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Abstract

We present a finite difference scheme for solving the variable coefficient Poisson and heat equations
on irregular domains with Dirichlet boundary conditions. We consider non-graded Cartesian grids, i.e.
grids for which the difference in size between two adjacent cells is not constrained. We sample the
solutions at the cell vertices (nodes) and use a quadtree data structure as an efficient means to represent
the grids. The boundary of the irregular domain is represented by the zero value points of a level set
function. For cells cut by the interface, both the interface’s location and the value of the solution at
the interface are found by quadratic interpolation. In the case of the heat equation, we use a second
order implicit discretization in time to avoid the stringent time step restrictions associated with explicit
schemes. This discretization can be applied in a dimension by dimension framework, producing a scheme
that is straightforward to implement. Numerical results in two spatial dimensions demonstrate second
order accuracy for both the solution and its gradient in the L1 and L∞ norms.

1 Introduction
The Poisson and the heat equations are two of the fundamental equations used in the modeling of diffusion
dominated phenomena, ranging from electromagnetism to semi-conductor growth to fluid mechanics. A wide
variety of approaches exist for solving the Poisson equation on irregular domains. In [23] Peskin introduced
the immersed boundary method, which uses a δ-function that smears out the solution on a thin finite band
around the interface. Leveque and Li introduced the immersed interface method [13], which is a second
order accurate numerical method designed to preserve the jump condition at the interface. In [18, 20], Mayo
et al. proposed a fast method using boundary integral techniques. Based on the Ghost Fluid Method of
Fedkiw et al. [7], Liu et al. [15] developed a first order accurate symmetric discretization of the variable
coefficient Poisson equation in the presence of an irregular interface across which the variable coefficient, the
solution and its derivative may have jumps. Gibou et al. [9] introduced a second order accurate symmetric
discretization in the case where Dirichlet boundary conditions are imposed on the irregular domain. This
work is based on using linear extrapolation to define ghost values for the solution across the interface.
Third and fourth order accurate schemes were later proposed in Gibou et al. [8] by defining ghost values
with quadratic or cubic extrapolations. In this case, the linear system becomes nonsymmetric. Jomaa and
Macaskill [12] showed that in the case where ghost values are defined by linear extrapolations, the error near
the boundary is in general large compared to the error found for regular domains. The also pointed out
that defining ghost values by a quadratic extrapolation leads to errors comparable with those obtained for
a regular domain.

Many physical problems have different scales and more often than not, only small portions of the com-
putational domain require fine resolution. Uniform grids become inefficient in this case in terms of memory
storage and CPU usage. Adaptive mesh strategies for elliptic partial differential equations, such as the
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Poisson equations, are often associated with the finite element method (see e.g. [6, 11]). Young et al. [30]
introduced a finite element method employing adaptive mesh refinements for second order variable coefficient
elliptic equations using a cut-cell representation of irregular domains. The finite element method has the
advantage of a rigorous theoretical framework and a vast number of optimized commercial implementations.
However, two factors that must be considered are the adaptive mesh generation for complicated domains
and the efficiency of the organization of the resulting data structure. Generally, when applying the finite
element method to moving boundary problems, one must take great care that the mesh generated is of good
quality everywhere (see e.g. [28]).

Johansen and Colella [10] presented a cell-centered finite volume method for solving the variable coefficient
Poisson equation on irregular domains using a multigrid approach and a block-grid algorithm related to the
adaptive mesh refinement scheme of Berger and Oliger [5]. McCorquodale et al. [19] presented a node-
centered finite difference approach for solving the variable coefficient Poisson equation on irregular domains
using the block-structured adaptive mesh refinement and the multigrid solver of Almgren [2, 4, 3]. However,
these patch based adaptive mesh refinement techniques restrict the adaptivity to block structured meshes,
while a more efficient quadtree structure could be used as pointed out in Aftomis et al. [1].

Quadtree and octree (see e.g. [26, 27] for an introduction on quadtree/octree data structures) spatial
discretizations have been used in a variety of approaches for solving the Poisson equation. Popinet [24] pro-
posed a second order nonsymmetric numerical method to study the incompressible Navier-Stokes equations
using an octree data structure for representing the spatial discretization. In this method, a Poisson equation
for the pressure is solved to account for the incompressibility condition using a standard projection method.
Only graded trees, i.e. trees for which the ratio between two adjacent cell sizes cannot exceed two, were
considered in [24]. Non-graded octrees have been proposed in Losasso et al. [17] to obtain a first order
accurate symmetric discretization of the Poisson equation. This work was then extended to second order
accuracy in [16] using the work of Lipnikov [14]. Recently, Min et al. [22] introduced a supra-convergent
scheme for solving the variable coefficient Poisson equation on a rectangular domain using non-graded grids
represented by quadtrees/octrees. A hallmark of this method is that the solution as well as its gradients are
second order accurate.

Based on the work of Min et al. [22], we consider in this paper the solution of the variable coefficient
Poisson and the heat equations on irregular domains with Dirichlet boundary conditions. We embed the
region of interest in a rectangular domain and consider non-graded Cartesian grids. The solution is sampled
at the vertices (nodes) of each cell. At internal regular nodes, the Poisson or the heat equations are discretized
with the standard second order accurate five-point finite difference scheme. At internal T-junction nodes,
the value at the missing direct neighbor is defined by a linear interpolation of the adjacent values in the
transverse direction. The spurious error induced by this interpolation is then properly balanced by a weighted
combination of the discretizations in all Cartesian directions (see [21] for more details). For nodes adjacent
to the interface, the interface’s location as well as the Dirichlet boundary value at the interface are found
by quadratic interpolations. The resulting linear system is nonsymmetric and solved using the stabilized
bi-conjugate gradient method with the incomplete LU preconditioner [25]. In the case of the heat equation,
the Crank-Nicolson scheme is used with a time step of ∆t = c∆x, where 0 < c < 1 and ∆x is the size of
the smallest cell. Numerical examples demonstrate that this method produces second order accuracy for the
solution and its gradients in the L1 and L∞. This second order accuracy is particularly important in some
applications (e.g. Stefan type problems), where the accuracy of the solution gradients determine the overall
accuracy of the computation.

2 Equations

2.1 Poisson Equation
Consider a Cartesian computational domain, Ω, with exterior boundary, ∂Ω, and a lower dimensional inter-
face, Γ, which divides the computational domain into disjoint pieces, the interior region Ω− and the exterior
region Ω+ (see figure 1). The regions are represented by a level set function φ, taken to be the signed
distance function to the interface Γ. That is, Ω− is represented by the set of points where φ < 0 and Ω+ is
represented by the set of points where φ > 0, whereas Γ is represented by the set of points where φ = 0 The
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Figure 1: Schematic of two distinct regions Ω− and Ω+, separated by an interface Γ. The solution may
present a kink at the interface.

variable coefficient Poisson equation is written as

∇ · (ρ(~x)∇u(~x)) = f(~x), ~x ∈ Ω, (1)

where ∇ = ( ∂
∂x , ∂

∂y ) is the gradient operator and where ρ(~x) is assumed to be continuous on each of the
disjoint subdomains, Ω− and Ω+, but may be discontinuous across the interface Γ. Furthermore, ρ(~x)
is assumed to be bounded below by a positive constant. On ∂Ω, either Dirichlet or Neumann boundary
conditions are specified. On the interface Γ, a Dirichlet boundary condition of uΓ = g(~x) is specified. Thus,
equation (1) decouples into two distinct equations, one on Ω− and one on Ω+, and the solutions can be
obtained independently.

2.2 Heat Equation
Ignoring the effects of convection, the standard heat equation reads

ρcvTt = ∇ · (k∇T ), (2)

where T is the temperature, ρ is the density, cv the specific heat at constant volume and k is the thermal
conductivity. Assuming that ρ and cv are constant allows equation (2) to be written as

Tt = ∇ · (k̂∇T ), (3)

where k̂ = k
ρcv

.

3 Spatial Discretization on a Quadtree
The domain is discretized into squares and a quadtree data structure is used to represent this discretization.
As depicted in figure 2 for a two dimensional domain, the entire domain is originally associated with the
root of the tree, which has a level of zero by definition. Then this discretization proceeds recursively, i.e.
each cell can be in turn split into four children which have one more level than their parent cell. A cell with
no children is called a leaf. Two cells are called neighbors if they share a common face or part of a face. The
interested reader is referred to [26, 27] for more on quadtree and octree data structures.

Due to the irregularity of the interface and the fact that large solution errors are often observed near
the interface, we discretize the computational domain in such a way that the cell size is proportional to the
absolute value of the level set function φ, i.e., the distance to the interface. We split a cell c if

min
v∈V

|φ(v)| < lip ∗ diag
2

, (4)

where v is a vertex of the current cell c, V is the set of all vertices of cell c, lip is the Lipschitz constant
associated with φ, and diag is the diagonal length of the current cell (see Strain [29]). We impose that the
finest resolution is obtained at cells cut by the interface.
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Figure 2: Discretization of a two dimensional domain (left) and its quadtree representation (right). The
entire domain corresponds to the root of the tree (level 0), and each cell is subdivided into four children, in
the order of lower-left, upper-left, lower-right, upper-right. In this example, the tree is not graded since the
difference of levels between neighboring cells exceeds one.

By definition, a quadtree is graded if the difference between two adjacent cell levels is at most one. In
this paper, we sample the solution at the cell vertices and we consider non-graded Cartesian grids,i.e. grids
for which the level difference between two adjacent cells is not constrained. Typical spatial discretizations
are presented in section 5.

4 Finite Difference Schemes

4.1 Variable Coefficient Poisson Equation on Regular Domains
We first recall the discretization from Min et al. [22] for the variable coefficient Poisson equation on regular
domains. In two spatial dimensions, let us consider the finite difference discretization for a T-junction node
without a direct right neighboring node as depicted in (figure 3). We note that discretization at T-junction
nodes without a direct left or top or bottom adjacent node are derived in a similar manner.

Figure 3: A configuration illustrating the nodes involved in the discretization at a T-junction node v0.

The discretizations for (ρux)x and (ρuy)y at node v0, along with their Taylor analysis, are given by
(

u1 − u0

s1
· ρ1 + ρ0

2
+

s6D5 + s5D6

s5 + s6

)
· 2
s1 + s4

= (ρux)x +
s5s6

(s1 + s4)s4
(ρuy)y + O(h), (5)
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and (
u2 − u0

s2
· ρ2 + ρ0

2
+

u3 − u0

s3
· ρ3 + ρ0

2

)
· 2
s2 + s3

= (ρuy)y + O(h), (6)

respectively, where
D5 = u5−u0

s4
· ρ5+ρ0

2 ,

D6 = u6−u0
s4

· ρ6+ρ0
2 .

The spurious term s5s6
(s1+s4)s4

(ρuy)y is cancelled by appropriately weighting equations (5) and (6) as:

(
u1−u0

s1
· ρ1+ρ0

2 + s6D5+s5D6
s5+s6

)
· 2

s1+s4
+(

u2−u0
s2

· ρ2+ρ0
2 + u3−u0

s3
· ρ3+ρ0

2

)
· 2

s2+s3
·
(
1− s5s6

(s1+s4)s4

)
= f0 + O(h).

(7)

Not surprisingly, this weighted scheme (7) reduces to the usual five point scheme in the case of a regular
node (figure 4): (

u1−u0
s1

· ρ1+ρ0
2 + u4−u0

s4
· ρ4+ρ0

2

)
· 2

s1+s4
+(

u2−u0
s2

· ρ2+ρ0
2 + u3−u0

s3
· ρ3+ρ0

2

)
· 2

s2+s3
= f0 + O(h).

(8)

Figure 4: A configuration illustrating the nodes involved in the discretization at a regular node v0.

In the case of the scheme (7), every coefficient is multiplied equally to u0 and its neighbors and the
absolute value of the sum of the coefficients in front of uo is equal to the sum of those in front of all
its neighboring nodes. When the interface is located between u0 and one or more of its neighbors, the
corresponding coefficient(s) in front of the neighbor node(s) is zero. This results in a diagonally dominant
linear system to solve.

4.2 Heat Equation
We consider only the two dimensional constant coefficient heat equation:

Tt = k∆T, (9)

noting that extension to the variable coefficient heat equation is straightforward. Explicit schemes impose
a time step restriction of ∆t ≤ (θ∆x)2

2k for stability, where ∆x is the size of the smallest cell and θ is the
smallest cell fraction for cells cut by the interface. Since θ can be arbitrarily small, so is the time step
restriction ∆t, which leads to unpractical schemes. Implicit schemes avoid such time step restrictions. We
use the Crank-Nicholson scheme to discretize the heat equation (9):

(I − 1
2

∆t k ∆)Tn+1 = (I +
1
2

∆t k ∆)Tn, (10)
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where I is the identity matrix and Tn is the solution at the nth time step. The spatial discretization of the
Laplace operator in Section 4.1, is used to approximate ∆T . The Crank-Nicolson scheme is unconditionally
stable and second order accurate. The time step ∆t can be chosen proportional to ∆x.

4.3 Discretization Near the Interface
When one or more of the neighboring nodes involved in the spatial discretization, e.g. v1, v2, v3, v5, v6 in
figure 3, are outside the region with a positive φ value, the interface lies between the center node v0 and the
neighboring node(s). Since we exclude the cases that the interface crosses a T-junction by imposing that the
smallest cells lie on the interface (see figures 6, 8, 10, 12, 14 and 16), we only consider the case when the
node next to the interface is a regular node, as depicted in figure 5.

Figure 5: One neighboring node is outside the region and the center node is a regular node.

Suppose the interface intersects the segment [v0, v4] at vI . Denote by sI the distance between vI and v0.
sI is approximated by finding the zero crossing of the quadratic interpolation in φ:

sI =





−φx+
√

φ2
x−2φxxφ0

φxx
if φxx > ε,

−φx−
√

φ2
x−2φxxφ0

φxx
if φxx < −ε,

− φ0
φx

if |φxx| ≤ ε,

(11)

where ε is a small positive number to avoid division by zero, and φx and φxx are approximated at v0 using
second order central difference schemes:

φx =
s1

φ4−φ0
s4

+ s4
φ0−φ1

s1

s1 + s4
(12)

and
φxx =

(
φ4 − φ0

s4
− φ0 − φ1

s1

)
2

s1 + s4
. (13)

Then the standard five-point scheme is used to approximate (ρux)x as in section 4.1:

(ρux)x =
(

uI − u0

sI
· ρI + ρ0

2
− u0 − u1

s1
· ρ1 + ρ0

2

)
· 2
sI + s1

, (14)

where the values of uI and ρI are given by the Dirichlet boundary condition. Similarly, the discretizations
at nodes with the interface crossing in different directions (x, −x, y, −y, z and −z) can be performed inde-
pendently, which makes the method straightforward to implement in a dimension by dimension framework.
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4.4 Computing Second Order Accurate Gradients
To compute the gradients to second order accuracy at a T-junction node, an intermediate value (u4 in
figure 3) is linearly interpolated as:

u4 =
s5u6 + s6u5

s5 + s6
. (15)

The spurious error caused by the interpolation is successfully removed and the gradients are computed as:

ux =
u4 − u0

s4
· s1

s1 + s4
+

u0 − u1

s1
· s4

s1 + s4
− s5s6s1

2s4(s1 + s4)
uyy,

uy =
u3 − u0

s3
· s2

s2 + s3
+

u0 − u2

s2
· s3

s2 + s3
, (16)

where
uyy =

(
u3 − u0

s3
+

u2 − u0

s2

)
· 2
s2 + s3

.

When the node is a regular node (e.g., v0 in figure 4), equation (16) reduces to the usual weighted average
of the forward and backward differences:

ux =
u4 − u0

s4
· s1

s1 + s4
+

u0 − u1

s1
· s4

s1 + s4
,

uy =
u3 − u0

s3
· s2

s2 + s3
+

u0 − u2

s2
· s3

s2 + s3
, (17)

For nodes next to the interface (e.g., v0 in figure 5), the following formula is used:

ux =
uI − u0

sI
· s1

s1 + s4
+

u0 − u1

s1
· sI

s1 + sI
,

uy =
u3 − u0

s3
· s2

s2 + s3
+

u0 − u2

s2
· s3

s2 + s3
, (18)

We note that the calculation of the gradient involves the same cells as those used in the discretization of
the Poisson or heat equation, hence preserving the locality and ease of implementation of the method.

5 Examples
In this section we present numerical evidence that confirms the schemes described in this paper produce
second order accuracy in the L1 and L∞ norms for both the solution and its gradients. In particular the
difference of level between adjacent cells can be greater than one, illustrating the fact that the method
is supra-convergent on non-graded adaptive grids. The linear systems of equations are solved using the
stabilized bi-conjugate gradient method with an incomplete LU preconditioner (see e.g. [25]). We present
the order of accuracy in the L1 and L∞ norms. In this paper, we solve the poisson or the heat equations in
Ω− only, noting that the procedure to obtain the solution on Ω+ is similar.

5.1 Poisson Equation
We consider equation (1) in two spatial dimensions, where ρ is piecewise constant on each subdomain or
spatially varying on each subdomain. Dirichlet boundary conditions are used on the interface and on the
domain boundaries.

5.1.1 Example 1

Consider 5 · (ρ5 u) = f on Ω = [−1, 1]× [−1, 1] with an exact solution of u = e−x2−y2
, where ρ = 1. The

interface is given by the set of points where φ =
√

x2 + (y − 1)2 − 1.5 = 0. The non-graded Cartesian grid
and the interface are illustrated in figure 6. Numerical accuracy test results for the solution and its gradient
are given in table 1 and table 2, respectively. The numerical solution on a grid with an effective resolution
of 128× 128 is plotted in figure 7.
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Figure 6: Domain Ω = [−1, 1] × [−1, 1] and the spatial discretization used in example 5.1.1 and example
5.2.1.
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Figure 7: Graph of the solution in example 5.1.1. The dots represent the approximate solution and the mesh
represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 2.346× 10−2 — 1.061× 10−3 —
256× 256 8.040× 10−3 1.545 2.584× 10−4 2.038
512× 512 2.046× 10−3 1.974 6.557× 10−5 1.978

1024× 1024 5.188× 10−4 1.980 1.658× 10−5 1.984

Table 1: Accuracy results for the solution u in example 5.1.1.
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effective resolution L∞ error order L1 error order
128× 128 3.466× 10−1 — 2.289× 10−2 —
256× 256 6.687× 10−2 2.374 5.310× 10−3 2.108
512× 512 1.341× 10−2 2.317 1.323× 10−3 2.005

1024× 1024 2.919× 10−3 2.200 3.338× 10−4 1.987

Table 2: Accuracy results for the solution gradient ∇u in example 5.1.1.

5.1.2 Example 2

Consider 5 · (ρ5 u) = f on Ω = [−1, 1]× [−1, 1] with an exact solution of u = sin(x) cos(y), where ρ = exy.
The interface is a circle given by the set of points where φ =

√
x2 + y2−0.75 = 0. The non-graded Cartesian

grid and the interface are illustrated in figure 8. Numerical accuracy test results for the solution and its
gradient are given in table 3 and table 4, respectively. The numerical solution on a grid with an effective
resolution of 128× 128 is plotted in figure 9.

Figure 8: Domain Ω = [−1, 1] × [−1, 1] and the spatial discretization used in example 5.1.2 and example
5.2.2.

effective resolution L∞ error order L1 error order
128× 128 1.692× 10−3 — 1.590× 10−4 —
256× 256 4.068× 10−4 2.056 3.599× 10−5 2.144
512× 512 9.922× 10−5 2.036 8.502× 10−6 2.082

1024× 1024 2.450× 10−5 2.018 2.069× 10−6 2.039

Table 3: Accuracy results for the solution u in example 5.1.2.

5.1.3 Example 3

Consider 5 · (ρ 5 u) = f on Ω = [−1, 1] × [−1, 1] with an exact solution of u = sin(πx) sin(πy), where
ρ = sin(xy) + 2. The interface is an ellipse given by the set of points where φ = x2 + 4y2 − 0.25 = 0. The
non-graded Cartesian grid and the interface are illustrated in figure 10. Numerical accuracy test results for
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Figure 9: Graph of the solution in example 5.1.2. The dots represent the approximate solution and the mesh
represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 1.094× 10−2 — 4.422× 10−3 —
256× 256 3.018× 10−3 1.858 1.085× 10−3 2.027
512× 512 8.301× 10−4 1.862 2.678× 10−4 2.019

1024× 1024 2.293× 10−4 1.856 6.647× 10−5 2.010

Table 4: Accuracy results for the solution gradient ∇u in example 5.1.2.
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the solution and its gradient are given in table 5 and table 5, respectively. The numerical solution on a grid
with an effective resolution of 128× 128 is plotted in figure 11.

Figure 10: Domain Ω = [−1, 1]× [−1, 1] and the spatial discretization used in example 5.1.3.

effective resolution L∞ error order L1 error order
128× 128 3.408× 10−3 — 6.832× 10−4 —
256× 256 9.025× 10−4 1.917 1.626× 10−4 2.071
512× 512 2.253× 10−4 2.002 3.949× 10−5 2.042

1024× 1024 5.615× 10−5 2.005 9.685× 10−6 2.028

Table 5: Accuracy results for the solution u in example 5.1.3.

effective resolution L∞ error order L1 error order
128× 128 6.672× 10−2 — 2.681× 10−2 —
256× 256 1.961× 10−2 1.766 6.808× 10−3 1.977
512× 512 5.454× 10−3 1.846 1.714× 10−3 1.990

1024× 1024 1.498× 10−3 1.864 4.302× 10−4 1.994

Table 6: Accuracy results for the solution gradient ∇u in example 5.1.3.

5.1.4 Example 4

Consider 5 · (ρ5 u) = f on Ω = [−1, 1]× [−1, 1] with an exact solution of u = exy, where ρ = x2 + y2. The
interface is diamond shaped, given by the set of points where φ = |y| + 1.5|x| − 0.75 = 0. The non-graded
Cartesian grid and the interface are illustrated in figure 12. Numerical accuracy test results for the solution
and its gradient are given in table 7 and table 8, respectively. The numerical solution on a grid with an
effective resolution of 128× 128 is plotted in figure 13.
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Figure 11: Graph of the solution in example 5.1.3. The dots represent the approximate solution and the
mesh represents the exact solution.

Figure 12: Domain Ω = [−1, 1] × [−1, 1] and the spatial discretization used in example 5.1.4 and example
5.2.3.

effective resolution L∞ error order L1 error order
128× 128 5.062× 10−3 — 5.298× 10−4 —
256× 256 1.416× 10−3 1.838 1.387× 10−4 1.933
512× 512 3.860× 10−4 1.875 3.508× 10−5 1.984

1024× 1024 9.879× 10−5 1.966 8.735× 10−6 2.006

Table 7: Accuracy results for the solution u in example 5.1.4.
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Figure 13: Graph of the solution in example 5.1.4. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 3.836× 10−2 — 1.583× 10−2 —
256× 256 1.483× 10−2 1.371 4.642× 10−3 1.770
512× 512 4.883× 10−3 1.603 1.252× 10−3 1.891

1024× 1024 1.489× 10−3 1.713 3.227× 10−4 1.955

Table 8: Accuracy results for the solution gradient ∇u in example 5.1.4.
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5.1.5 Example 5

Consider 5 · (ρ 5 u) = f on Ω = [−1, 1] × [−1, 1] with an exact solution of u = cos(πx) sin(πy), where
ρ = exy. The interface is a cardioid given by the set of points where φ = ((3(x2 +y2)−x)2−x2−y2)/47 = 0.
Note that the interface is not even Lipschitz continuous and the singular point of the interface is the cusp
point (0, 0). The non-graded Cartesian grid and the interface are illustrated in figure 14. Numerical accuracy
test results for the solution and its gradient are given in table 9 and table 10, respectively. The numerical
solution on a grid with an effective resolution of 128× 128 is plotted in figure 15.

Figure 14: Domain Ω = [−1, 1] × [−1, 1] and the spatial discretization used in example 5.1.5 and example
5.2.4.

effective resolution L∞ error order L1 error order
128× 128 4.600× 10−3 — 4.538× 10−4 —
256× 256 1.214× 10−3 1.922 1.148× 10−4 1.983
512× 512 3.091× 10−4 1.973 2.885× 10−5 1.993

1024× 1024 7.774× 10−5 1.991 7.236× 10−6 1.995

Table 9: Accuracy results for the solution u in example 5.1.5.

effective resolution L∞ error order L1 error order
128× 128 5.676× 10−2 — 1.477× 10−2 —
256× 256 1.582× 10−2 1.844 3.889× 10−3 1.925
512× 512 4.329× 10−3 1.869 9.940× 10−4 1.968

1024× 1024 1.176× 10−3 1.880 2.516× 10−4 1.982

Table 10: Accuracy results for the solution gradient ∇u in example 5.1.5.

5.1.6 Example 6

Consider 5 · (ρ 5 u) = f on Ω = [−1, 1] × [−1, 1] with an exact solution of u = exy, where ρ = x2 + y2.
The interface is star shaped, given by the set of points where φ = r − 0.5 − y5+5x4y−10x2y3

3r5 = 0, where
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Figure 15: Graph of the solution in example 5.1.5. The dots represent the approximate solution and the
mesh represents the exact solution.

r =
√

x2 + y2. The non-graded Cartesian grid and the interface are illustrated in figure 16. Numerical
accuracy test results for the solution and its gradient are given in table 11 and table 12, respectively. The
numerical solution on a grid with an effective resolution of 128× 128 is plotted in figure 17.

effective resolution L∞ error order L1 error order
128× 128 5.897× 10−4 — 6.999× 10−5 —
256× 256 1.466× 10−4 2.008 1.600× 10−5 2.129
512× 512 3.468× 10−5 2.080 3.837× 10−6 2.060

1024× 1024 8.278× 10−6 2.067 9.393× 10−7 2.030

Table 11: Accuracy results for the solution u in example 5.1.6.

effective resolution L∞ error order L1 error order
128× 128 1.683× 10−2 — 2.500× 10−3 —
256× 256 4.237× 10−3 1.990 6.394× 10−4 1.967
512× 512 1.029× 10−3 2.041 1.613× 10−4 1.987

1024× 1024 3.356× 10−4 1.617 4.054× 10−5 1.992

Table 12: Accuracy results for the solution gradient ∇u in example 5.1.6.

5.1.7 Example 7

Consider 5 · (ρ 5 u) = f on Ω = [−2, 2] × [−2, 2] with an exact solution of u = cos(πx) sin(πy), where
ρ = 2 + sin(πx) cos(πy). The interface is given by the set of points where φ = 16y4 − x4 − 32y2 + 9x2 = 0.
The non-graded Cartesian grid and the interface are illustrated in figure 18. Numerical accuracy test results
for the solution and its gradient are given in table 13 and table 14, respectively. The numerical solution on
a grid with an effective resolution of 128× 128 is plotted in figure 19.

5.2 Heat Equation
We consider equation (2) in two spatial dimensions, where ρ is a (possibly different) constant on each
subdomain. Again, we only compute solutions on Ω−. Dirichlet boundary conditions are used on the

15



Figure 16: Domain Ω = [−1, 1] × [−1, 1] and the spatial discretization used in example 5.1.6 and example
5.2.5.
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Figure 17: Graph of the solution in example 5.1.6. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 3.876× 10−2 — 4.420× 10−3 —
256× 256 9.342× 10−3 2.053 1.033× 10−3 2.097
512× 512 2.262× 10−3 2.046 2.473× 10−4 2.062

1024× 1024 5.598× 10−4 2.014 6.048× 10−5 2.032

Table 13: Accuracy results for the solution u in example 5.1.7.
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Figure 18: Domain Ω = [−2, 2] × [−2, 2] and the spatial discretization used in example 5.1.7 and example
5.2.6.
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Figure 19: Graph of the solution in example 5.1.7. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 2.803× 10−1 — 8.066× 10−2 —
256× 256 7.430× 10−2 1.915 1.981× 10−2 2.025
512× 512 1.975× 10−2 1.911 4.896× 10−3 2.017

1024× 1024 5.182× 10−3 1.931 1.220× 10−3 2.005

Table 14: Accuracy results for the solution gradient ∇u in example 5.1.7.
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interface and domain boundaries. The time step in the Crank-Nicolson scheme is chosen as ∆t = ∆x/2,
where ∆x is the size of the smallest cell, so that an overall second order accuracy is obtained.

5.2.1 Example 1

Consider ut = 5 · (ρ5 u) on Ω = [−π, π]× [−π, π] with an exact solution of u = e−2ρt sin(x) cos(y), where
ρ = 1. The interface is the same as in example 5.1.1 and figure 6. Numerical accuracy test results for the
solution and its gradient are given in table 15 and table 16, respectively. The numerical solution at t = 0.25
on a grid with an effective resolution of 128× 128 is plotted in figure 20.
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Figure 20: Graph of the solution in example 5.2.1. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 3.380× 10−2 — 1.409× 10−3 —
256× 256 9.996× 10−3 1.758 4.308× 10−4 1.709
512× 512 2.943× 10−3 1.764 1.120× 10−4 1.944

1024× 1024 7.378× 10−4 1.996 2.798× 10−5 2.001

Table 15: Accuracy results for the solution u in example 5.2.1.

effective resolution L∞ error order L1 error order
128× 128 3.629× 10−1 — 1.503× 10−2 —
256× 256 9.796× 10−2 1.889 4.257× 10−3 1.820
512× 512 3.027× 10−2 1.694 1.074× 10−3 1.986

1024× 1024 8.212× 10−3 1.882 2.654× 10−4 2.017

Table 16: Accuracy results for the solution gradient ∇u in example 5.2.1.

5.2.2 Example 2

Consider ut = 5 · (ρ 5 u) on Ω = [−1, 1] × [−1, 1] with an exact solution of u = e−2π2ρt sin(πx) sin(πy),
where ρ = 0.2. The interface is the same as in example 5.1.2 and figure 8. Numerical accuracy test results
for the solution and its gradient are given in table 17 and table 18, respectively. The numerical solution at
t = 0.25 on a grid with an effective resolution of 128× 128 is plotted in figure 21.
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Figure 21: Graph of the solution in example 5.2.2. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 6.957× 10−3 — 1.021× 10−3 —
256× 256 1.968× 10−3 1.822 2.182× 10−4 2.227
512× 512 4.906× 10−4 2.004 5.069× 10−5 2.106

1024× 1024 1.237× 10−4 1.988 1.224× 10−5 2.049

Table 17: Accuracy results for the solution u in example 5.2.2.

effective resolution L∞ error order L1 error order
128× 128 6.459× 10−2 — 2.839× 10−2 —
256× 256 1.892× 10−2 1.772 6.510× 10−3 2.124
512× 512 5.304× 10−3 1.834 1.575× 10−3 2.047

1024× 1024 1.395× 10−3 1.927 3.878× 10−4 2.022

Table 18: Accuracy results for the solution gradient ∇u in example 5.2.2.
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5.2.3 Example 3

Consider ut = 5 · (ρ 5 u) on Ω = [−1, 1] × [−1, 1] with an exact solution of u = e−2π2ρt cos(πx) sin(πy),
where ρ = 1. The interface is the same as in example 5.1.4 and figure 12. Numerical accuracy test results
for the solution and its gradient are given in table 19 and table 20, respectively. The numerical solution at
t = 0.25 on a grid with an effective resolution of 128× 128 is plotted in figure 22.
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Figure 22: Graph of the solution in example 5.2.3. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 2.845× 10−4 — 2.183× 10−5 —
256× 256 7.080× 10−5 2.007 4.810× 10−6 2.182
512× 512 1.750× 10−5 2.016 1.114× 10−6 2.110

1024× 1024 4.344× 10−6 2.011 2.683× 10−7 2.054

Table 19: Accuracy results for the solution u in example 5.1.3.

effective resolution L∞ error order L1 error order
128× 128 1.966× 10−3 — 6.214× 10−4 —
256× 256 4.992× 10−4 1.978 1.437× 10−4 2.112
512× 512 1.292× 10−4 1.950 3.426× 10−5 2.069

1024× 1024 3.388× 10−5 1.931 8.393× 10−6 2.029

Table 20: Accuracy results for the solution gradient ∇u in example 5.1.3.

5.2.4 Example 4

Consider ut = 5 · (ρ5 u) on Ω = [−1, 1] × [−1, 1] with an exact solution of u = e−2ρt cos(x) cos(y), where
ρ = 1. The interface is the same as in example 5.1.4 and figure 14. Numerical accuracy test results for the
solution and its gradient are given in table 21 and table 22, respectively. The numerical solution at t = 0.25
on a grid with an effective resolution of 128× 128 is plotted in figure 23.
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Figure 23: Graph of the solution in example 5.2.4. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 6.928× 10−5 — 8.809× 10−6 —
256× 256 1.743× 10−5 1.991 2.168× 10−6 2.023
512× 512 4.336× 10−6 2.007 5.351× 10−7 2.019

1024× 1024 1.080× 10−6 2.006 1.327× 10−7 2.011

Table 21: Accuracy results for the solution u in example 5.2.4.

effective resolution L∞ error order L1 error order
128× 128 7.953× 10−4 — 2.944× 10−4 —
256× 256 2.254× 10−4 1.819 7.623× 10−5 1.949
512× 512 6.181× 10−5 1.866 1.923× 10−5 1.987

1024× 1024 1.662× 10−5 1.895 4.834× 10−6 1.992

Table 22: Accuracy results for the solution gradient ∇u in example 5.2.4.
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5.2.5 Example 5

Consider ut = 5 · (ρ5 u) on Ω = [−1, 1]× [−1, 1] with an exact solution of u = e−ρt(sin(x) + cos(y)), where
ρ = 8. The interface is the same as in example 5.1.6 and figure 16. Numerical accuracy test results for the
solution and its gradient are given in table 23 and table 24, respectively. The numerical solution at t = 0.25
on a grid with an effective resolution of 128× 128 is plotted in figure 24.
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Figure 24: Graph of the solution in example 5.2.5. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 3.621× 10−6 — 6.389× 10−7 —
256× 256 8.260× 10−7 2.132 1.700× 10−7 1.910
512× 512 1.933× 10−7 2.095 3.983× 10−8 2.093

1024× 1024 4.556× 10−8 2.085 9.652× 10−9 2.045

Table 23: Accuracy results for the solution u in example 5.2.5.

effective resolution L∞ error order L1 error order
128× 128 1.073× 10−4 — 3.074× 10−5 —
256× 256 3.889× 10−5 1.464 8.933× 10−6 1.783
512× 512 7.729× 10−6 2.331 2.304× 10−6 1.955

1024× 1024 2.284× 10−6 1.759 5.971× 10−7 1.948

Table 24: Accuracy results for the solution gradient ∇u in example 5.2.5.

5.2.6 Example 6

Consider ut = 5 · (ρ 5 u) on Ω = [−2, 2] × [−2, 2] with an exact solution of u = e−2π2ρt cos(πx) sin(πy),
where ρ = 0.2. The interface is the same as in example 5.1.7 and figure 18. Numerical accuracy test results
for the solution and its gradient are given in table 25 and table 26, respectively. The numerical solution at
t = 0.25 on a grid with an effective resolution of 128× 128 is plotted in figure 25.
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Figure 25: Graph of the solution in example 5.2.6. The dots represent the approximate solution and the
mesh represents the exact solution.

effective resolution L∞ error order L1 error order
128× 128 1.671× 10−2 — 1.982× 10−3 —
256× 256 4.060× 10−3 2.041 4.666× 10−4 2.087
512× 512 1.003× 10−3 2.017 1.126× 10−4 2.051

1024× 1024 2.498× 10−4 2.006 2.767× 10−5 2.025

Table 25: Accuracy results for the solution u in example 5.2.6.

effective resolution L∞ error order L1 error order
128× 128 1.089× 10−1 — 3.570× 10−2 —
256× 256 2.767× 10−2 1.976 8.784× 10−3 2.023
512× 512 7.574× 10−3 1.869 2.180× 10−3 2.011

1024× 1024 2.029× 10−3 1.901 5.447× 10−4 2.001

Table 26: Accuracy results for the solution gradient ∇u in example 5.2.6.
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6 Conclusions
We have proposed finite difference algorithms for the variable coefficient Poisson equation as well as for the
heat equation on irregular domains and non-graded Cartesian grids. These schemes produce second order
accuracy for the solution and its gradients. Sampling the solution at the nodes produces efficient and simple
procedures that can be applied in a dimension by dimension framework. At T-junctions, linear interpolations
are used to generate intermediate values used in the discretizations. These intermediate values introduce
spurious O(1) errors that are successfully cancelled by simple linear combinations of the discretizations in
the transverse directions. T-junction nodes neighboring the irregular interface are excluded by imposing that
the smallest cells lie on the interface. For nodes neighboring the interface, quadratic interpolation is used to
find both the location of the interface and the value of the solution at the interface. The calculation of the
solution gradients involves the same cells as those used in the discretization of the Poisson or heat equation,
hence preserving the locality and ease of implementation of the method. In the case of the heat equation,
we utilize an implicit time discretization to overcome the time step restrictions induced by explicit schemes.
We have presented numerical results to demonstrate the second order accuracy in the L1 and L∞ norms for
the solution and its gradients. Future work will include the design of a simple second order scheme for the
Stefan problem.
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