCLUSIONS
eters of the potential. It is interesting to investigate howVe consider a well-known first order gradient flow model
these results compare to the first-order model of Eqns.X8r robot interactions in a swarm. We prove new results
and 13. In particular, in Ref.[8] it is shown that for aon cohesion and collapse for a general class of potentials.
range of parameter values defined by and ¢ coherent In particular, we find conditions under which the system is
behavior is expected. In Fig.7 we show the steady statpiaranteed to converge inside a ball of fixed radius, provided
formation radius as a function of vehicle number in thet started from a ball of pre-defined larger radius. These
catastrophic regime, where coherent structures are expectedii are independent of number of agents and result in a
to collapse as the number of constituents increases. In thtate in which swarm density goes to infinity as vehicle
present model, the size of a catastrophic flock remains steadymber increases. Such scaling results are very important
as vehicle number increases, consistent with an increasiig designing large agent swarming algorithms. We adapt
vehicle density. On the other hand, for parameter valughe model to a system of Dubins vehicles and consider

B. Computer Simulations
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