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Abstract— In this paper, we study cooperative control algo-
rithms using pairwise interactions, for the purpose of control-
ling flocks of unmanned vehicles. An important issue is the
role the potential plays in the stability and possible collapse
of the group as agent number increases. We model a set of
interacting Dubins vehicles with fixed turning angle and speed.
We perform simulations for a large number of agents and we
show experimental realizations of the model on a testbed with a
small number of vehicles. In both cases, critical thresholds exist
between coherent, stable, and scalable flocking and dispersed
or collapsing motion of the group.

I. I NTRODUCTION

A. Motivation

Social aggregation is a remarkable aspect of animal behavior.
Large numbers of individual agents interacting with each
other are able to self-organize into complex yet coordinated
patterns such as insect swarms, fish schools and bird flocks
[1]. These systems have recently become of great interest
for the mathematical [2], physical [3], [4] and biological
sciences [5] with promising applications for the development
and control of autonomous, multi-vehicular ensembles [6],
[7]. One main goals of this nascent field of research is
to program interactions among individuals so that desired
collective behaviors arise. Spatial patterns, however, can be
dramatically affected even by small parameter changes, not
only in the interactions, but also in constituent number or
speed [8]. In this paper, we formulate criteria, valid for
generalpairwise interactions, to ensure local group cohesion
of a first order model. When interactions are controlled by
a Morse potential, we investigate stability and scalability
through numerical simulations and practical testbed applica-
tions, demonstrating the existence of thresholds and cutoffs
for different regimes of aggregation.

B. Related work and outline

Swarming vehicular systems are often modeled as point
particles in which members may interact with one another
through pairwise interactions; these are perhaps the most
important features in determining what, and if, patterns will
form. A class of attractive and repulsive pairwise potentials
has been studied in Ref. [4] where self-propelled particles
were shown to self-organize into coherent two dimensional
patterns. The existence of cohesive and bound swarms has
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also been reported in Refs. [9], [10], [11]. More recently,
for aggregates of similarly interacting, self-propelled agents,
stabilization or collapse with respect to particle number has
been predicted [8]. In other studies, virtual leaders [6] and
structural potential functions [12] have been introduced to di-
rect and stabilize vehicles into desired formations or to avoid
obstacles. Furthermore, the robustness of various algorithms
in the presence of noise, communication delays and other
non-idealities, have been tested on several testbeds, both
for single and multi-vehicular systems [13], [14]. Activities
such as spatial dispersion, gradient navigation, and cluster
formation have also been reported [15] as well as single-
vehicle path following, stationary obstacle avoidance, and
cooperative searching [16].

In section II we present a general theory applicable to
first order dynamical systems subject to pairwise potential
interactions and we find local conditions for flock cohesion.
In section III we adapt our model to a group of Dubins
vehicles [17], [18] with specific attractive and repulsive
interactions. We discuss stability and scalability of the system
for certain parameter ranges, and we also investigate the
effects of virtual leaders. Finally, in section IV, results from
numerical simulations and experimental realizations of the
model for small vehicle numbers are shown.

II. T HEORY

We consider a general potential flow for a particle at position
~ri, at distanceri = |~ri| from the origin, subject to dissipation
γ and to pairwise interactionsU :

~̇ri = −γ~∇i

∑
j 6=i

U(ri,j). (1)

Here ri,j ≡ |~ri − ~rj | denotes the distance between agents
i, j. For simplicity in the remainder of this paper we will set
γ = 1. The potentialU has an attractive and repulsive part
denoted byUa, Ur, respectively. Then,U ′ = U ′

a − U ′
r, with

U ′
a, U ′

r ≥ 0. The center of mass~x =
∑N

i=1 ~ri is stationary for
any interaction potential that depends solely on the distance
between agents. Without loss of generality we let~x = 0. The
first order, ‘kinematic’ model of Eqn. 1 has been intensely
studied in the literature from both biological [2] and control
points of view [9]. In Ref. [9], Gazi and Passino define a
free agentto be one whose distance to all other members of
the swarm is greater than the repulsive length scale of the
potential. Free agents interacting through an ad-hoc potential,
in which the repulsive part is bounded and the attractive part
has a parabolic, spring-like shape centered about zero, are



proven to converge to an absorbing ball around the center of
mass. The convergence time is finite. A crucial point in the
proof is the parabolic shape of the potential, and its strong,
attractive, yet unphysical, nature at infinite distances. One
important feature of this result is that all agents collapse
inside the absorbing region, regardless of constituent number
N and initial condition. The radius of the absorbing ball is in
fact independent ofN so that asN →∞, the density of the
final resting state diverges as well. The dynamics of Eqn. 1
is a gradient flow for the total energyUtot =

∑
j 6=i U(ri,j).

We are concerned with finding general conditions onU for
which this result can be provedlocally, that is if all agents
start inside a fixed set. Related to this system, is one that
involves second order dynamics:

~̇ri = ~vi, ~̇vi = f(vi)~vi − ~∇i

∑
j 6=i

U(ri,j). (2)

This Newtonian description has been used in several models
[4], [8], [12], [20]. Self propulsion and drag of an individual
are introduced throughf , and the potentialU is as above.
The system is conservative iff = 0,∀v and oftenf is chosen
so that there exists a special valuev∗ for which f(v∗) = 0.
In fact, as pumping and dissipation occur throughf , it is
reasonable to expect that the steady state configurations of
Eqn. 2 are minimizers of the energyUtot and zeroes off .
In Ref. [8], Eqn. 2 is studied in the context of how potential
parameter choices affect swarming patterns.

Drawing on analogies with statistical ensembles [19], an
important indicator of the expected morphology is found to
be theH-stability of the interaction potentialU . A system is
said to be H-stable if the energy per particle is bounded
from below as the number of particles goes to infinity.
Non H-stable potentials are called ‘catastrophic’ as they
typically result in systems that collapse as the number of
particles increases. While such systems are of lesser interest
in classical statistical physics, they largely dominate the
literature on swarming as they more often give rise to
cohesive motion of a group, as in the case studied by Gazi
and Passino. Their global cohesion result is due to the
unphysical parabolic potential at infinity which gives each
agent unbounded velocity at large distances. In this paper, we
prove that the results of Ref. [9] for first order systems can be
extended to a much broader class of potentials, provided we
consider local stability in which agents are initially confined
to a bounded region of space. In this paper we also make
analogies between first and second order models of the type
shown in Eqns. 1 and 2 and study how their stable equilibria
scale with particle number. We make the following definition:

Definition 1 : Diffused state. A flock is in adiffused state
if ri,j > δ ∀i 6= j, whereδ is the repulsive range such that
U ′(r) > 0 for all r > δ.

Note that in order to be in a diffused state, the potential
must yield only attraction outside of a certain radius. The
following Lemma shows that, regardless of the specific form
of the potential, a diffused state always shrinks.

Lemma 1: Weak maximum principle. Define the flock
radius asR ≡ supi ri. For a flock in the diffused state,
Ṙ ≤ 0.

Proof : Let R = ri and definêri,j ≡ ~ri,j/ri,j . Then:

ṙi
2

2
= ~ri · ~̇ri = −~ri ·

N∑
j 6=i

r̂i,jU
′(ri,j) (3)

=
N∑

j 6=i

(
~ri · ~rj − r2

i

)
ri,j

U ′(ri,j) ≤ 0 (4)

sincer2
i ≥ ~ri · ~rj andU ′ > 0 in the diffused state. Thusr2

i ,
andri, are decreasing functions anḋR ≤ 0. 2

A corollary to the above Lemma 1 is that the swarm size
decreases even if only the outermost agents are in a diffused
state. This is due to the fact that the proof only uses an
estimate for the farthest agents of the swarm. We now prove
a local stability limit for general interactionsU and find
conditions for particles initially constrained to a local region
of radiusR, to evolve into a more compact ball of radius
R∗ < R. The proof uses a Lyapunov function discussed in
[9], [10].

Theorem 1: Consider N particles located at~ri with
ri ≤ R ∀i, 1 ≤ i ≤ N . If a finite constant valueK > 0
exists such thatmax {0≤r≤2R} |Kr − U ′(r)| < KR, then
asymptoticallyri ≤ R∗, with R∗ < R.

Proof: We choose the Lyapunov functionVi = r2
i /2. Its

time derivative obeys the following

V̇i = −~ri · ~∇i

∑
j 6=i

U(ri,j) (5)

= −~ri ·
∑
j 6=i

r̂i,jU
′(ri,j) (6)

≤ −KNr2
i + ri(N − 1)η, (7)

whereη ≡ max{frac0≤r≤2R} |Kr − U ′(r)|. In going from
Eqn. 6 to Eqn. 7 we have added and subtractedKri,j where
K > 0 is an arbitrary constant. We also used the fact that
~ri ·

∑N
j 6=i ~ri,j = Nr2

i . Also note thatri,j ≤ 2R since by
assumptionri ≤ R. Asymptotically then:

ri ≤
N − 1

N

η

K
≤ η

K
≡ R∗, (8)

and we requireη < KR for this bound to be more stringent
than the initial radiusR. 2

Corollary 1: If Theorem 1 holds for allR′ < R then as
t →∞ the system will collapse with all particles converging
at Rf = 0.

Proof: This follows from the fact that forri ≥ η/K, the
Lyapunov functionV̇ ≤ −Kr2

i = −2KVi. The limit R∗ is
thus reached in a time:

tmax = max
i

[
1

2K
ln

(
η2

2K2Vi(0)

)]
, (9)



whereVi(0) is the Lyapunov function at timet = 0. After
tmax is reached, Theorem 1 can be applied again, and the
iteration process can be repeated until the limitRf = 0 is
reached. Theorem 1, applied to the parabolic potential of
Ref. [9] is the global convergence theorem there shown. Our
control algorithm adopts a generalized Morse potential that
decays at infinite distances, as would be expected for systems
of vehicles with a limited communication range:

U(ri,j) = −Cae−ri,j/`a + Cre
−ri,j/`r . (10)

Here,Ca, Cr represent the strength of the attractive and re-
pulsive potentials, and̀a, `r their length scales, respectively.
Define ` ≡ `r/`a, C ≡ Cr/Ca. A sufficient condition for
Theorem 1 is(

Ca

`a
e−

2R
`a − Cr

`r

)
< 2KR < 2

(
Ca

`a
e−

2R
`a − Cr

`r

)
, (11)

which can be satisfied only if̀ > C so that R can be
chosen as2R < `a ln (`/C). Also note that Corollary 1
holds here, since the latter condition holds for allR′ < R.
The above condition is a sufficient but not necessary one,
and other combinations of̀, C could give rise to acceptable
R,K values without resulting in a state where all agents
collapse to a point. It is interesting to compare these results
with the stability phase diagram of Ref. [8] for the same
potential in the second order model of Eqn. 2. The region
` > C with ` < 1 is classified as catastrophic in Ref. [8],
with particles converging towards their center of mass and
becoming denser asN → ∞. This is consistent with the
results proven here thatN particles initially in a ball of radius
R get ‘squeezed’ into a tighter one. On the other hand, the
region ` > C, with ` > 1 is classified as stable in Ref. [8],
with no possible squeezing effects in the long time limit.
The apparent discrepancy can be understood as follows. In
the region ` > C, ` > 1, the pairwise potential has a
positive, local minimum forri,j = 0 and a barrier atri,j =
rmax > `a ln(`/C), before decaying to zero asri,j → ∞.
The first order system (1) is purely dissipative and there are
no fluctuations in the total energy, which can only decrease
in time. For second order systems of the type described in
Eqn. 2 however, even if the local energy minimum is reached,
with all particles simultaneously atri,j = 0, fluctuations
due to exchange with the environment as imposed byf ,
can eventually drive the system away, towards the dispersed,
global energy minimum atri,j → ∞. For other, specific
choices of the potential parameters, numeric estimates can
determine whetherR,K values exist that satisfy Theorem 1.

III. T ESTBED ADAPTATION

The models described in Eqns. 1 and 2 cannot be directly ap-
plied to a platform of autonomous vehicles due to mechanical
constraints. The platform of real vehicles we use is described
in Ref. [14]. The vehicles consist of Dubins micro-cars with
fixed speed and fixed left and right turning radii. The first
constraint implies our dynamical system must be described
as first order. The only independent variable denoting agent
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Fig. 1. Definition of variables for vehiclei: The heading is denoted by
θi, the angle between its direction of motion and thex axis of the testbed.
~Fi is the interaction force it experiences due to all other vehicles. This
direction defines an angleγi with the heading direction. Vehiclei is at a
distance~ri,j from vehiclej and the anglesφi andφj here shown are used
in the collision avoidance scheme described in the text. The origin of the
reference coordinate system is fixed at the left-lower corner of the testbed.
All vehicular angles,γi, θi, φi, are defined in[π,−π).

i is its heading angle with respect to a fixed orientation we
define asθi. The Dubins vehicles interact with each other
by means of the Morse potential of Eqn. 10 with variable
parametersCa, Cr, `a, `r. Due to the fixed turning radii, the
interactions cannot directly controlθi and an appropriate
control algorithm must be devised. For each vehicle then,
we measure the angleγi between vehicle heading and the
total force ~Fi it experiences, as given by the right hand side
of Eqn. 1 and as shown in Fig. 1. Vehiclei then changes
direction only if |γi| > Γ, whereΓ is an angular threshold
0 ≤ Γ ≤ π. The equations of motion are as follows:

ẋi = α cos θi ẏi = α sin θi, (12)

θ̇i =


α

RL
if γi > Γ (left turn),

− α
RR

if γi < −Γ (right turn),
α

RS
otherwise.

(13)

Here, α is the speed of the vehicle, andRL, RR are the
left and right turning radii, respectively.RS is the deviation
radius. In the ideal caseRL = RR and RS = ∞, so
that vehicle direction is unaffected for|γi| < Γ. Because
of alignment asymmetries in generalRL 6= RR and RS is
a large but finite number. Vehicular motion proceeds along
the direction specified by the heading parameterθi until the
turning commandṡθi are given.

A crucial point is that the interaction potential in Eqn. 10
is soft-core and does not prevent vehicles from colliding. In
fact, even hard-core potentials cannot avoid collisions due to
communication delays, errors in position information, and
the finite turning radius of the vehicles. The repulsive range
may be increased to initiate turning at larger inter-vehicle
distances. This however, would significantly affect pattern
formation and the emergence of cooperative aggregates
would be unlikely. Instead, we add an additional collision
avoidance algorithm to address short range interactions. We
use a ‘wait and go’ scheme for vehicles closer than a
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Fig. 2. Collision avoidance failure: The anglesφi andφj are too small and
vehiclesi and j collide even if one of them should pause. An additional
algorithm is required to steer the vehicles away from each other and is
described in the text. It relies on the angleΩi,j here depicted.

cutoff distancerc. For vehiclesi, j at distance~ri,j such that
ri,j < rc, we define the anglesφi, φj between their main
axis and~ri,j , as shown in Fig. 1. Ifφi < φj vehicle i will
pause while vehiclej veers away, untilri,j > rc. The cutoff
distancerc in the control algorithm acts as an effective hard-
core potential. Ifφi = φj any one of the vehicles (in our
simulations the one with a higher labeling index) will pause
and let the other proceed. Whenφi, φj ' 0 the ’wait and
go’ scheme cannot avoid collision as shown in Fig. 2, and
an alternate algorithm is invoked. For vehiclesi and j we
define the angleΩi,j between~ri,j and the segment joining
their opposite front edges measured frommax{φi, φj} as
shown in Fig. 2. Ifmax{φi, φj} < Ω, whereΩ is an angular
threshold0 ≤ Ω ≤ π/2, then the vehicle closer to the center
of the testbed is veered towards the center and the other in
the opposite direction.

IV. EXPERIMENTAL RESULTS

In this section we study the behavior and performance scaling
of a set of Dubins vehicles controlled by the first order laws
based on the model in the previous section. We consider both
testbed implementation and numerical simulations for small
and large numbers of vehicles, respectively. The computer
model is validated against the testbed in the case of a few
vehicles. It is also possible to incorporate the presence of
many virtual vehicles in practical testbed applications and
study the effects of larger vehicle numbers on the actual
ones.

A. Testbed Simulations

The testbed has three working vehicles. A virtual leader
moves around an ellipse with semimajor axis approximately
15 times the vehicle length. There is some variability in
vehicle speed. To address this issue, the position of the leader
is checked against the distance to the closest vehicle. If the
distance becomes larger than a certain thresholddt, the leader
will pause; otherwise, it will move at its intrinsic speed, We
select our parameters as follows:`r = 5.7 cm, `a = 95.2 cm,
Ca = 104 erg andCr = 6·103 erg. so thatC = 1.67 and` =
0.06. Note that these parameters correspond to a potential in
the ‘catastrophic regime’ of Ref. [8]. For potential parameters
in the H-stable regime we have not been able to realize
stable configurations of vehicular aggregation due, in part,
to the constant speed of the vehicles. The leader interacts
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Fig. 3. Vehicular motion: These panels show fragments of the vehicle’s
trajectory when it tries to follow a virtual leader along an elliptical path.
The vehicle is unstable whendt is decreased belowreq = 20.2 cm. Top
left: dt = 20.5 cm; Top right:dt = 20.2 cm; Bottom:dt = 20.0 cm.

with the vehicles according to the same Morse potential used
for vehicle-vehicle interaction. When leading more than one
vehicle, the leader’s contribution to the potential is increased
1.1 times and 2.1 times the vehicular potential for the two-
vehicle and the three-vehicle experiments, respectively.

1) One vehicle follows a leader:The parameters men-
tioned above provide short-range repulsion and long-range
attraction resulting in an equilibrium separation. Fig. 3 shows
results fordt near the equilibriumreq, calculated to bereq =
20.2 cm. Running tests withdt = 20.5 cm, dt = 20.2 cm,
and dt = 20.0 cm, we note that leader-following becomes
ineffective fordt below req.

2) Two vehicles follow a leader:The vehicles are found to
alternate between a snake-like competing behavior as shown
in Fig. 4-top and a stable gliding behavior as shown in Fig. 4-
middle. The stable behavior emerges when one vehicle trails
the other and they form a rather flat triangle with the leader
that glides around the ellipse as shown in Fig. 4-bottom.

3) Three vehicles follow a leader:The vehicles still
alternate between competing and gliding behaviors as in
the two-vehicle case as shown in Fig. 5-top. When stable
motion emerges, the vehicles and the leader form a stretched
quadrilateral that glides around the ellipse as shown in
Figs. 5-middle and bottom. We note that fragmentation can
sometimes occur due to the stretched formation, as the
attraction between the two slower vehicles overwhelms the
long-range attraction from the leader.

To reduce such occurrences, we can enhance the leader
attraction by increasing its weight. Also, both group cohesion
and stabilization of the above examples can be realized by
imposing rigid formations for the vehicle group as in Ref. [6].
Note, however, that in the absence of a rigid structure, even
though the vehicles shift position with respect to each other,
they are able to maintain a coherent group as they follow the
leader around the track.
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Fig. 4. Two vehicles try to follow a virtual leader along an elliptical path.
Top: Two vehicles exhibit snake-like motion as they compete for the optimal
spot behind the virtual leader; middle and bottom: The vehicles’ motion
becomes stable when one trails the other, and they form a flat triangle with
the leader, which glides along the path.

B. Computer Simulations

Computer simulations provide a powerful tool to study
scalability and statistical issues for large numbers of vehicles.
Fig. 6 shows two distinct formations observed in computer
simulations of 100 vehicles. Aggregates similar to the vortex
shown in the left-hand panel of Fig. 6 are seen for weak or
non-existent leaders. For strong, effective leaders, vehicles
align and follow, as shown in the right hand panel. For
the second-order model of Eqn. 2 as specified in Ref. [8] it
is shown that as the number of agents increase, collapse,
stability or dispersion of the agents depend on the param-
eters of the potential. It is interesting to investigate how
these results compare to the first-order model of Eqns.12
and 13. In particular, in Ref.[8] it is shown that for a
range of parameter values defined byC and ` coherent
behavior is expected. In Fig. 7 we show the steady state
formation radius as a function of vehicle number in the
catastrophic regime, where coherent structures are expected
to collapse as the number of constituents increases. In the
present model, the size of a catastrophic flock remains steady
as vehicle number increases, consistent with an increasing
vehicle density. On the other hand, for parameter values
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Fig. 5. Three vehicles try to follow a virtual leader along an elliptical path.
Top: Vehicles exhibit snake-like motion when they level with each other;
Middle: The formation becomes stable when one trails another. Bottom:
The vehicles and the leader form a stretched quadrilateral that glides along
the path.

in the H-stable regime, where aggregation is extensive in
large number limit, the flock size expands with increasing
vehicle number. Repulsion is more accentuated in the the
H-stable regime: for parameters that are close to the stable-
catastrophic threshold flocking is still possible, but as the
parameters are chosen further and further away into the H-
stable regime, cooperative flocks no longer occur and vehicle
groups loose coherence. Fig. 8 shows that the critical`r,
beyond which the flock disintegrates is located deeper into
the H-stable regime as the number of vehicles increases.

V. CONCLUSIONS

We consider a well-known first order gradient flow model
for robot interactions in a swarm. We prove new results
on cohesion and collapse for a general class of potentials.
In particular, we find conditions under which the system is
guaranteed to converge inside a ball of fixed radius, provided
it started from a ball of pre-defined larger radius. These
radii are independent of number of agents and result in a
state in which swarm density goes to infinity as vehicle
number increases. Such scaling results are very important
in designing large agent swarming algorithms. We adapt
the model to a system of Dubins vehicles and consider



Fig. 6. Vehicular formations in the presence of a leader: The formation
to the left occurs when the vehicles fall out of the leader’s path and self-
aggregate into a vortex-like formation. The formation to the right occurs
when the vehicles successfully follow the leader.
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Fig. 7. Scaling in the H-stable and catastrophic regimes. The potential
parameters are set at`a = 95.2 cm, Ca = 104 erg andCr = 6 · 103 erg.
With these parameter choices, H-stability is guaranteed for`r > 73.5 cm.
In the top curve`r = 76.2 cm, in the middle one,̀ r = 69.0 cm, just
below the transition threshold. The bottom curve, for which`r = 35.7 cm,
falls deeply into the catastrophic regime. Straight lines are power law fits
with powers10−1, 10−2 for the top and middle set. Within fitting errors,
the catastrophic curve defines a constant flocking radius.
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Fig. 8. Critical`r versus vehicle number. The data points indicate the`r

threshold beyond which the cooperative flock disintegrates.Cr, Ca, `a are
the same as in Fig. 7.

both testbed and numerical simulations for the swarm. We
include a virtual leader which allows for continued motion
of the swarm in a confined geometry. For small numbers of
agents, the testbed verifies some simple facts about stability
of the algorithm under certain parameters of the virtual leader
potential. For large numbers of agents we show in computer
simulations how the size of the swarm scales as the agent
number increases. In our model, as the number of agents
grows, the swarm is able to maintain its cohesion using
potentials with parameters that would lead to instability at
smaller numbers.
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