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Iterative Regularization and Nonlinear Inverse Scale
Space Applied to Wavelet Based Denoising

Jinjun Xu and Stanley Osher

Abstract— In this paper we generalize the iterative regular-
ization method and the inverse scale space method, recently
developed for total variation-based image restoration, to wavelet-
based image restoration. This continues our earlier joint work
with others where we applied these techniques to variational
based image restoration, obtaining significant improvement over
the Rudin-Osher-Fatemi total variation based restoration. Here
we apply these techniques to soft shrinkage and obtain the
somewhat surprising result that (a) the iterative procedure
applied to soft shrinkage gives firm shrinkage and converges to
hard shrinkage and (b) that these procedures enhance the noise
removal capability both theoretically, in the sense of generalized
Bregman distance, and for some examples, experimentally in
terms of SNR, leaving less signal in the residual.

Index Terms— Image restoration, iterative regularization
method, inverse scale space methods, total variation, Bregman
distance, wavelet, wavelet shrinkage.

I. INTRODUCTION

TOTAL variation (TV) regularization (cf., e.g., [1], [2])
and wavelet shrinkage (cf., e.g., [3]–[5]) are among the

most useful techniques for signal and image denoising. The
relations between them have been studied by several authors,
e.g., in [6]–[8].

In recent work, the authors and colleagues developed an iter-
ative regularization method (IRM) and applied it to variational-
based image restoration [9]. Significant improvements were
obtained in both theoretical and numerical results. Later in
[10], [11] the discrete refinement procedure in this method was
successfully generalized to a time-continuous inverse scale
space (ISS) formulation.

In this paper, we start by reviewing TV-based denoising
methods and their recent developments, IRM and ISS, and
the relation between TV regularization and one important
technique in wavelet based denoising - soft shrinkage (cf. [4]).
Then we generalize the iterative regularization idea to the latter
and obtain another type of wavelet shrinkage - firm shrinkage
(cf. [12]). After taking a limit of the discrete iteration, we
show that iterated soft shrinkage becomes hard shrinkage (cf.
[4]). Finally we generalize the inverse scale space idea to soft
shrinkage and present some numerical examples.
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II. TOTAL VARIATION BASED METHODS, ITERATIVE
REGULARIZATION AND INVERSE SCALE SPACE

Given a noisy signal (one-dimensional, 1D, d = 1) or
image (two-dimensional, 2D, d = 2) data, denoted by f :
Ω ⊂ Rd → R, which is corrupted by additive noise from the
unknown original data g, the task of denoising is to look for
a signal or image u which is close to f and “clean” in some
sense. Without confusion, we will use the word “image” in all
dimensions.

Variational methods solve this problem via the following
minimization

u∗ = argmin
u

{
J(u) + λH(u, f)

}
, (1)

where J(u) is a regularization term which characterizes some
features of the desired solution u, H(u, f) is a fidelity term
which measures the difference between u and f and usually is
a nonnegative functional, and λ > 0 is a scale parameter tuning
the weight between the regularization term and the fidelity
term. TV-based methods use J(u) as the BV -seminorm of u:

J(u) = |u|BV (Ω) =
∫

Ω

|∇u| dxdy, (2)

which is also referred to as the total variation of u, and
then look for solutions u in BV (Ω) (cf., eg., [13, Chapter
5]). One important feature of using the BV -seminorm as a
regularization term is that it helps to recover clean functions
u having sharp edges. TV-based methods were introduced
to image processing by Rudin-Osher-Fatemi [1], with the
following ROF denoising model:

u∗ = arg min
u∈BV (Ω)

{
|u|BV (Ω) +

λ

2
‖f − u‖2L2

}
. (3)

The solutions of (1) and (3) are often obtained by solving
the corresponding Euler-Lagrange equations through, e.g.,
gradient descent or a fixed point method.

Due to its simple formula and edge preserving property,
ROF is one of the most popular TV-based image denoising
techniques. A defect involving loss of contrast was observed
and analyzed by, e.g., [14], [15]. To solve this problem, in [9]
the authors and colleagues developed an iterative regulariza-
tion method (IRM), which replaces the regularization term in
(1) by a generalized Bregman distance. For p ∈ ∂J(w), which
is the subgradient of the weakly convex functional J at w (cf.,
e.g., [16]), we define the (nonnegative) quantity

Dp
J(u,w) ≡ J(u)− J(w)− 〈u− w, p〉, (4)

which is known as the generalized Bregman distance asso-
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ciated with J(·) and p (cf. [17]–[19] for an extension to
nonsmooth functionals J). 〈·, ·〉 is the usual L2 inner product
on Ω. We note that if J(·) is not strictly convex, then ∂J(·)
may contain more than one element. For a uniquely selected
p ∈ ∂J(·), which is the case for our iterative regularization
procedure defined in [9] and also in the following sections of
this paper, (4) is well-defined.

To summarize, instead of solving (1), IRM in [9] solves the
following sequence of variational problems

u(k) = argmin
u

{
Dp(k−1)

J (u, u(k−1)) + λH(u(k−1), f)
}

, (5)

p(k) = p(k−1) − λ∂uH(u(k−1), f) ∈ ∂J(u(k)), (6)

where k ≥ 1, u(0) = p(0) = 0. The sequence {u(k)} satis-
fies: H(u(k), f) monotonically decreases with respect to k;
D(g, u(k)) monotonically decreases as long as H(u(k), f) ≥
H(g, f), where g is the unknown clean image. From these two
facts, if we have the value or an estimate of H(g, f) (which is
usually related to the noise level), then the iteration (5) and (6)
will be stopped at the last k such that H(u(k), f) ≥ H(g, f).
The numerical examples in [9] show significant improvements
of IRM over standard models (1). For rigorous analysis and
details, see [9].

Later in [10], [11], the authors and colleagues generalized
the discrete IRM to a time-continuous nonlinear inverse scale
space (ISS) flow. The idea can be briefly described as follows:
rewrite (6) as

p(k) − p(k−1)

λ
= −∂uH(u(k−1), f), (7)

then interprete λ as a timestep ∆t and let it go to 0, define
p(k) = p(k∆t), u(k) = u(k∆t). After dropping the superscript
k and k − 1 and letting ∆t → 0, k∆t → t we obtain

dp

dt
= −∂uH(u, f), (8)

with u(0) = p(0) = 0 and u ∈ ∂J∗(p), where J∗ is the dual
functional of J (cf., e.g., [16]). We obtained similar numerical
properties for u(t) in ISS as for u(k) in IRM. Therefore the
flow can be stopped at t̄ when H(u(t̄), f) = H(g, f). For
details see [10], [11].

III. WAVELET SHRINKAGE AND THE RELATION WITH TV
REGULARIZATION

Given an orthonormal wavelet basis {ψj(x)}, j =
(j1, j2, j3), which is generated, e.g., by {ψ(j3)(x)}2d−1

j3=1 with
ψj(x) = 2j1ψ(j3)(2j1x − j2), j1 ∈ Z, j2 ∈ Zd, x ∈ Rd, the
wavelet transform of an image f can be represented as (cf.,
e.g., [20]–[22]):

f =
∑

j

f̃jψj =
∑

j

〈f, ψj〉ψj.

We denote f̃ = {f̃j} = {〈f, ψj〉}.
In general, wavelet shrinkage attempts to denoise images

via the following three steps (cf., e.g., [3], [4]):
(1) Analysis. Transform the noisy image f to the wavelet

coefficients f̃ = {f̃j};

(2) Shrinkage. Apply a shrinkage operator T with a threshold
parameter τ related to the noise level to the wavelet
coefficient f̃ : ũ := Tτ (f̃);

(3) Synthesis. Reconstruct the denoised solution u from the
shrunken wavelet coefficients:

u =
∑

j

ũjψj =
∑

j

Dτ (f̃j)ψj .

Remark. In the literature (e.g., [7]) the wavelet basis is of-
ten divided into two parts: lowpass scaling functions ϕ(x) and
bandpass wavelet functions ψ(x). Correspondingly the wavelet
coefficients are divided into two parts: scaling coefficients
(or “approximation coefficients”) and detail coefficients. Then
in the shrinkage step above one can choose to apply the
shrinkage operator either on all wavelet coefficients or only on
the detail coefficients. In our discussion in this paper we will
consider shrinkage on all the wavelet coefficients. Since our
models are separable, our discussion can be easily generalized
to the case of shrinkage on detail coefficients only.

There are various types of shrinkage operators discussed in
the literatures. We list those that we will use here:

• Soft shrinkage (cf. [4]), for τ > 0,

Sτ (w) =
{

w − τsign(w), if |w| > τ,
0, if |w| ≤ τ.

(9)

• Hard shrinkage (cf. [4]), for τ > 0,

Hτ (w) =
{

w, if |w| > τ,
0, if |w| ≤ τ.

(10)

• Firm shrinkage (cf. [12]), for τ2 > τ1 > 0,

Fτ1,τ2(w) =





w, if |w| > τ2,
c(w, τ1, τ2), if τ1 < |w| ≤ τ2,

0, if |w| ≤ τ1,
(11)

where c(w, τ1, τ2) = τ2
τ2−τ1

(w−τ1sign(w)) is a value between
0 and w.

Now we consider the Besov space B1,1
1 (Ω), which contains,

roughly speaking, functions with first order derivatives in
L1(Ω). (For the formal definition of Besov spaces Bp,q

α , cf.,
e.g., [23]). One important fact is that the discrete l1-norm of
the wavelet coefficients is equivalent to the norm in B1,1

1 (Ω),
which is a subset of BV (Ω) for Ω ⊂ R2 (cf., e.g., [6], [8],
[24]–[27]). We replace the BV -seminorm (2) by the l1-norm
of wavelet coefficients

J(ũ) =
∑

j

|ũj| ≈ ‖u‖B1,1
1

. (12)

Here ‘≈’ is used to represent the equivalence between the two
norms. (We still use the notation J although it has different
meaning now.) From Parseval’s identity we have

‖f − u‖2L2 = ‖f̃ − ũ‖2L2 =
∑

j

|f̃j − ũj|2. (13)

We then approximate the TV-based ROF model (3) by using
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the following wavelet-based method:

ũ∗ = argmin
ũ

{
J(ũ) +

λ

2
‖f̃ − ũ‖2L2

}

= argmin
ũ

{∑

j

|ũj|+ λ

2

∑

j

|f̃j − ũj|2
}

, (14)

where f̃j are the wavelet coefficients of the noisy image f and
the restored image u∗ is the wavelet reconstruction of ũ∗. To
simplify the notation from now on we drop the superscript ∗
if not otherwise specified.

Note that because the summation in (14) is separable, it
suffices to solve a sequence of scalar minimization problems
min
ũj

φf̃j
(ũj) for all j, where φf̃j

(ũj) = |ũj|+ λ
2 (f̃j − ũj)2.

The minimizer of (14) is

ũj =
{

f̃j − 1
λ sign(f̃j), if |f̃j| > 1

λ ,

0, if |f̃j| ≤ 1
λ ,

(15)

for all j, which is precisely the soft shrinkage algorithm (9)
with threshold τ = 1

λ :

ũ = S 1
λ
(f̃).

The above connection between ROF and soft shrinkage was
observed by Chambolle et. al. in [6].

Remark. Denote F (ũj) = |ũj| a scalar function, then
J(ũ) =

∑
j F (ũj) and we can write the subgradient ∂J(ũ) =

{∂F (ũj)}, where

∂F (ũj) =
{

sign(ũj), if ũj 6= 0,
[−1, 1], if ũj = 0.

(16)

The Euler-Lagrange equation of (14) is

∂F (ũj) + λ(ũj − f̃j) 3 0, for all j,

Denote p̃j = λ(f̃j − ũj) ∈ ∂F (ũj), ṽj = p̃j

λ , then ṽj = f̃j − ũj

and we have a decomposition f̃j = ũj + ṽj . From (15) we
have

p̃j =
{

sign(f̃j) , if |f̃j| > 1
λ ,

λf̃j , if |f̃j| ≤ 1
λ ,

(17)

and

ṽj =
{

1
λ sign(f̃j) , if |f̃j| > 1

λ ,

f̃j , if |f̃j| ≤ 1
λ ,

(18)

for all j. Note that although ∂F (0) = [−1, 1] is a multivalued
set, p̃j defined above is unique. We will use p̃j and ṽj later to
define the iterative regularization procedure.

IV. ITERATIVE REGULARIZATION APPLIED TO WAVELET
SHRINKAGE

Now we generalize IRM and ISS in [9]–[11] to wavelet
shrinkage. The generalized Bregman distance associated with
J(ũ) in (12) and p̃ ∈ ∂J(w̃) can be defined as

Dp̃
J(ũ, w̃) ≡ J(ũ)− J(w̃)− 〈ũ− w̃, p̃〉. (19)

Again we note that for w̃j = 0, ∂F (w̃j) is a multivalued
set. However, as we shall see below, the proposed iterative
regularization algorithm will automatically select a unique
subgradient p̃ ∈ ∂J(w̃). Without confusion, we will omit the
word “generalized” in the following discussion.

Following the same idea as in [9], we replace J(ũ) in (14)
by the Bregman distance (19) and then obtain a sequence
of minimization problems on ũj and the update of its dual
variable p̃j as follows

ũ(k) = argmin
ũ

{
Dp̃(k−1)

J (ũ, ũ(k−1)) +
λ

2
‖f̃ − ũ‖2L2

}
, (20)

p̃(k) = p̃(k−1) + λ(f̃ − ũ(k)), (21)

with k ≥ 1, ũ(0) = 0, p̃(0) = 0. We shall show later that such
p̃(k) ∈ ∂J(ũ(k)). We call this as a wavelet-based iterative
regularization method (W-IRM).

If we denote ṽ(k) = p̃(k)

λ , then ṽ(0) = 0, by plugging
(19) into (20) and dropping the constant terms from the
minimization, after some simplification we can rewrite (20)
as

ũ(k) = argmin
ũ

{
J(ũ) +

λ

2

∥∥∥(f̃ + ṽ(k−1))− ũ
∥∥∥

2

L2

}
. (22)

Note that at the kth iteration we simply replace the wavelet
coefficients f̃ in the original minimization (14) by f̃ + ṽ(k−1),
and proceed to solve the same minimization procedure as for
(14). Therefore the minimizer of (22) is

ũ
(k)
j =





(f̃j + ṽ
(k−1)
j )− 1

λ sign(f̃j + ṽ
(k−1)
j ) ,

if |f̃j + ṽ
(k−1)
j | > 1

λ ,

0 ,

if |f̃j + ṽ
(k−1)
j | ≤ 1

λ ,

(23)

or simply,
ũ

(k)
j = S 1

λ
(f̃j + ṽ

(k−1)
j ), (24)

where k ≥ 1, ṽ
(0)
j = 0 and

ṽ
(k)
j = f̃j + ṽ

(k−1)
j − ũ

(k)
j . (25)

We have the following results for the above iterates ũ
(k)
j

and ṽ
(k)
j :

Theorem 1. For the solutions ũ
(k)
j and ṽ

(k)
j defined in the

updates (23) and (25), k ≥ 1, we have
(1)

ṽ
(k)
j =

{
1
λ sign(f̃j) , if |f̃j| > 1

kλ ,

kf̃j , if |f̃j| ≤ 1
kλ ,

(26)

and sign(ṽ(k)
j ) ≡ sign(f̃j);

(2)

ũ
(k)
j =





f̃j , if |f̃j| > 1
(k−1)λ ,

kf̃j − 1
λ sign(f̃j), if 1

kλ < |f̃j| ≤ 1
(k−1)λ ,

0, if |f̃j| ≤ 1
kλ ,

(27)
and sign(ũ(k)

j ) = sign(f̃j), if ũ
(k)
j 6= 0;

(3) for p̃
(k)
j ≡ λṽ

(k)
j , p̃

(k)
j ∈ ∂F (ũ(k)

j ).
The proof of Theorem 1 will be shown in the appendix.
We note that (27) is firm shrinkage (11) (cf. [12]) with

thresholds τ (k) = 1
kλ and τ (k−1) = 1

(k−1)λ . In other words,
iterative soft shrinkage gives firm shrinkage! We also see that
these thresholds are monotonically decreasing with respect to
the iterates k. Therefore, the iterative soft shrinkage provides a
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multiscale wavelet denoising sequence, in the sense that bigger
coefficients in ũj are saved earlier than smaller ones.

Now we need a stopping criterion for the iterations. We
first observe that the L2 distance between f and u(k), which
equals to the distance between f̃ and ũ(k), is monotonically
decreasing with respect to k. Then we can use the same
stopping criterion as was used for iterated total variation based
models: we stop the iteration (20) and (21) at the last k = k̄
where

‖f̃ − ũ(k)‖L2 ≥ σ,

where σ = ‖f−g‖L2 = ‖f̃− g̃‖L2 is the standard deviation of
the noise f − g, g is used to denote the original clean image.
Note that this stopping criterion corresponds to the commonly
used L2 constraint in denoising problems. In general g is
unknown, however, as we discussed in [11], in typical imaging
situations, an estimate for the standard deviation or variance
of the noise is known, which yields a bound of the form
‖f − g‖L2 ≤ σ.

A. Bregman distance
We are interested in the Bregman distance between the

original clean image g and the restored image u. In the wavelet
space, we turn to compute the Bregman distance (19) between
the wavelet coefficients g̃ and ũ(k). Using p̃(k) = λṽ(k) and
(26), we have

Dp̃(k)

J (g̃, ũ(k)) = J(g̃)− J(ũ(k))− 〈g̃ − ũ(k), p̃(k)〉
= J(g̃)− 〈g̃, p̃(k)〉 =

∑

j

|g̃j| −
∑

j

p̃
(k)
j g̃j

=
∑

j:|f̃j|>1/kλ

(|g̃j| − sign(f̃j)g̃j)

+
∑

j:|f̃j|≤1/kλ

(|g̃j| − kλf̃jg̃j) (28)

≥ 0.

And we also have

Dp̃(k)

J (g̃, ũ(k))−Dp̃(k−1)

J (g̃, ũ(k−1))

= −〈g̃, p̃(k) − p̃(k−1)〉
≤ −〈g̃ − ũ(k), p̃(k) − p̃(k−1)〉
= −〈g̃ − ũ(k), λ(f̃ − ũ(k))〉
≤ λ(−1

2
‖f̃ − ũ(k)‖2L2 +

1
2
‖f̃ − g̃‖2L2)

< 0

as long as ‖f̃ − ũ(k)‖L2 > ‖f̃ − g̃‖L2 = σ.
Therefore, the Bregman distance (19) monotonically de-

crease for k less than k̄, which is the last iterate such that
‖f̃− ũ(k)‖L2 ≥ σ and is also our stopping point as mentioned
above. In other words, ũ(k) monotonically converges to g̃ in
the sense of Bregman distance when k ≤ k̄. This unsurpris-
ingly is the same conclusion that we obtained in the iterative
regularization procedure for TV-based models, see [9].

B. Limiting case
If we reinterpret λ = ∆t as a timestep and kλ = t(k),

dropping superscript k then (27) becomes

ũj(t) =





f̃j , if |f̃j| ≥ 1
t−∆t ,

t
∆t (f̃j − 1

t sign(f̃j)) , if 1
t ≤ |f̃j| < 1

t−∆t ,

0 , if |f̃j| < 1
t .

Let ∆t ↘ 0, then t − ∆t → t. We have the following
solution

ũj(t) =
{

f̃j , |f̃j| ≥ 1
t ,

0 , |f̃j| < 1
t ,

(29)

which turns out to be hard shrinkage (10) with threshold τ =
1
t :

ũ = H 1
t
(f̃).

The Bregman distance D
p̃(t)
J (g̃, ũ(t)) is same as the one stated

in (28), with kλ replaced by t, i.e.,

D
p̃(t)
J (g̃, ũ(t)) =

∑

j:|f̃j|>1/t

(|g̃j|−sign(f̃j)g̃j)−
∑

j:|f̃j|≤1/t

(|g̃j|−tf̃jg̃j).

(30)
So we have the result that D

p̃(t)
J (g̃, ũ(t)) monotonically de-

crease in time as long as ‖f̃ − ũ(t)‖L2 > σ.
We point out here that the idea of reinterpreting λ as a

shrinking time-step ∆t was used in [10] to define an inverse
scale space model. Therefore, the above formula (29) can also
be viewed as a solution to the inverse scale space model de-
rived from wavelet denoising (14). We will introduce another
version of inverse scale space below involving a regularized
Jε(ũ).

V. REGULARIZED WAVELET DENOISING AND INVERSE
SCALE SPACE

In this section we will generalize the above iterative regu-
larization procedure to a time-continuous inverse scale space.
First we need to borrow a standard regularization technique
from the TV-based imaging community: we approximate
F (ũj) = |ũj| as

Fε(ũj) =
√

ũ2
j + ε, (31)

where ε > 0 is a small constant (and independent of j). Now

p̃j = ∂Fε(ũj) =
ũj√

ũ2
j + ε

(32)

is well-defined and unique everywhere, and we can invert ũj

from p̃j.
If we replace F (ũj) with Fε(ũj) in (14), we have

ũj = argmin
ũj

{√
ũ2
j + ε +

λ

2
(f̃j − ũj)2

}
, ∀j. (33)

The corresponding Euler-Lagrange equation now is

ũj√
ũ2
j + ε

+ λ(ũj − f̃j) = 0. (34)

This is a nonlinear equation for ũj which can be solved
numerically, e.g., by a simple fixed point method. A slight
extra computational cost comes with it as compared to (27).
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Remark. Note that when ε → 0, Fε(ũj) → F (ũj),
and for ũj 6= 0 we also have ∂Fε(ũj) → ∂F (ũj). When
ũj = 0, ∂Fε(0) = 0, while the original iteration (21) gives
p̃
(k)
j (ũ(k)

j = 0) = kλf̃j ∈ ∂F (0) = [−1, 1], which is
not identically 0. However, p̃j defined in (32) still satisfies
p̃j(ũj = 0) = ∂Fε(ũj = 0) ∈ [−1, 1] = ∂F (0).

Remark. The regularization technique used in the ap-
proximation (31) is similar to the approximation of the BV-
seminorm term in many TV-based models (cf., e.g., [1], [15]).
The reason we use this regularization here is that for inverse
scale space discussed later, we need to invert ũ from p̃, which
requires that p̃(ũ) to be uniquely determined. The role and
choice of the parameter ε will be studied in our future work.

A. Inverse scale space

Now we define an inverse scale space with the above regu-
larized Fε(ũj). We start from the Bregman iteration involving
the dual variable p̃j in (21). For each j we have,

p̃
(k)
j − p̃

(k−1)
j

λ
= (f̃j − ũ

(k)
j ), k ≥ 1 (35)

ũ
(0)
j = p̃

(0)
j = 0. (36)

Let λ = ∆t, k∆t → t, the equation becomes

dp̃j

dt
= f̃j − ũj, ũj(0) = 0. (37)

Since dp̃j

dũj
= ε

(ũ2
j +ε)3/2 , we have a wavelet-based inverse scale

space (W-ISS) flow for each ũj as follows

dũj

dt
=

(ũ2
j + ε)3/2

ε
(f̃j − ũj), ũj(0) = 0. (38)

This gives us a simple flow involving ũj, instead of p̃j.

B. Convergence analysis

We now study the behavior of the above regularized inverse
scale space model (38). First,

d

dt
‖f̃ − ũ(t)‖2L2 =

d

dt

∑
(f̃j − ũj)2

= −2
∑

j

(f̃j − ũj)2
(

ε

(ũ2
j + ε)3/2

)−1

≤ −2ε1/2
∑

j

(f̃j − ũj)2

≤ −2ε1/2‖f̃ − ũ(t)‖2L2 .

From Gronwall’s inequality we have

‖f̃ − ũ(t)‖2L2 ≤ e−2ε1/2(t−s)‖f̃ − ũ(s)‖2L2 , t ≥ s.

If f ∈ L2, let s = 0, we have t →∞,

‖f̃ − ũ(t)‖2L2 ≤ e−2ε1/2(t)‖f̃‖2L2 ↘ 0, as t ↗∞.

Therefore, ũ(t) → f̃ in L2 as t → ∞, and as a consequence
the reconstructed result u(t) → f as t →∞.

Second, the Bregman distance between g̃ and ũ is∑
j dj(g̃j, ũj), where

0 ≤ dj(g̃j, ũj) = Fε(g̃j)− Fε(ũj)− (g̃j − ũj)
∂Fε

∂ũj
(ũj)

=
√

g̃2
j + ε− ε + g̃jũj√

ũ2
j + ε

→ |g̃j| − g̃j sign(ũj) as ε ↘ 0.

For any g ∈ B1
1(L1),

d

dt
Dp̃

J(g̃, ũ) =
∑

j

(g̃j − ũj)
dp̃j

dt
= −

∑

j

(g̃j − ũj)(f̃j − ũj)

≤ −
∑

j

(f̃j − ũj)2

2
+

∑

j

(f̃j − g̃j)2

2

< 0,

as long as ‖f̃ − ũ(t)‖L2 > ‖f̃ − g̃‖L2 .
We may rewrite

dj(g̃j, ũj) =
ε(ũj − g̃j)2√

ũ2
j + ε(

√
ũ2
j + ε

√
g̃2
j + ε + ε + g̃jũj)

(39)

The factor ε > 0 can be removed and we may rewrite,

d

dt

Dp̃
J(g̃, ũ)

ε
< 0, as long as ‖f̃ − ũ‖L2 > ‖f̃ − g̃‖L2 = σ.

We also have a stopping criterion which is similar to the one
for iterative refinement: we can stop the evolution (38) at t = t̄
such that ‖f̃ − ũ(t)‖L2 = σ.

VI. NUMERICAL EXAMPLES

In this section we present two numerical examples of
wavelet denoising using soft shrinkage, hard shrinkage and
the iterative regularization method (W-IRM) and inverse scale
space (W-ISS) flow we introduced above.

We add Gaussian i.i.d. noise n to the original clean image g
and obtain our noisy image f = g+n. For different thresholds
and parameters, there are two ways to define “optimal” results
numerically: (i) the signal-to-noise-ratio (SNR, SNR(w) :=
20 log10(‖g − ḡ‖L2/‖η − η̄‖L2), where η = w − g) of the
restored image u is the biggest among all; (ii) ‖f−u‖L2 ≈ σ.
In applications we may have an estimate of σ but obviously no
information about g, therefore we use the second criterion in
our experiments. Moreover, as indicated in previous sections,
(ii) is also our stopping criterion for W-IRM and W-ISS.
To compare the numerical results in this section we choose
thresholds τ for soft shrinkage and hard shrinkage such that
their results satisfy ‖f − u‖L2 = σ and we use our stopping
criterion (ii) for W-IRM and W-ISS.

Figure 1 shows the original image g, which includes dif-
ferent shapes and scales, and the noisy image f with σ =
‖f − g‖L2 = 30 and SNR(f) = 7.29.

We choose the Haar basis and level 3 for wavelet decom-
position in this example. In Figure 2, the first row shows the
results u from soft shrinkage (threshold τ = 49) and hard
shrinkage (τ = 101), with their corresponding SNR = 12.03
and 13.04 respectively; the second row shows the results from
W-IRM (λ = 0.001, k̄ = 11) and W-ISS (dt = 0.001, t̄ =
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Fig. 1. shape image, 128 × 128. left: original image; right: noisy image,
σ = 30, SNR = 7.29.

0.014, ε = 0.01), with their corresponding SNR = 13.56 and
13.45 respectively. We can see that these two new results are
close to the result of hard shrinkage. Their SNRs are slightly
higher than that of hard shrinkage and much higher than that
of soft shrinkage.
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Fig. 2. First row: denoised results from soft shrinkage (left, SNR = 12.03)
and hard shrinkage (right, SNR = 13.04); Second row: denoised results from
W-IRM (27) (left, SNR = 13.56) and W-ISS (38) (right, SNR = 13.45).
All ‖f − u‖L2 ≈ σ = 30.

In Figure 2 there are some artifacts in the results. This is a
common defect of wavelet imaging. We point out here that
techniques such as cycle-spinning (cf. [28]), can be easily
incorporated into our new methods. Moreover, in the W-
ISS method proposed above, we introduced a regularized
parameter ε. Numerical experiments show that bigger ε will
make the results smoother and thus this can be used to decrease
the artifacts. In Figure 3 we show a result u of W-ISS with ε =
10, which has many fewer artifacts than the previous results.
The corresponding SNR = 12.84 is higher than that of soft
thresholding. Furthermore, we also plotted the residual part
v = f − u of this result (to enhance the visibility, we plotted
v + 128 here). We can see that it contains very little visible

signal. This is similar to the residual of hard thresholding.
In soft thresholding, we removed some signal along with the
residual (if we shrink only the detailed coefficients, then the
signal loss is less, but still exists due to the shrinkage). In
TV-based denoising, a similar defects occurs, as we discussed
in Section II.

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 3. First row: denoised result u from inverse scale space with ε = 10
(left, SNR = 12.84) and corresponding residual v = f − u (+128, right);
Second row: residuals v + 128 of soft shrinkage (left) and hard shrinkage
(right) in Figure 2.

In Figure 4 we show a result from TV based relaxed inverse
scale space (cf. [11]). The denoised result is better than that
from wavelet methods, with no artifacts and higher SNR, but
the computational cost is much more expensive due to the
evolution of nonlinear partial differential equations.
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Fig. 4. Result from TV relaxed ISS ( [11]). left: denoised u (SNR = 14.96,
‖f − u‖L2 = σ = 30); right: residual v + 128 (v = f − u).

In the second example we denoised an MRI image. Figure
5 shows the original image g and noisy image f with σ = 30
and SNR(f) = 4.43. We use db3 basis and level 3 for wavelet
decomposition in this example. Figure 6 shows the results: the
first row shows u and v from soft shrinkage (τ = 57, SNR =
11.72); the second row shows u from hard shrinkage (τ =
83, SNR = 11.01) and the W-IRM method (λ = 0.0008, k̄ =



7

16, SNR = 11.01); the third row shows u from the W-ISS
method (dt = 0.001, t̄ = 0.012, ε = 10, SNR = 11.94). In
this example we can see that: compared with soft shrinkage,
although the SNRs of hard shrinkage and W-IRM are lower,
using a relative large ε = 10 in W-ISS we obtained a result
with fewer artifacts, higher SNR, and much less visible signal
in the residual.
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Fig. 5. MRI image, 256× 256. left: original image; right: noisy image, σ =
30, SNR = 4.43,

VII. CONCLUSION

We have presented two alternatives to soft and hard wavelet
shrinkage. These involve Bregman iteration and inverse scale
space ideas borrowed from TV based restorations ( [9]–[11]).
The iterative soft shrinkage gives firm shrinkage, with the
thresholds dynamically changing in the iteration. It appears
that the new methods W-IRM and W-ISS, especially the latter,
perform better than soft shrinkage from the SNR point of
view and result in less loss of signal into the residual. All
these methods are fast and easy to implement.

As we mentioned at the beginning of Section III, some
shrinkage methods apply the shrinkage operator only on the
detail coefficients and keep the scaling ones unchanged. Since
the summation parts in our models are separable, our discus-
sion in this paper can be easily extended to those methods.
Furthermore, W-IRM and W-ISS can be incorporated with
some other ideas developed in wavelet denoising, e.g., cycle-
spining (cf. [28]) methods which were introduced to reduce the
artifacts in the denoising results. The main goal of this paper
is to discover the link between TV-based ideas and wavelet-
based models, and our results so far are promising.

Our future work will involve the role of the parameter ε
in the regularization (31), and using our methods on different
wavelet bases and different types of noise.
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Fig. 6. First row: denoised result from soft shrinkage (left, SNR = 11.72)
and corresponding residual v = f − u (+128,right); Second row: denoised
results from hard shrinkage (left, SNR = 11.01) and W-IRM (27) (right,
SNR = 11.01); Third row: denoised result from W-ISS (38) (left, ε =
10, SNR = 11.94) and corresponding residual v + 128 (right). All ‖f −
u‖L2 ≈ σ = 30.

APPENDIX
THE PROOF OF THEOREM 1

(1) Plugging (23) into (25) we have

ṽ
(k)
j =

{
1
λ sign(f̃j + ṽ

(k−1)
j ) , if |f̃j + ṽ

(k−1)
j | > 1

λ ,

f̃j + ṽ
(k−1)
j , if |f̃j + ṽ

(k−1)
j | ≤ 1

λ ,
(40)

for k ≥ 1. Since ṽ
(0)
j = 0, we have sign(ṽ(1)

j ) = sign(f̃j).
By induction, sign(ṽ(k)

j ) = sign(f̃j) for all k ≥ 1. Next
we also prove (26) by induction. For k = 1, we have (26)
from (18). For k ≥ 2,
(i) If |f̃j| > 1

(k−1)λ , then ṽ
(k−1)
j = 1

λ sign(f̃j), and |f̃j +

ṽ
(k−1)
j | ≥ |f̃j| > 1

(k−1)λ > 1
kλ . From (40), ṽ

(k)
j =

1
λ sign(f̃j);

(ii) If |f̃j| ≤ 1
(k−1)λ , then ṽ

(k−1)
j = (k − 1)f̃j and |f̃j +

ṽ
(k−1)
j | = |kf̃j|. From (40), if |kf̃j| > 1

λ , i.e., |f̃j| >
1

kλ , then ṽ
(k)
j = 1

λ sign(f̃j + ṽ
(k−1)
j ) = 1

λ sign(f̃j),
otherwise, |kf̃j| ≤ 1

λ , ṽ
(k)
j = f̃j + ṽ

(k−1)
j = kf̃j.
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This validates (26).
(2) Now we prove (27). From (25) we have ũ

(k)
j = f̃j +

ṽ
(k−1)
j − ṽ

(k)
j . Using (26), for k > 1 we have

(i) if |f̃j| ≤ 1
kλ < 1

(k−1)λ , then

ṽ
(k−1)
j = (k − 1)f̃j, ṽ

(k)
j = kf̃j, =⇒ ũ

(k)
j = 0;

(ii) if |f̃j| > 1
(k−1)λ > 1

kλ , then

ṽ
(k−1)
j = ṽ

(k)
j =

1
λ

sign(f̃j), =⇒ ũ
(k)
j = f̃j;

(iii) if 1
kλ < |f̃j| ≤ 1

(k−1)λ , then

ṽ
(k−1)
j = (k − 1)f̃j, ṽ

(k)
j =

1
λ

sign(f̃j),

=⇒ ũ
(k)
j = kf̃j − 1

λ
sign(f̃j),

and sign(ũ(k)
j ) = sign(f̃j)sign(k|f̃j|− 1

λ ) = sign(f̃j).
Note that for k = 1, we have 1

(k−1)λ = ∞ and (27)
reduces to (15). This validates (27).

(3) From (26) we have

p̃
(k)
j =

{
sign(f̃j) , if |f̃j| > 1

kλ ,

kλf̃j , if |f̃j| ≤ 1
kλ ,

(41)

For the first part, we have ũ
(k)
j 6= 0 and ∂F (ũ(k)

j ) =
sign(ũ(k)

j ) = p̃
(k)
j . For the second part, we have ũ

(k)
j = 0,

and |p̃j| ≤ 1, p̃j ∈ ∂F (ũ(k)
j ).

Overall we have proved Theorem 1. This also shows that
the dual variable p̃(k) updated via (21) is automatically a
subgradient of J(ũ(k)).
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equvalence of soft wavelet shrinkage, total variation diffusion, total
variation regularization, and SIDEs,” SIAM J. Numer. Anal., vol. 42,
no. 2, pp. 686–713, 2004.

[8] I. Daubechies and G. Teschke, “Variational image restoration by means
of wavelets: Simultaneous decomposition, deblurring and denoising,”
Applied and Computational Harmonic Analysis, vol. 19, no. 1, pp. 1–
16, 2005.

[9] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regu-
larization method for total variation based image restoration,” Multiscale
Model. and Simul., vol. 4, pp. 460–489, 2005.

[10] M. Burger, S. Osher, J. Xu, and G. Gilboa, “Nonlinear inverse scale
space methods for image restoration,” Lecture Notes in Computer
Science, vol. 3752, pp. 25–36, 2005.

[11] M. Burger, G. Gilboa, S. Osher, and J. Xu, “Nonlinear inverse scale
space methods,” Comm. Math. Sci., vol. 4(1), pp. 175–208, 2006.

[12] H.-Y. Gao and A. G. Bruce, “WaveShrink with firm shrinkage,” Statist.
Sinica, vol. 7, no. 4, pp. 855–874, 1997.

[13] W. P. Ziemer, Weakly Differentiable Functions. New York: Springer-
Verlag, 1989.

[14] D. Strong and T. Chan, “Edge-preserving and scale-dependent properties
of total variation regularization,” Inverse Problems, vol. 19, pp. S165–
S187, 2003.

[15] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear
Evolution Equations. Providence, RI: AMS, 2001.
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[24] Y. Meyer, Ondelettes et Opérateurs I: Ondelettes. Paris: Hermann,
1990.

[25] R. DeVore and B. Lucier, “Fast wavelet techniques for near-optimal
image processing,” in IEEE Military Commun. Conf. Rec. San Diego,
CA: IEEE Press, 1992, pp. 1129–1135.

[26] A. Cohen, R. DeVore, P. Petrushev, and H. Xu, “Nonlinear approxima-
tion and the space BV (R2),” American J. of Math., vol. 121, no. 3, pp.
587–628, 1999.

[27] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, “Harmonic
analysis of the space BV,” Rev. Mat. Iberoamericana, vol. 19, pp. 235–
263, 2003.

[28] D. Donoho and R. Coifman, “Translation-invariant de-noising,” in
Wavelets and Statistics, A. Antoniadis and G. Oppenheim, Eds. New
York: Springer-Verlag, 1995, pp. 125–150.

Jinjun Xu received the B.S. and M.S. degrees
in applied mathematics from Beijing University in
1998 and 2001 respectively, the M.A. and the Ph.D.
degree in mathematics from University of California,
Los Angeles in 2002 and 2006 respectively. He is
currently a postdoctoral scholar in the Department of
Mathematics, University of California, Los Angeles.

Stanley Osher received the B.S. degree in math-
ematics from Brooklyn College in 1962, the M.S.
and Ph.D. degrees in mathematics from New York
University in 1964 and 1996 respectively.

He has been with the University of California, Los
Angeles, since 1977. He is currently a Professor in
the Department of Mathematics, and the Director of
Special Projects in the Institute for Pure and Applied
Mathematics.

Dr. Osher is the founder and CEO of Level Set
Systems, Inc. and has cofounded two other com-

panies. He was an invited speaker at the 1994 International Congress of
Mathematics and an ISI Original Highly Cited Researcher. He received the
2002 Computational Mechanics Award from Japan Society of Mechanical
Engineers, the 2003 ICIAM Pioneer Prize and the 2005 SIAM Kleinman
Prize. He was elected to the National Academy of Sciences in 2005.


