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Abstract

In this paper, we propose a novel approach for cortical mapping that computes

a direct map between two cortical surfaces while satisfying constraints on sulcal

landmark curves. By computing the map directly, we can avoid conventional in-

termediate parameterizations and help simplify the cortical mapping process. The

direct map in our method is formulated as the minimizer of a flexible variational en-

ergy under landmark constraints. The energy can include both a harmonic term to

ensure smoothness of the map and general data terms for the matching of geomet-

ric features. Starting from a properly designed initial map, we compute the map

iteratively by solving a partial differential equation (PDE) defined on the source

cortical surface. For numerical implementation, a set of adaptive numerical schemes

are developed to extend the technique of solving PDEs on implicit surfaces such that

landmark constraints are enforced. In our experiments, we show the flexibility of

the direct mapping approach by computing smooth maps following landmark con-

straints from two different energies. We also quantitatively compare the metric pre-
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serving property of the direct mapping method with a parametric mapping method

on a group of 30 subjects. Finally, we demonstrate the direct mapping method in

the brain mapping applications of atlas construction and variability analysis.

Key words: Brain mapping, cortex, atlas, direct mapping, harmonic mapping,

level-set, PDEs.

1 Introduction

The cerebral cortex is a convoluted sheet of gray matter in the brain that con-

tains many distinct areas controlling various neural functions. The size, shape,

and relative locations of these areas can be affected profoundly by many nor-

mal and pathological processes. The analysis of the correlation between such

structural changes and the correspondingly affected functions on the cortex

is a fundamental problem in brain mapping (Welker, 1990). For such studies,

cortical mapping is an important tool that can provide a detailed comparison

of corresponding functional and anatomical regions on different cortices. A

detailed map for a group of cortices forms the foundation for further statisti-

cal analyses of associated properties such as gray matter thickness growth or

decay at specific locations on the cortex. Mapping a group of cortices to a cor-
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tical atlas also provides a valuable platform for the visualization and analysis

of experimental data collected from group members.

Due to the convoluted nature and variability among different brains, mapping

of the cortical surfaces poses many numerical challenges for classical surface

matching algorithms such as the iterative closest point(ICP) method (Besl and

McKay, 1992) and its extension in brain mapping (Wang et al., 2000). Thus,

the cortical mapping problem is conventionally solved through an indirect

approach as illustrated in Fig. 1. A core step in this indirect approach is

the parameterization of the cortical surface that assigns a 2D coordinate to

each point on the surface. Popular parameterization choices include the flat 2D

plane and sphere. Considerable work has been done in this area (Schwartz and

Merker, 1986; Schwartz et al., 1989; Carman et al., 1995; Drury et al., 1996;

Sereno et al., 1996; Thompson and Toga, 1996; Hurdal et al., 1999; Hurdal

and Stephenson, 2004; Angenent et al., 1999; Fischl et al., 1999a; Timsari

and Leahy., 2000; Grossman et al., 2002; Gu et al., 2004; Tosun et al., 2004;

Tosun and Prince, 2005; Ju et al., 2004; Joshi et al., 2004; Wang et al., 2005b;

Van Essen, 2005). In order to map a cortical surface to a flat plane, artificial

cuts have to be introduced carefully to open the surface (Fischl et al., 1999a).

Instead, the mapping of the cortical surface to a sphere maintains the original

topology and can be automated completely.

Anatomical features from two different cortices however may not be param-

eterized with the same coordinates. To establish the final correspondences

from the source cortex to the target cortex, a warping process needs to be

applied in the parameterization domain under anatomically meaningful con-

straints. Thanks to the parameterization step, this warping process can be

computed using algorithms developed in nonlinear image registration (Chris-
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Fig. 1. The parametric approach of cortical mapping.

tensen et al., 1996; Davatzikos et al., 1996; Dupuis et al., 1998; Grenander and

Miller, 1998; Toga, 1998; Joshi and Miller, 2000; Thompson et al., 2000a,b;

Toga and Thompson, 2003a,b; Thompson et al., 2004; Avants and Gee, 2004).

In terms of anatomical constraints in the warping process, one of the most pop-

ular choices is to constrain the map to match sulcal and gyral landmarks on

both cortical surfaces (Van Essen et al., 1998; Glaunes et al., 2004; Thompson

et al., 2000a,b, 2004). One can also apply curvature related geometric prop-

erties of the cortical surface to guide the mapping procedure (Fischl et al.,

1999b; Tosun and Prince, 2005). To establish the final cortex to cortex map,

the map computed in the warping process can be pulled back to both the

source and target cortical surfaces using the parameterization.

In this paper, we propose a novel and PDE-based approach to compute a di-

rect map from the source to the target cortical surface that follows constraints

on sulcal landmark curves. By computing the map directly, we can simplify

the whole mapping process and potentially help reduce numerical artifacts in

the intermediate parameterization steps. Our work is built upon the implicit

harmonic mapping method proposed in (Bertalmı́o et al., 2001; Mémoli et al.,

2004a), which computes a map between two surfaces by iteratively solving a
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PDE derived from the Euler-Lagrange equation of the harmonic energy. A key

step in this implicit mapping method, which is defined on the source surface,

is to represent both the source and target surfaces as the zero level set of

functions (Osher and Sethian, 1988), which enables the calculation of intrinsic

gradients on the surfaces using well understood numerical schemes on regular

Cartesian grids. The work in (Mémoli et al., 2004a), however, mainly con-

cerns with mapping between general manifolds and no landmark constraints

are considered, which is critical for our problem. The direct cortical mapping

algorithm we develop here extends the work of (Mémoli et al., 2004a) in sev-

eral ways. First of all, we develop a general approach to incorporate boundary

conditions into implicit mapping methods. To achieve that, we construct a tri-

angular mesh representation of the boundary condition defined on landmark

curves. This makes the information of the boundary condition easily accessi-

ble on the Cartesian grid and leads us to design a set of adaptive numerical

schemes to solve the PDE derived from the Euler-Lagrange equation of the

harmonic energy. This enables our algorithm to minimize the harmonic energy

while respecting the boundary condition. Another important element of our

algorithm is a novel approach to finding an initial map between two cortical

surfaces using a new feature called landmark context we develop here. This

provides a reasonably good starting point for our iterative algorithm. Besides

landmark constraints, we have also extended the harmonic energy with gen-

eral data terms that are valuable in matching geometric features, such as the

mean curvature, of the source and target cortical surface.

Recently an important result from (Mémoli et al., 2006) also considered in-

corporating boundary conditions into the direct mapping process. They for-

mulated the boundary condition as defined on a set of discrete points and
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proposed to compute the map by minimizing its global Lipschitz constant.

In contrast to the implicit approach, this method is not based on solving

PDEs and finds the map using a search strategy with the aim of minimizing

the Lipschitz constant. This is, in principle, a very general method, but sul-

cal landmarks were not tested in (Mémoli et al., 2006), so its application in

cortical mapping still needs to be further studied.

In the rest of the paper, we first review the mathematical background of solving

PDEs on implicit surfaces in section 2. We then propose a general variational

framework for direct mapping in section 3 and extend the technique reviewed

in section 2 to incorporate boundary conditions defined on landmark curves.

In section 4, we develop a front propagation type method to construct initial

maps based on a new feature landmark context. This provides a good starting

point for our iterative algorithm. An extension of the variational energy to

include general data terms is proposed in section 5. Experimental results are

presented in section 6 to demonstrate our direct mapping method. Finally,

conclusions are made in section 7.

2 PDEs on Implicit Surfaces

The idea of using implicit level-set representations to solve PDEs on manifolds

was first introduced in (Bertalmı́o et al., 2001). Since our current focus is

cortical mapping, we limit our discussion to surfaces embedded in R
3, but the

general idea of solving PDEs on implicit manifolds is applicable to arbitrary

dimensions.

Let M denote a surface and a level-set function φ : R
3 → R be its implicit
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M

Fig. 2. An illustration of the narrow band of a manifold M in 2D. The thick curve

is the manifold of interest and the gray region surrounding it is where the implicit

mapping approach solve the PDE derived from the Euler-Lagrange equation of the

harmonic energy.

representation such that M is the zero level set of φ. Though there are no

particular requirement on the level-set function φ, we choose φ as the signed

distance function of M. This is a desirable choice since it can greatly simplify

many of our mathematical derivations using the property that |∇φ| = 1 for a

signed distance function.

To present the idea of PDEs on implicit surfaces, we use the heat diffusion

equation as an example:

∂u

∂t
= ΔMu (1)

where u : M → R is a function defined on the surface, and ΔM is the Laplace-

Beltrami operator on M, which is the intrinsic counterpart on the manifold of

the Laplacian operator in Euclidean space. From a variational point of view,

the equation in (1) is the flow that minimizes the harmonic energy function

E defined on M:

E =
∫
M

|∇Mu|2dM (2)

where ∇Mu is the intrinsic gradient of u on M.
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One of the major advantages of using the level-set representation is that all

computations are performed on Cartesian grids with easy to implement nu-

merical schemes. Besides representing the surface M implicitly with a signed

distance function defined on a regular grid, we also need to extend the function

u off the surface to the grid so that all computations can be done implicitly.

Since we only care about the solution of u on the surface, it is only necessary

to extend u to a tubular narrow band around M as we illustrate in Fig. 2.

Typically we extend u to this narrow band such that ∇u · ∇φ = 0, i.e., u is

constant along the normal direction of M. Numerically this can be achieved by

using the fast marching method (Tsitsiklis, 1995; J.Sethian, 1996) or solving

the following PDE in the narrow band as proposed in (Chen et al., 1997):

∂u

∂t
+ ∇u · ∇φ = 0. (3)

After extending u to the narrow band, we can transform the energy function

on M into an integral over the Euclidean space. First we can represent the

intrinsic gradient of u on M using its implicit representation as:

∇Mu = Π∇φ∇u (4)

where Π∇φ is a projection operator defined as:

Π∇φ = I −∇φ∇φT . (5)

Here I is the identity operator and ∇φ is the normal vector of M using the

fact that φ is the signed distance function of M. When we apply Π∇φ to

the regular gradient of u in Euclidean space, it projects ∇u onto the tangent

space of M. Using this projection operator, the harmonic energy in (2) can

be translated into an integral over the whole Euclidean space in terms of the
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level-set function φ as:

E =
∫

|Π∇φ∇u|2δ(φ)dx. (6)

We can then compute the first variation of the energy with respect to u and

derive the gradient descent flow of u as in (Bertalmı́o et al., 2001):

∂u

∂t
= ∇ · (Π∇φ∇u). (7)

This is the implicit form of the PDE in (1). Compared with techniques that

solve the PDE explicitly on the surface, the implicit form enables us to perform

all computations on the Cartesian grid and apply standard numerical schemes

with well understood error measures. Since the computations are only done in

a narrow band of the surface, the computational cost is on the same order as

methods using explicit representations.

Besides the heat diffusion equation, a solution of fourth order PDEs on im-

plicit surfaces is developed in (Greer et al., 2005). Also a modified projection

operator for the diffusion equation is proposed in (Greer, 2005) to replace

the procedure of reinitialization that extends the function u off the surface

periodically. Finite element schemes are also proposed in (Burger, 2005) for

the solution of PDEs on implicitly represented surfaces. Closely related to the

level-set approach, a phase-field method of solving PDEs on implicit surfaces

is proposed in (Ratz and Voigt, 2005).

The idea of solving PDEs on implicit surfaces is generalized to the mapping

between manifolds in (Mémoli et al., 2004a,b). Assume we have a source man-

ifold M and a target manifold N , the goal in (Mémoli et al., 2004a,b) is to

compute a vector function u : M → N that minimizes the harmonic energy

function. Following the work in (Bertalmı́o et al., 2001), the source and tar-
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get manifold are represented implicitly and we denote φ and ψ as the signed

distance function of M and N , respectively. Similar to the case of scalar func-

tions on the surface, we also extend the vector map u off the surface M to a

narrow band around it. Using the implicit representations, we can write the

harmonic energy of the mapping from M to N as:

E =
∫

1

2
||Jφu ||2δ(φ)dx. (8)

This is also an energy defined over the Euclidean space about the map u. The

intrinsic Jacobian Jφu in the energy is defined as:

Jφu = JuΠ∇φ (9)

with Ju denoting the regular Jacobian of function in R
3. The matrix norm

in (8) is the Frobenius norm defined as ||Jφu ||2 =
∑
ij(J

φ
u)2

ij . To minimize this

energy function, we can derive the first variation of the energy with respect

to the map u and obtain the gradient descent flow of u as:

∂u

∂t
= Π∇ψ(u(x,t))(∇ · (Π∇φJTu )) (10)

where Π∇ψ(u(x,t)) = I − ∇ψ(u(x, t))∇ψ(u(x, t))T is the projection operator

onto the tangent space of N at the point u(x, t). This projection operator

reflects the constraints that u has to map each point on M onto N and thus

the map is only updated iteratively along the tangent direction of N .

To extend the work in (Mémoli et al., 2004a,b) and develop a direct cortical

mapping strategy, there are two major challenges. The work to date on solving

PDEs on implicit surfaces has focused on generic surfaces with no landmark

constraints, but the constraints of sulcal landmark curves are very important

in brain mapping and novel numerical schemes have to be developed to incor-

porate such constraints in computing the map. The second challenge results
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from the constraints that the vector u has to be on the target manifold N .

This makes the optimization of the energy in (8) non-convex, which is easy

to see since the linear combination of two mappings from M to N is not nec-

essarily a valid mapping. A close initialization has to be found for this high

dimensional (greater than 104) optimization problem in order for gradient de-

scent type algorithms to converge to the right solution. Interestingly these

two challenges are closely related. It is indeed the sulcal curves in the first

challenge that provide us a solution to the second challenge. In the next two

sections, we will address these two challenges and present our approach for

direct cortical mapping.

3 Direct Cortical Mapping With Sulcal Landmarks

In this section, we first propose our variational framework for cortical mapping

with sulcal landmark constraints. We then develop a triangular mesh represen-

tation of the boundary condition that extends the landmark curves, together

with the constraints defined on them, into the narrow band where we solve

the mapping PDE. After that, adaptive numerical schemes on Cartesian grids

are developed to solve the PDE in (10) on the implicitly represented source

cortical surface while taking into account the boundary condition carried on

their mesh representations.

3.1 A Variational Framework

Let M denote the source cortical surface and N denote the target cortical

surface. Their signed distance functions are denoted as φ and ψ, respectively.

For both surfaces, a set of sulcal curves are delineated that will control the

mapping. Let {Ck
M(k = 1, · · · , K)} be the set of sulcal curves on M and
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{Ck
N (k = 1, · · · , K)} the sulcal curves on N . In this work, we assume the

mapping between the K pairs of curves (Ck
M, Ck

N )(k = 1, · · · , K) are known

and they will provide the boundary conditions for the computation of the

map. A simple approach to obtain such a map is to parameterize each pair of

curves with arc length and establish correspondences between points on the

two curves by uniform sampling. One can also establish the mapping between

curves using the method in (Leow et al., 2005).

Given the mapping between sulcal landmark curves on two cortical surfaces,

we propose a general variational framework to compute a direct map u from

the source surface M to the target surface N as follows:

u = arg min
u
E(u) (11)

with the boundary condition:

u(Ck
M) = Ck

N (k = 1, · · · , K). (12)

By solving this variational problem, we can obtain a smooth map from M to

N that satisfies the sulcal landmark constraints.

We first focus on the development of our direct cortical mapping algorithm

with E as the harmonic energy defined in (8). This is mathematically a natural

extension of the work in (Mémoli et al., 2004a) to the case of surface mapping

with landmark constraints. As the minimizer of the harmonic energy, the map

interpolates as smooth as possible in areas between landmark curves. But our

framework in (11) and (12) is flexible and it can include interesting data terms

with the harmonic energy as a regularizer. After a complete solution for the

minimization of the harmonic energy is developed, we extend it with a least

square data term in section 5 to demonstrate the flexibility of our method.
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To solve the energy minimization problem, we use an iterative strategy. Start-

ing from an initial guess, we update the map iteratively toward the descent

direction of the energy function while maintaining the constraints on land-

mark curves. This is achieved by treating the constraints in (12) as Dirichlet

boundary conditions while solving the PDE in (10). Intuitively we can view

this as a diffusion process of u on M. By fixing the value of u over the land-

mark curves, we block the flow of the heat across the landmark curves, but

otherwise the heat can flow freely to decrease the harmonic energy.

To realize the above idea numerically, we will first develop an algorithm to

extend the boundary condition of the map u on sulcal curves to the narrow

band surrounding the source cortical surface because this is where the map

u and the level-set function φ are defined in the implicit approach of solving

PDEs on surfaces. The extension of the sulcal curves form surface patches in

the narrow band which we represent as triangular meshes. To take into account

the boundary condition carried on these meshes while solving the PDE in (10),

adaptive numerical schemes are then developed to compute all the gradients

of u on Cartesian grids.

3.2 Mesh Representation of the Sulcal Landmark Constraints

We extend each sulcal curve of M jointly with the constraints defined on it to

a surface patch crossing the surrounding narrow band of M where its implicit

representation φ is defined. The result of the extension is a triangular mesh

representation of the boundary condition.

Let C denote a sulcal curve on M and we extend the boundary condition u(C)
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on this curve off the surface M as follows. We first approximate the curve C

and the boundary condition u(C) piecewise linearly by sampling the curve C

uniformly into L points as p1, p2, · · · , pL. For each point pi(1 ≤ i ≤ L) and

the boundary condition u(pi) at this point, we extend them off the normal

direction of the surface by constructing a piecewise linear curve consisting of

line segments connecting 2Q + 1 points p̂i,j(−Q ≤ j ≤ Q)}. Each point on

this curve will carry the same value for the map as u(pi). In constructing this

curve, we start with p̂i,0 = pi. We then extend pi outward of M sequentially

by defining p̂i,j = p̂i,j−1 + hni,j−1 for 1 ≤ j ≤ Q, where ni,j−1 is the normal

direction at the point p̂i,j−1 defined as ∇φ(p̂i,j−1) and h is the sampling interval

of the Cartesian grid where the implicit function φ is defined. Similarly we

extend pi inward sequentially by defining p̂i,j = p̂i,j+1 − hni,j+1 for −Q ≤ j ≤
−1 with ni,j+1 denoting the normal direction at the point p̂i,j+1. The number

Q is chosen bigger enough such that this curve will cross the narrow band,

i.e., both p̂i,Q and p̂i,−Q are outside the narrow band. This will ensure the

triangular mesh constructed next from these curves will also cross the narrow

band. In practice, we choose Q = W + 2 if the narrow band is of width 2Wh.

Once we have all the curves emanating from the sampled points pi(1 ≤ i ≤
L) on the sulcal curve C, we can construct the mesh representation of the

boundary condition. The set of vertices of this mesh includes all the points

p̂i,j(1 ≤ i ≤ L,−Q ≤ j ≤ Q). The faces of the mesh are composed of triangles

with vertices of the form (p̂i,j, p̂i,j+1, p̂i+1,j) or (p̂i,j+1, p̂i+1,j+1, p̂i+1,j). We de-

note this triangular mesh as the extended surface of the landmark curve C. As

an example, we show such an extended surface constructed from a landmark

curve in Fig. 3. Because the map u is defined on all the vertices, its value at

an arbitrary point on the extended surface of C can be obtained using linear
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Fig. 3. The extended surface of a landmark curve(the thick black line) is represented

as a triangular mesh.

interpolation from the map values of the three vertices of the triangle to which

it belongs. If we repeat the above procedure for each sulcal curve of M, we

extend the complete set of landmark constraints to the extended surfaces of

these curves. Because these extended surfaces cross the narrow band of M
by construction, each grid point in the narrow band can have access to this

information easily as we show next.

3.3 Adaptive Numerical Schemes

Before we present our adaptive numerical schemes, we first define the notion

of connectedness between neighboring grid points for the purpose of incorpo-

rating landmark constraints. For two neighboring grid points x1 and x2, we

call them connected if the line segment connecting x1 and x2 does not cross

the extended surface of any landmark curve. In the derivation below, we will

use integer indices such as (i, j, k) to denote points in the 3D Cartesian grid.

In designing numerical schemes to solve (10) and taking into account the

boundary conditions, our basic strategy is to prevent the numerical stencil

15



used in computing partial gradients of u from crossing the extended surface

of any landmark curve. This blocks the diffusion from crossing such surfaces

in the narrow band of M. Since only up to second order gradients are used

in solving (10), we demonstrate below the first and second order adaptive

numerical schemes that take into account the boundary conditions carried on

the extended surfaces of sulcal curves.

Let the three components of the map u be denoted as u = [u1 u2 u3]. The

forward difference scheme of the first order gradient of up(p = 1, 2, 3) at the

point (i, j, k) is defined as:

Dx
+u

p
ijk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

up
i+1jk−up

ijk

h

if (i, j, k) and (i + 1, j, k) are

connected,
ũp

i+1jk−up
ijk

h otherwise.

(13)

where h is the sampling interval of the grid, and ũpi+1jk is the interpolated value

of up at the intersection of the line segment connecting (i, j, k) and (i+1, j, k)

and the extended surface of a landmark curve. The numerical stencil used

here in computing Dx
+u

p
ijk includes two points (i, j, k) and (i+ 1, j, k). If they

are connected, the usual first order forward difference scheme is adopted; but

if they are not, the flow between these two points should be blocked and

we assume a constant extension of the boundary condition from the point of

intersection to (i+ 1, j, k). Thus the boundary value ũpi+1jk from the extended

surfaces is used to replace upi+1jk to compute Dx
+u

p
ijk. Using the same method,

the first order difference operators Dx
−, Dy

+, Dy
−, Dz

+, Dz
− can also be defined.

To demonstrate second order numerical schemes, we define the operatorDx
−D

x
+
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in the x direction as follows:

Dx
−D

x
+u

p
ijk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dx
+up

ijk−Dx
+up

i−1jk

h

if (i, j, k) and (i − 1, j, k) are

connected,
Dx

+up
ijk−D̃x

+up
i−1jk

h otherwise.

(14)

where D̃x
+u

p
i−1jk = (upijk − ũpi−1jk)/h with ũpi−1jk as the interpolated value of

up at the intersection between the line segment connecting (i, j, k) and (i −
1, j, k) and the extended surface of a landmark curve. The numerical stencil

used for computing Dx
−D

x
+u

p
ijk includes three points (i − 1, j, k), (i, j, k), and

(i + 1, j, k). The case that (i, j, k) and (i + 1, j, k) could be disconnected is

already handled in the definition of Dx
+u

p
ijk. If (i − 1, j, k) and (i, j, k) are

connected, the usual first forward then backward scheme is used. If these

two points are disconnected, we once again assume constant extension of the

boundary condition from the extended surface and block the flow between

them by using the interpolated D̃x
+u

p
i−1jk to replace Dx

+u
p
i−1jk. Following the

same principle, we can define Dy
−D

y
+ and Dz

−D
z
+ similarly.

We next assemble all the building blocks of our numerical schemes to solve

the PDE in (10) with landmark constraints. At time t, we denote the map

u at a point (i, j, k) as uijk(t), and we want to derive the update scheme to

compute uijk(t+1) at the next time step. If we ignore the projection operator

to the target surface Πψ(uijk(t)) for a moment, we can treat each component of

u separately because:

∇ · (ΠφJ
T
u ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇ · (Πφ∇u1)

∇ · (Πφ∇u2)

∇ · (Πφ∇u3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)
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Let δupijk(t) = ∇ · (Πφ∇up)(p = 1, 2, 3). Following (Mémoli et al., 2004a), we

approximate the gradient with the forward difference scheme and the diver-

gence with a backward difference scheme. The numerical scheme for computing

δupijk(t) is:

δupi,j,k(t) = [Dx
− Dy

− Dz
−]Π∇φijk

[Dx
+ Dy

+ Dz
+]Tupijk(t),

where the projection matrix Π∇φijk
at point (i, j, k) is computed using the

standard central difference scheme. Let δuijk = [δu1
ijk δu

2
ijk δu

3
ijk]

T . Our com-

plete numerical scheme to solve (10) with landmark constraints is as follows:

uijk(t+ 1) − uijk(t)

Δt
= Π∇ψ(uijk(t))δuijk(t) (16)

where Δt is the time step, which is selected to be bounded by the stability

condition in (Mémoli et al., 2004a). The projection operator Π∇ψ(uijk(t)) is also

computed using the standard central difference scheme.

4 Initialization Using Landmark Context

The numerical algorithm developed in the previous section modifies the gradi-

ent descent flow of the harmonic energy with adaptive operators for computing

first and second order partial gradients, so it is still essentially a steepest de-

scent algorithm. This makes the selection of a good initialization a critical step

for a successful mapping since the optimization of the variational problem in

(11) and (12) is non-convex as pointed out in section 2.

For a high dimensional optimization problem such as cortical mapping, it

appears at first to be a daunting task to find a suitable initial map. However

the search space can be greatly reduced if we utilize our prior knowledge about
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the map. First the value of the map u on the set of sulcal landmark curves on

the source manifold M is already given as our boundary condition. We also

know that u should be interpolated smoothly in areas between these sulcal

curves, which is the point of minimizing the harmonic energy. Based on this

knowledge, we propose a novel front propagation type approach to find a good

initial map. All the sulcal curves act as the source of the front propagation

in the beginning of our algorithm. We then move outward to find the map

at their neighboring points by searching locally for the best correlation of a

feature we call landmark context, which is defined at each point on both the

source and target cortical surface. These newly mapped points then serve as

the current source of the front and we repeat the above process until the whole

source cortical surface is covered.

Our definition of the landmark context feature on the cortical surface is partly

motivated by the idea of shape context (Belongie et al., 2002) in computer

vision. For a shape viewed as a point set, the shape context feature at each

point is defined as a distribution of the relative locations of other points on the

shape with respect to this point. This has proved to be a very powerful idea

for shape matching and object recognition (Tu and Yuille, 2004). Following

the same principle, we define the landmark context for each point p ∈ M as

follows:

LCM(p) = [d(p, C1
M), d(p, C2

M), · · · , d(p, CK
M)], (17)

where Ck
M(k = 1, · · · , K) is the set of sulcal landmark curves on M and

d(p, Ck
M) is the geodesic distance from Ck

M to p. Compared with the fea-

ture of shape context, our landmark context feature is computationally more

tractable. Its calculation only involves the computation of the distance trans-
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Table 1

The algorithm for finding the initial map using landmark context.

• Step 1: Initialize the heaps HM and HN . Initialize an array

IsMatched as false at each vertex of M.

• Step 2: pS = pop out(HM) and pT = pop out(HN ).

• Step 3: If IsMatched(pS)=true, go back to Step 2. Otherwise, save

the match result at pS as pT . Set IsMatched(pS) = true.

• Step 4: For each 1-ring neighbor pi of pS that has not been matched,

find its best match in the P -ring neighborhood of pT using the cor-

relation of landmark context. Push pi into HM and its map into

HN .

• Step 5: If the heaps are empty, stop the algorithm. Otherwise, go

back to Step 2.

form for a limited set of curves, while shape context needs to compute at each

point the distribution of the rest of the shape. If we view the landmark curves

as the axes of a coordinate system on the cortex, the distances to them at each

point intuitively play the role of coordinates and give us a very good indicator

of the relative location of the point on the cortical surface.

In searching for the initial map with landmark context, we find it convenient

to use the triangular mesh representation of the cortical surfaces, which is

typically the original representation of our data, since we need to work directly

with points on the surface and their relation to landmarks. Once we find the

initial map on the triangular mesh, we then embed the mesh into the narrow

band of the level-set function φ and extend the map along the normal direction

to the whole narrow band. This is used as the initialization of the iterative

PDE-based algorithm described in section 3.
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Without causing confusion, we will still use the notation M and N to denote

the triangular mesh representation of the source and target cortical surface.

Each of them is composed of a set of vertices and faces. The set of sulcal curves

on M is {Ck
M(k = 1, · · · , K)}, with the corresponding set of sulcal curves on

N as {Ck
N (k = 1, · · · , K)}. At the start of our algorithm, we compute the

geodesic distance transform for each of the sulcal curve on M and N using

the fast marching algorithm on triangular meshes (Kimmel and Sethian, 1998).

At each vertex of the meshes, we record its distance to all sulcal curves and

form its landmark context. After this step, the landmark context is defined at

each vertex of M and N .

We next find the initial map at vertices close to the landmark curves and use

them as the starting point of the front propagation process over the triangular

mesh M. For a curve Ck
M on M and its corresponding curve Ck

N on N , we

sample both of them uniformly into L points. For each of the L points on Ck
M,

we find the closest vertex on M and push it into a heapHM. Similarly, for each

of the L points of Ck
N , we find the closest vertex on N and push it into a heap

HN . After this process is repeated for every pair of sulcal landmark curves on

M and N , we have two heaps HM and HN with matched vertices and are

ready to march outward. Note that the same vertex can appear multiple times

in a heap since more than one point on a sulcal curve can have the same vertex

as its closest match. For the heap HM, this means one vertex is matched to

multiple vertices in N . Our algorithm simply uses the first match in HN as

the initial map. For the heap HN , this means one vertex in N is matched by

multiple vertices in M, and we just leave it as it is and let the PDE-based

approach improve the map.

Once both heaps are initialized, we start the front propagation process to find
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the initial map for all vertices on M. The matched vertices in HM and HN

are used as seed points for finding new matched pairs. In each step we pop out

the first element of HM and HN , and denote them as pS and pT respectively.

If the match result at the point pS has already been found, we skip further

processing and move on to the next pair of matched vertices in the heaps.

Otherwise, we save pT as the mapping result of pS and search the mapping for

neighboring vertices of pS. To clarify the meaning of neighbors in a mesh, we

use the notion of the k-ring neighborhood of a vertex that is defined as the set

of vertices within k edges away from this vertex. For each vertex in the 1-ring

neighborhood of pS that has not found a match in N , we search for its match

locally in a P -ring neighborhood of pT with the highest correlation of their

landmark context, which means they have the most similar relative location

with respect to the set of sulcal curves on the corresponding cortex. Typically

we choose P = 5 in our experiments. Once we find a match, we push them

into HM and HN . After the search is finished for all 1-ring neighbors of pS, we

pop out new elements from HM and HN and continue the above procedure

until the heaps become empty.

As a summary, the complete algorithm of finding the initial map is listed in

Table I.

5 Extension To Energy With Data Terms

We have so far developed a complete solution for direct cortical mapping by

minimizing the harmonic energy with landmark constraints. But the implicit

mapping technique offers us lots of flexibility in defining and minimizing en-

ergy functions on surfaces. In this section, we demonstrate this generality by
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extending the energy function in (11) with data terms.

We first define two feature functions f1 : M → R and f2 : N → R on

the source and target cortical surface. We limit the feature to be scalar for

simplicity, but the extension to vectorial features is straightforward. We also

define a weight function w : M → R as follows:

w(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
1+e10∗(h−d(p))/h if d(p) < h,

1 otherwise

(18)

for each p ∈ M. Here d(p) = minLCM(p) is the minimum of the landmark

context at p and h is the sampling interval of the grid. The weight function

w decreases from one to 2/(1 + e10) as d(p) approaches zero. Using the fast

marching algorithm, we extend f1, f2 and w to the narrow band of φ and

ψ along the normal direction, which are the implicit representations of M
and N . We then define our new energy function that combines the harmonic

energy with a data term:

E =
∫

‖ Jφu ‖2 δ(φ)dx︸ ︷︷ ︸
Harmonic energy

+
λ

2

∫
w(f1 − f2(u))2δ(φ)dx︸ ︷︷ ︸

Data term

, (19)

where λ is a non-negative regularization parameter. The data term in the new

energy function is a weighted least square term that penalizes the difference

between the feature function on the source and cortical surface. Since the

weight function is almost zero in the neighborhood of sulcal curves, the data

term will not violate the landmark constraints in (12).

After computing the first variation of the energy, we obtain the gradient de-

scent flow of the map u as:

∂u

∂t
= Π∇ψ(u(x,t))

(
∇ ·

(
Π∇φJTu

))
+ λw

(
f1 − f2(u)

)
Π∇ψ(u(x,t))∇f2(u) (20)
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where the term Π∇ψ(u(x,t))∇f2(u) is the intrinsic gradient of f2 at u ∈ N .

To solve this equation numerically and minimize the new energy function, we

apply the adaptive schemes we developed in section 3 and obtain the following

numerical scheme that updates uijk from time t to t+ 1:

uijk(t+ 1) − uijk(t)

Δt
=Π∇ψ(uijk(t))δuijk(t)+

λw
(
f1 − f2(uijk(t))

)
Π∇ψ(uijk(t))∇f2(uijk(t)) (21)

where δuijk(t) and Π∇ψ(uijk(t)) are the same as in (16), and the standard central

difference scheme is used to compute ∇f2(uijk(t)).

Besides the least square energy in (19), we can also incorporate other data

terms into our extended energy function. For example, it can be the correlation

between features, or their mutual information (Wells et al., 1996; Wang et al.,

2005a). Thus our method opens up an important opportunity for designing

customized data terms that suit the need of specific brain mapping problems.

6 Experimental Results

The inputs to our direct mapping method include both the cortical surfaces

and the sulcal landmark curves defined on the two surfaces. The cortical sur-

faces used in our experiments are generated using the algorithm in (Mac-

Donald, 1998) in the form of triangular meshes. We compute their implicit

representations by converting each of them to a signed distance function with

the fast marching algorithm. For the solution of PDEs on implicit surfaces,

the signed distance function is only defined in a narrow band. In our numer-

ical algorithms, we use an efficient sparse data structure DTGrid proposed

in (Nielsen and Museth, in press) to represent the narrow band. The set of
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landmark curves are delineated using a protocol that defines 36 sulcal and

landmark curves. Each curve is sampled to a fixed number of points with

curve length parameterization. One-to-one correspondences between curves

on different cortexes can then be established and used as constraints in our

variational framework.

In our first two experiments, we compute the direct map between a pair of

cortices by minimizing the harmonic energy in (8) and the extended energy in

(19). These two experiments illustrate various properties of our direct mapping

method. After that, we apply our algorithm to a group of 30 subjects and

compare the property of metric distortion with a parametric mapping method.

Finally, we apply our method to the application of cortical atlas construction

and variability analysis.

6.1 Direct Mapping of Two Cortices with Harmonic Energy

In this experiment, we compute a map from a source cortex to a target cortex

by minimizing the harmonic energy with sulcal landmark constraints. This

experiment will illustrate the role of each step in our algorithm towards the

generation of a direct map. The results from this experiment will also demon-

strate the convergence property of our algorithm in optimizing the harmonic

energy and its ability to improve the conformality of the mapping by reducing

angle distortions.

The data used in this experiment, including the source and target cortex and

their landmark curves, are shown in Fig. 4. A set of extend surfaces, as shown

in Fig. 5, are constructed from the landmark curves in Fig. 4(c) using the
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(a) (b)

(c) (d)

Fig. 4. The input data for the mapping of two cortical surfaces. (a) The source

cortex. (b) The target cortex. (c) The set of sulcal landmark curves of the source

cortex. (d) The set of sulcal landmark curves of the target cortex.

Fig. 5. The set of extended surfaces constructed from all the landmark curves of the

source cortical surface.

algorithm proposed in section 3 to extend the boundary condition off the

source cortical surface.
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For the triangular mesh of both the source and target cortical surfaces, we then

compute the landmark context at each vertex using the set of landmark curves.

Based on this result, an initial map is then computed using the algorithm

developed in section 4. To visualize this map, we first pull a checkerboard

pattern onto the source cortex using the conformal mapping algorithm in (Gu

et al., 2004). The lateral and medial view of this pattern on the source cortex

are shown in Fig. 6(a) and (b). The checkerboard pattern is then projected

onto the target cortex with the initial map and the results are shown in Fig.

6(c) and (d). Even though the initial map may appear quite good, we can

clearly see noisy distortions at various locations such as the temporal lobe.

The initial map defined on the triangular mesh is extended to the narrow

band along normal directions with the fast marching algorithm such that

∇u · ∇φ = 0.

With the initial map provided from the previous step, we start our numerical

algorithm that solves the PDE in (10). The parameters in our algorithm are

chosen as: the sampling interval of the grid h = 1 mm and the time step Δt =

0.1. To prevent the map u from drifting away from the target surface due to

numerical errors, we project it back onto the target surface using the operator

Πψ(uijk(t)) every 5 iterations. As a common practice in level-set techniques, the

map is also re-initialized every 30 iterations such that the property ∇u·∇φ = 0

is approximately satisfied. The final mapping result is obtained after 5000

iterations. The total computation time is around 4 hours on a 3.19GHz PC.

In this iterative solution process, the harmonic energy function is reduced over

time and converges toward the end of iterations as we show in Fig. 7. The di-

rect map computed from our algorithm is visualized in Fig. 6(e) and (f) by

projecting the checkerboard pattern on the source cortical surface shown in
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Visualization of the direct map between cortical surfaces. (a) and (b) are

the lateral and medial view of the checkerboard pattern on the source cortex. (c)

and (d) are the lateral and medial view of the checkerboard pattern mapped onto

the target cortex using the initial map. (e) and (f) are the lateral and medial view

of the checkerboard pattern mapped onto the target cortex using the direct map

computed from our algorithm.
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Fig. 7. The energy decreases over the solution process.

Fig. 8. The direct map on seven major sulcal curves. The thin lines are the sulcal

curves on the source cortex and the think lines are the sulcal curves on the target

cortex. The map is visualized as the displacement vector fields on the sulcal curves

of the source cortex.

Fig. 6(a) and (b) to the target cortical surface. In comparison with the pro-

jected pattern using the initial map as shown in Fig. 6(c) and (d), we can see

clearly that the smoothness of the map is improved significantly, for example

on the temporal lobe. This is the desired result from the minimization of the

harmonic energy. Because of our adaptive numerical schemes, the landmark

constraints are maintained as we solve the PDE over time. To illustrate this

point, we have plotted the final map on seven major sulcal curves in Fig. 8
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Fig. 9. The effect of improving angle distortions with the direct map. (a) The distri-

bution of angle distortions from the initial map (mean = 0.5726◦, std = 31.8831◦.

(b) The distribution of angle distortions from the direct map (mean = 0.9208◦, std

= 26.5888◦).

and we can see clearly the landmark constraints are satisfied. This shows that

a smooth map is obtained while satisfying the landmark constraints.

An important property of the harmonic map is that it is also conformal when

the target surface is of non-negative curvature (Gu et al., 2004). Even though

there is no such guarantee in the direct map we computed because of the con-

voluted nature of the target surface and the presence of landmark constraints,

we still observe in our experiment the improvement in conformality as the

harmonic energy is minimized. To illustrate this property, we computed the

angle distortions in the checkerboard pattern as we project it onto the target

cortex. The histogram of the angle distortions resulted from the initial and

final map are plotted in Fig. 9 (a) and (b). The mean of both histograms

are approximately zero, but the standard deviation improves from 31.8831◦

to 26.5888◦. This shows the magnitude of angle distortions are reduced as the

harmonic energy is minimized.
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(a) (b)

Fig. 10. The mean curvature map on cortical surfaces. (a) The source cortex. (b)

The target cortex.

6.2 Cortical Mapping with Data Terms

In the second experiment, we demonstrate direct cortical mapping from the

minimization of the energy in (19) with both the harmonic energy and a

data term. We choose the feature f1 and f2 as the mean curvature of the

cortical surfaces in this experiment. By penalizing the difference between mean

curvature in the energy function, our goal is to obtain a smooth map that also

matches similar geometric property.

We use the same data in the first experiment as shown in Fig. 4. The mean

curvature of the source and target cortex are shown in Fig. 10. The regular-

ization parameter is chosen as λ = 60. Because of the extra data term, we

choose a smaller time step Δt = 0.01 for numerical stability. We use the result

from the first experiment as our initial map and update it iteratively accord-

ing to (21) to compute the minimizer of the energy in (19). The total energy

converges over time as shown in Fig. 11(a) and we obtain the final result after

3000 iterations. As in the first experiment, we visualize the result by mapping

the checkerboard pattern on the source cortex in Fig. 6 (a) and (b) to the
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Fig. 11. The change of the energy functions over time. (a) The total energy with

both the harmonic energy and the data term. (b) The harmonic energy. (c) The

data term energy.
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(a) (b)

Fig. 12. Visualization of the map computed from the minimization of the energy

with the least square data term. (a) The lateral view. (b) The medial view.

target cortex in Fig. 12 (a) and (b).

Comparing the projected checkerboard pattern in Fig. 12 (a) and (b) to that

in Fig. 6 (e) and (f), we can see it is less smooth in various locations, such as

the frontal lobe. This is reflected in the monotonic increase of the harmonic

energy, shown in Fig. 11(b), as the total energy is minimized. It shows that

the incorporation of the data term shifts the map from its initial value as

the minimizer of the harmonic energy. We have also plotted in Fig. 11(c)

the change of the data term energy, which is the weighted least square of

the difference between the mean curvature on the two cortices. We can see

it decreases over time and reduces to less than half of its initial value. This

shows quantitatively we have a better match of the mean curvature profile

between the source and target cortex.

6.3 Quantitative Comparisons with a Parametric Mapping Method

In this section, we compare the metric distortion property of our direct map-

ping method and a parametric mapping method. Since data terms are not
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included for most parametric mapping algorithms with landmark constraints,

we use only the harmonic energy in our comparison. With sulcal landmark

constraints, the goal of our direct mapping method is to compute a map that

interpolates smoothly between these landmark curves. Ideally the map should

be as close as possible to an isometry up to a scaling factor for regions between

corresponding landmark curves on the source and target cortical surfaces. To

validate this property, we will first propose an approach to measure the metric

distortion of a map between cortices with landmark constraints. Quantitative

comparisons are then performed between our direct mapping algorithm and a

popular parametric mapping algorithm on a group of 30 subjects.

For ease of comparison with parametric approaches, we define the metric dis-

tortion measure in terms of the triangular mesh representation of cortical

surfaces. Let M and N denote two triangular meshes and u the mapping

from M to N that establishes a one to one correspondence between vertices

of M and N . For a vertex x in the source mesh M, we can define a circular

patch C(x) on M as its geodesic neighborhood of radius r. Let the set of ver-

tices that fall inside this patch C(x) be denoted as {yi}Li=1 and their geodesic

distances to x as dMi . This set of geodesic distances can be organized into a

lower triangular matrix T with its elements defined as Tij = dMi /d
M
j . Corre-

spondingly, we have the set of vertices {u(yi)
L
i=1} inside the patch u(C(x)) on

the target mesh N . Their geodesic distances to u(x) are denoted as dNi and

they can also be organized into a lower triangular matrix T ∗ with its elements

defined as T ∗
ij = dNi /d

N
j . Following (Tosun et al., 2004), we define as follows a

metric distortion measure to test the quality of the map locally:

I =
1∑

i<j Tij

∑
i<j

(Tij − T ∗
ij)

2

Tij
. (22)
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This measure quantifies the metric distortion from the source patch C(x) to

the target patch u(C(x)). The lower the measure I, the more similar are the

two patches. This measure is zero when the map is locally an isometry up to

a scaling factor from C(x) to u(C(x)), in which case dNi is simply a scaling of

dMi (i = 1, · · · ,L).

Even though the measure I in (22) is defined formally as in (Tosun et al.,

2004), the scenario of its application here is different. In (Tosun et al., 2004),

it is used to measure the global metric distortion over the whole cortex under

spherical mapping with no landmark constraints. In a cortex to cortex map-

ping, however, each part of the cortex is stretched or compressed differently

due to enforcement of the landmark constraints. To quantify how smooth the

boundary conditions are interpolated between sulcal curves, we should avoid

mixing different interpolation effects across different sides of these curves. Thus

the patches used for the evaluation of metric distortions should not cross any

sulcal curves. For a given radius r, this can be ensured by choosing the center

point of the patch as those vertices x with minLCM(x) > r, where LCM(x) is

the landmark context of x computed from the set of landmark curves on M.

Using the metric distortion measure I, we next compare our algorithm exper-

imentally with a popular parametric approach proposed in (Thompson et al.,

2000b, 2004). For a source cortex and a target cortex, this approach first maps

them to spherical coordinates and then solves a system of partial differential

equations governed by the Cauchy-Navier differential operator to compute the

map. The covariant forms of the differential operators are used to take into

account the Riemannian metric of the cortical surfaces. Once the map is com-

puted in the spherical domain, it can be pulled back to the original cortices

and we denote it as u1 : M → N1, where M and N1 are triangular mesh
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representations of the source and target cortex. With our direct mapping ap-

proach, we also compute a map u2 for the same pair of cortices without the

intermediate parameterization steps. Since the map u2 is defined in a narrow

band of the source cortex, we can obtain its value on each vertex of M easily

using simple linear interpolations on the Cartesian grid. The image of M on

the target cortex under the map u2 is denoted as N2 = u2(M).

In our experiment, we compare the metric distortion properties of the two

different mapping methods on a group of 30 cortices. We divide this group

into 15 pairs randomly such that each pair has a source cortex and a target

cortex. For each pair, we compute both the map u1 : M → N1 with the

parametric approach and the map u2 : M → N2 with our direct mapping

method. For both u1 and u2, the metric distortion measure I is computed at

5000 randomly selected circular patches of radius r = 5 on the source cortex

M. As we pointed out above, these patches do not cross any sulcal curves.

The mean and standard deviation of the metric distortion measure at these

5000 patches are computed for both u1 and u2 and plotted for the whole group

in Fig. 13(a) and (b). From these plots, we can see that our direct mapping

algorithm performs better in terms of both the mean and standard deviation

of the metric distortion.

The above experiment shows that metric is better preserved in the direct

map computed from the minimization of the harmonic energy, but we readily

acknowledge that this is far from a thorough comparison between our direct

mapping method and parametric mapping approaches, which is a very difficult

task because both types of methods have their relative strength and weakness.

The biggest advantage of our direct mapping method is that the whole map-

ping process is simplified by skipping the intermediate parameterization steps.
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Fig. 13. A comparison of the metric distortion property of the direct and parametric

mapping algorithm. (a) The mean of the metric distortions on each pair. (b) The

standard deviation of the metric distortions on each pair.

The direct mapping method is also flexible in that it can incorporate varia-

tional energies with generic data terms. The parametric mapping approach,

however, does have advantages in ensuring the diffeomorphic property of the

map. The Eells-Sampson theorem (Eells and Sampson, 1964) tells us that

the harmonic map from the cortical surface to the sphere is a diffeomorphism.

The 2D warping process that matches landmark curves can also be guaranteed

diffeomorphic with the work of computing large deformation diffeomorphisms

(Christensen et al., 1996; Joshi and Miller, 2000). This ensures the final cortex

to cortex map to be a diffeomorphism. Currently our direct mapping method

is not provably diffeomorphic, but our experimental results demonstrate that

it can obtain smooth maps of good metric preserving quality. We illustrate
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next that this new method can be easily applied to typical brain mapping

applications such as cortical atlas construction and variability analysis.

6.4 Application: Cortical Atlas Construction

Atlas construction is a critical step in brain mapping. It integrates information

from multiple brains and offers a framework for visualization and many anal-

ysis tasks, such as brain variability and asymmetry (Toga et al., 2001). In this

section, we demonstrate atlas construction from the results of our direct map-

ping method using conventional cortical atlas construction techniques based

on parametric surface representations.

Let M0,M1, · · · ,MK be a group of cortical surfaces represented as triangular

meshes. Their implicit representations are correspondingly a group of signed

distance functions φ0, φ1, · · · , φK. For simplicity we use M0 as the source

cortex and apply our direct mapping algorithm to compute K maps from

φ0 to φk(k = 1, · · · ,K) with landmark constraints. The K direct maps from

our algorithm are computed in the narrow band of M0 where its implicit

representation φ0 is defined. To obtain values of the direct map on the vertices

of M0, we use linear interpolation. This provides us K explicit maps uk :

M0 → Mk(k = 1, · · · ,K) on the triangular mesh M0, which projects each

vertex of M0 onto Mk. We also denote u0 as the identity map from M0 onto

itself. With these maps, we can construct the cortical atlas M as the average

of this group of cortical surfaces. The averaging process is defined formally as

follows:

M =
1

K + 1

K∑
k=0

uk(M0). (23)
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which defines that each vertex of the atlas M is the mean of K + 1 corre-

sponding points on the set of cortical surfaces M0,M1, · · · ,MK.

As a simple application of this atlas, we can compute the variability at each

vertex of the cortical atlas and it is defined formally as:

var(M) =
1

K
K∑
k=0

‖ uk(M0) −M ‖2, (24)

where ‖ · ‖ denotes the l2 norm of vectors in R
3. At each vertex of M, this

equation computes the variance of the coordinates of its corresponding points

on M0,M1, · · · ,MK established by the maps u0,u1, · · · ,uK.

We present next experimental results of atlas construction from a group of nine

left hemispheres as shown in Fig. 14. The cortex in the middle is used as the

source cortex M0 and we compute the map from this source cortex to the rest

of eight cortices by minimizing the harmonic energy. After that, the cortical

atlas is computed using (23) and shown from both the lateral and medial view

in Fig. 15(a) and (b). Since sulcal landmark constraints are strictly followed

in our direct mapping algorithm, major sulcal curves are still clearly visible

in the atlas. Using the cortical atlas, we also computed the variability map

using (24). The lateral and medial view of this map are shown in Fig. 16(a)

and (b), where the brightness is proportional to the magnitude of variability.

From this map on the cortical atlas, we can observe that the frontal, temporal

and parietal-occipital lobes exhibit different degrees of variability among this

group of subjects.
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Fig. 14. The construction of a cortical atlas from a group of nine subjects.

(a) (b)

Fig. 15. The cortical atlas. (a) Lateral view. (b) Medial view.

7 Conclusions

In this paper we proposed a direct mapping approach to compute maps be-

tween cortical surfaces with sulcal landmark constraints. This new method can

avoid intermediate parameterizations in conventional approaches and greatly

simplify the cortical mapping process. The direct mapping method is also

very flexible and it can compute maps as the minimizer of variational energies
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(a) (b)

Fig. 16. The map of variability on the cortical atlas. (a) Lateral view. (b) Medial

View.

with both the harmonic energy and general data fidelity terms. Experimen-

tal results demonstrate that our method can compute smooth maps between

cortical surfaces while respecting landmark constraints. The application of

our algorithm for cortical atlas construction and variability analysis in brain

mapping were also presented.
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